Skip to content

Latest commit

 

History

History
473 lines (386 loc) · 9 KB

File metadata and controls

473 lines (386 loc) · 9 KB
comments difficulty edit_url tags
true
简单
记忆化搜索
数学
动态规划

English Version

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

 

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

 

提示:

  • 1 <= n <= 45

解法

方法一:递推

我们定义 $f[i]$ 表示爬到第 $i$ 阶楼梯的方法数,那么 $f[i]$ 可以由 $f[i - 1]$$f[i - 2]$ 转移而来,即:

$$ f[i] = f[i - 1] + f[i - 2] $$

初始条件为 $f[0] = 1$,$f[1] = 1$,即爬到第 0 阶楼梯的方法数为 1,爬到第 1 阶楼梯的方法数也为 1。

答案即为 $f[n]$

由于 $f[i]$ 只与 $f[i - 1]$$f[i - 2]$ 有关,因此我们可以只用两个变量 $a$$b$ 来维护当前的方法数,空间复杂度降低为 $O(1)$

时间复杂度 $O(n)$,空间复杂度 $O(1)$

Python3

class Solution:
    def climbStairs(self, n: int) -> int:
        a, b = 0, 1
        for _ in range(n):
            a, b = b, a + b
        return b

Java

class Solution {
    public int climbStairs(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
}

C++

class Solution {
public:
    int climbStairs(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
};

Go

func climbStairs(n int) int {
	a, b := 0, 1
	for i := 0; i < n; i++ {
		a, b = b, a+b
	}
	return b
}

TypeScript

function climbStairs(n: number): number {
    let p = 1;
    let q = 1;
    for (let i = 1; i < n; i++) {
        [p, q] = [q, p + q];
    }
    return q;
}

Rust

impl Solution {
    pub fn climb_stairs(n: i32) -> i32 {
        let (mut p, mut q) = (1, 1);
        for i in 1..n {
            let t = p + q;
            p = q;
            q = t;
        }
        q
    }
}

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function (n) {
    let a = 0,
        b = 1;
    for (let i = 0; i < n; ++i) {
        const c = a + b;
        a = b;
        b = c;
    }
    return b;
};

PHP

class Solution {
    /**
     * @param Integer $n
     * @return Integer
     */
    function climbStairs($n) {
        if ($n <= 2) {
            return $n;
        }
        $dp = [0, 1, 2];
        for ($i = 3; $i <= $n; $i++) {
            $dp[$i] = $dp[$i - 2] + $dp[$i - 1];
        }
        return $dp[$n];
    }
}

方法二:矩阵快速幂加速递推

我们设 $Fib(n)$ 表示一个 $1 \times 2$ 的矩阵 $\begin{bmatrix} F_n & F_{n - 1} \end{bmatrix}$,其中 $F_n$$F_{n - 1}$ 分别是第 $n$ 个和第 $n - 1$ 个斐波那契数。

我们希望根据 $Fib(n-1) = \begin{bmatrix} F_{n - 1} & F_{n - 2} \end{bmatrix}$ 推出 $Fib(n)$。也即是说,我们需要一个矩阵 $base$,使得 $Fib(n - 1) \times base = Fib(n)$,即:

$$ \begin{bmatrix} F_{n - 1} & F_{n - 2} \end{bmatrix} \times base = \begin{bmatrix} F_n & F_{n - 1} \end{bmatrix} $$

由于 $F_n = F_{n - 1} + F_{n - 2}$,所以矩阵 $base$ 的第一列为:

$$ \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$

第二列为:

$$ \begin{bmatrix} 1 \\ 0 \end{bmatrix} $$

因此有:

$$ \begin{bmatrix} F_{n - 1} & F_{n - 2} \end{bmatrix} \times \begin{bmatrix}1 & 1 \ 1 & 0\end{bmatrix} = \begin{bmatrix} F_n & F_{n - 1} \end{bmatrix} $$

我们定义初始矩阵 $res = \begin{bmatrix} 1 & 1 \end{bmatrix}$,那么 $F_n$ 等于 $res$ 乘以 $base^{n - 1}$ 的结果矩阵中第一行的第一个元素。使用矩阵快速幂求解即可。

时间复杂度 $O(\log n)$,空间复杂度 $O(1)$

Python3

import numpy as np


class Solution:
    def climbStairs(self, n: int) -> int:
        res = np.asmatrix([(1, 1)], np.dtype("O"))
        factor = np.asmatrix([(1, 1), (1, 0)], np.dtype("O"))
        n -= 1
        while n:
            if n & 1:
                res *= factor
            factor *= factor
            n >>= 1
        return res[0, 0]

Java

class Solution {
    private final int[][] a = {{1, 1}, {1, 0}};

    public int climbStairs(int n) {
        return pow(a, n - 1)[0][0];
    }

    private int[][] mul(int[][] a, int[][] b) {
        int m = a.length, n = b[0].length;
        int[][] c = new int[m][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < a[0].length; ++k) {
                    c[i][j] += a[i][k] * b[k][j];
                }
            }
        }
        return c;
    }

    private int[][] pow(int[][] a, int n) {
        int[][] res = {{1, 1}, {0, 0}};
        while (n > 0) {
            if ((n & 1) == 1) {
                res = mul(res, a);
            }
            n >>= 1;
            a = mul(a, a);
        }
        return res;
    }
}

C++

class Solution {
public:
    int climbStairs(int n) {
        vector<vector<long long>> a = {{1, 1}, {1, 0}};
        return pow(a, n - 1)[0][0];
    }

private:
    vector<vector<long long>> mul(vector<vector<long long>>& a, vector<vector<long long>>& b) {
        int m = a.size(), n = b[0].size();
        vector<vector<long long>> res(m, vector<long long>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < a[0].size(); ++k) {
                    res[i][j] += a[i][k] * b[k][j];
                }
            }
        }
        return res;
    }

    vector<vector<long long>> pow(vector<vector<long long>>& a, int n) {
        vector<vector<long long>> res = {{1, 1}, {0, 0}};
        while (n) {
            if (n & 1) {
                res = mul(res, a);
            }
            a = mul(a, a);
            n >>= 1;
        }
        return res;
    }
};

Go

type matrix [2][2]int

func climbStairs(n int) int {
	a := matrix{{1, 1}, {1, 0}}
	return pow(a, n-1)[0][0]
}

func mul(a, b matrix) (c matrix) {
	m, n := len(a), len(b[0])
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			for k := 0; k < len(a[0]); k++ {
				c[i][j] += a[i][k] * b[k][j]
			}
		}
	}
	return
}

func pow(a matrix, n int) matrix {
	res := matrix{{1, 1}, {0, 0}}
	for n > 0 {
		if n&1 == 1 {
			res = mul(res, a)
		}
		a = mul(a, a)
		n >>= 1
	}
	return res
}

TypeScript

function climbStairs(n: number): number {
    const a = [
        [1, 1],
        [1, 0],
    ];
    return pow(a, n - 1)[0][0];
}

function mul(a: number[][], b: number[][]): number[][] {
    const [m, n] = [a.length, b[0].length];
    const c = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            for (let k = 0; k < a[0].length; ++k) {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }
    return c;
}

function pow(a: number[][], n: number): number[][] {
    let res = [
        [1, 1],
        [0, 0],
    ];
    while (n) {
        if (n & 1) {
            res = mul(res, a);
        }
        a = mul(a, a);
        n >>= 1;
    }
    return res;
}

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function (n) {
    const a = [
        [1, 1],
        [1, 0],
    ];
    return pow(a, n - 1)[0][0];
};

function mul(a, b) {
    const [m, n] = [a.length, b[0].length];
    const c = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            for (let k = 0; k < a[0].length; ++k) {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }
    return c;
}

function pow(a, n) {
    let res = [
        [1, 1],
        [0, 0],
    ];
    while (n) {
        if (n & 1) {
            res = mul(res, a);
        }
        a = mul(a, a);
        n >>= 1;
    }
    return res;
}