Skip to content

Latest commit

 

History

History
378 lines (338 loc) · 9.27 KB

File metadata and controls

378 lines (338 loc) · 9.27 KB
comments difficulty edit_url tags
true
中等
广度优先搜索
二叉树

English Version

题目描述

给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。

 

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[20,9],[15,7]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

 

提示:

  • 树中节点数目在范围 [0, 2000]
  • -100 <= Node.val <= 100

解法

方法一:BFS

为了实现锯齿形层序遍历,需要在层序遍历的基础上增加一个标志位 left,用于标记当前层的节点值的顺序。如果 lefttrue,则当前层的节点值按照从左到右的顺序存入结果数组 ans 中;如果 leftfalse,则当前层的节点值按照从右到左的顺序存入结果数组 ans 中。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        ans = []
        if root is None:
            return ans
        q = deque([root])
        ans = []
        left = 1
        while q:
            t = []
            for _ in range(len(q)):
                node = q.popleft()
                t.append(node.val)
                if node.left:
                    q.append(node.left)
                if node.right:
                    q.append(node.right)
            ans.append(t if left else t[::-1])
            left ^= 1
        return ans

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
        List<List<Integer>> ans = new ArrayList<>();
        if (root == null) {
            return ans;
        }
        Deque<TreeNode> q = new ArrayDeque<>();
        q.offer(root);
        boolean left = true;
        while (!q.isEmpty()) {
            List<Integer> t = new ArrayList<>();
            for (int n = q.size(); n > 0; --n) {
                TreeNode node = q.poll();
                t.add(node.val);
                if (node.left != null) {
                    q.offer(node.left);
                }
                if (node.right != null) {
                    q.offer(node.right);
                }
            }
            if (!left) {
                Collections.reverse(t);
            }
            ans.add(t);
            left = !left;
        }
        return ans;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
        vector<vector<int>> ans;
        if (!root) {
            return ans;
        }
        queue<TreeNode*> q{{root}};
        int left = 1;
        while (!q.empty()) {
            vector<int> t;
            for (int n = q.size(); n; --n) {
                auto node = q.front();
                q.pop();
                t.emplace_back(node->val);
                if (node->left) {
                    q.push(node->left);
                }
                if (node->right) {
                    q.push(node->right);
                }
            }
            if (!left) {
                reverse(t.begin(), t.end());
            }
            ans.emplace_back(t);
            left ^= 1;
        }
        return ans;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func zigzagLevelOrder(root *TreeNode) (ans [][]int) {
	if root == nil {
		return
	}
	q := []*TreeNode{root}
	left := true
	for len(q) > 0 {
		t := []int{}
		for n := len(q); n > 0; n-- {
			node := q[0]
			q = q[1:]
			t = append(t, node.Val)
			if node.Left != nil {
				q = append(q, node.Left)
			}
			if node.Right != nil {
				q = append(q, node.Right)
			}
		}
		if !left {
			for i, j := 0, len(t)-1; i < j; i, j = i+1, j-1 {
				t[i], t[j] = t[j], t[i]
			}
		}
		ans = append(ans, t)
		left = !left
	}
	return
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function zigzagLevelOrder(root: TreeNode | null): number[][] {
    const ans: number[][] = [];
    if (!root) {
        return ans;
    }
    const q: TreeNode[] = [root];
    let left: number = 1;
    while (q.length) {
        const t: number[] = [];
        const qq: TreeNode[] = [];
        for (const { val, left, right } of q) {
            t.push(val);
            left && qq.push(left);
            right && qq.push(right);
        }
        ans.push(left ? t : t.reverse());
        q.splice(0, q.length, ...qq);
        left ^= 1;
    }
    return ans;
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
impl Solution {
    pub fn zigzag_level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
        let mut ans = Vec::new();
        let mut left = true;
        if let Some(root_node) = root {
            let mut q = VecDeque::new();
            q.push_back(root_node);
            while !q.is_empty() {
                let mut t = Vec::new();
                for _ in 0..q.len() {
                    if let Some(node) = q.pop_front() {
                        let node_ref = node.borrow();
                        t.push(node_ref.val);
                        if let Some(ref left) = node_ref.left {
                            q.push_back(Rc::clone(left));
                        }
                        if let Some(ref right) = node_ref.right {
                            q.push_back(Rc::clone(right));
                        }
                    }
                }
                if !left {
                    t.reverse();
                }
                ans.push(t);
                left = !left;
            }
        }
        ans
    }
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[][]}
 */
var zigzagLevelOrder = function (root) {
    const ans = [];
    if (!root) {
        return ans;
    }
    const q = [root];
    let left = 1;
    while (q.length) {
        const t = [];
        const qq = [];
        for (const { val, left, right } of q) {
            t.push(val);
            left && qq.push(left);
            right && qq.push(right);
        }
        ans.push(left ? t : t.reverse());
        q.splice(0, q.length, ...qq);
        left ^= 1;
    }
    return ans;
};