Skip to content

Latest commit

 

History

History
183 lines (144 loc) · 3.76 KB

File metadata and controls

183 lines (144 loc) · 3.76 KB
comments difficulty edit_url tags
true
中等
二叉搜索树
数学
动态规划
二叉树

English Version

题目描述

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

 

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

 

提示:

  • 1 <= n <= 19

解法

方法一:动态规划

我们定义 $f[i]$ 表示 $[1, i]$ 能产生的二叉搜索树的个数,初始时 $f[0] = 1$,答案为 $f[n]$

我们可以枚举节点数 $i$,那么左子树节点数 $j \in [0, i - 1]$,右子树节点数 $k = i - j - 1$,左子树节点数和右子树节点数的组合数为 $f[j] \times f[k]$,因此 $f[i] = \sum_{j = 0}^{i - 1} f[j] \times f[i - j - 1]$

最后返回 $f[n]$ 即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为节点数。

Python3

class Solution:
    def numTrees(self, n: int) -> int:
        f = [1] + [0] * n
        for i in range(n + 1):
            for j in range(i):
                f[i] += f[j] * f[i - j - 1]
        return f[n]

Java

class Solution {
    public int numTrees(int n) {
        int[] f = new int[n + 1];
        f[0] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                f[i] += f[j] * f[i - j - 1];
            }
        }
        return f[n];
    }
}

C++

class Solution {
public:
    int numTrees(int n) {
        vector<int> f(n + 1);
        f[0] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                f[i] += f[j] * f[i - j - 1];
            }
        }
        return f[n];
    }
};

Go

func numTrees(n int) int {
	f := make([]int, n+1)
	f[0] = 1
	for i := 1; i <= n; i++ {
		for j := 0; j < i; j++ {
			f[i] += f[j] * f[i-j-1]
		}
	}
	return f[n]
}

TypeScript

function numTrees(n: number): number {
    const f: number[] = Array(n + 1).fill(0);
    f[0] = 1;
    for (let i = 1; i <= n; ++i) {
        for (let j = 0; j < i; ++j) {
            f[i] += f[j] * f[i - j - 1];
        }
    }
    return f[n];
}

Rust

impl Solution {
    pub fn num_trees(n: i32) -> i32 {
        let n = n as usize;
        let mut f = vec![0; n + 1];
        f[0] = 1;
        for i in 1..=n {
            for j in 0..i {
                f[i] += f[j] * f[i - j - 1];
            }
        }
        f[n] as i32
    }
}

C#

public class Solution {
    public int NumTrees(int n) {
        int[] f = new int[n + 1];
        f[0] = 1;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                f[i] += f[j] * f[i - j - 1];
            }
        }
        return f[n];
    }
}