Skip to content

Latest commit

 

History

History
418 lines (346 loc) · 9.06 KB

File metadata and controls

418 lines (346 loc) · 9.06 KB
comments difficulty edit_url tags
true
简单
哈希表
链表
双指针

English Version

题目描述

给你一个链表的头节点 head ,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false

 

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

 

提示:

  • 链表中节点的数目范围是 [0, 104]
  • -105 <= Node.val <= 105
  • pos-1 或者链表中的一个 有效索引

 

进阶:你能用 O(1)(即,常量)内存解决此问题吗?

解法

方法一:哈希表

我们可以遍历链表,用一个哈希表 $s$ 记录每个节点。当某个节点二次出现时,则表示存在环,直接返回 true。否则链表遍历结束,返回 false

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是链表中的节点数。

Python3

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None


class Solution:
    def hasCycle(self, head: Optional[ListNode]) -> bool:
        s = set()
        while head:
            if head in s:
                return True
            s.add(head)
            head = head.next
        return False

Java

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public boolean hasCycle(ListNode head) {
        Set<ListNode> s = new HashSet<>();
        for (; head != null; head = head.next) {
            if (!s.add(head)) {
                return true;
            }
        }
        return false;
    }
}

C++

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    bool hasCycle(ListNode* head) {
        unordered_set<ListNode*> s;
        for (; head; head = head->next) {
            if (s.contains(head)) {
                return true;
            }
            s.insert(head);
        }
        return false;
    }
};

Go

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func hasCycle(head *ListNode) bool {
	s := map[*ListNode]bool{}
	for ; head != nil; head = head.Next {
		if s[head] {
			return true
		}
		s[head] = true
	}
	return false
}

TypeScript

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function hasCycle(head: ListNode | null): boolean {
    const s: Set<ListNode> = new Set();
    for (; head; head = head.next) {
        if (s.has(head)) {
            return true;
        }
        s.add(head);
    }
    return false;
}

方法二:快慢指针

我们定义快慢指针 $fast$$slow$,初始时均指向 $head$

快指针每次走两步,慢指针每次走一步,不断循环。当快慢指针相遇时,说明链表存在环。如果循环结束依然没有相遇,说明链表不存在环。

时间复杂度 $O(n)$,其中 $n$ 是链表中的节点数。空间复杂度 $O(1)$

Python3

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None


class Solution:
    def hasCycle(self, head: ListNode) -> bool:
        slow = fast = head
        while fast and fast.next:
            slow, fast = slow.next, fast.next.next
            if slow == fast:
                return True
        return False

Java

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public boolean hasCycle(ListNode head) {
        ListNode slow = head;
        ListNode fast = head;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
            if (slow == fast) {
                return true;
            }
        }
        return false;
    }
}

C++

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    bool hasCycle(ListNode* head) {
        ListNode* slow = head;
        ListNode* fast = head;
        while (fast && fast->next) {
            slow = slow->next;
            fast = fast->next->next;
            if (slow == fast) {
                return true;
            }
        }
        return false;
    }
};

Go

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func hasCycle(head *ListNode) bool {
	slow, fast := head, head
	for fast != nil && fast.Next != nil {
		slow, fast = slow.Next, fast.Next.Next
		if slow == fast {
			return true
		}
	}
	return false
}

TypeScript

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function hasCycle(head: ListNode | null): boolean {
    let slow = head;
    let fast = head;
    while (fast !== null && fast.next !== null) {
        slow = slow.next;
        fast = fast.next.next;
        if (slow === fast) {
            return true;
        }
    }
    return false;
}

JavaScript

/**
 * Definition for singly-linked list.
 * function ListNode(val) {
 *     this.val = val;
 *     this.next = null;
 * }
 */

/**
 * @param {ListNode} head
 * @return {boolean}
 */
var hasCycle = function (head) {
    let slow = head;
    let fast = head;
    while (fast && fast.next) {
        slow = slow.next;
        fast = fast.next.next;
        if (slow === fast) {
            return true;
        }
    }
    return false;
};

C#

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     public int val;
 *     public ListNode next;
 *     public ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public bool HasCycle(ListNode head) {
        var fast = head;
        var slow = head;
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
            if (fast == slow) {
                return true;
            }
        }
        return false;
    }
}