comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
简单 |
|
将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
示例 1:
输入:l1 = [1,2,4], l2 = [1,3,4] 输出:[1,1,2,3,4,4]
示例 2:
输入:l1 = [], l2 = [] 输出:[]
示例 3:
输入:l1 = [], l2 = [0] 输出:[0]
提示:
- 两个链表的节点数目范围是
[0, 50]
-100 <= Node.val <= 100
l1
和l2
均按 非递减顺序 排列
我们先判断链表
- 若
$l_1$ 的头节点的值小于等于$l_2$ 的头节点的值,则递归调用函数$mergeTwoLists(l_1.next, l_2)$ ,并将$l_1$ 的头节点与返回的链表头节点相连,返回$l_1$ 的头节点。 - 否则,递归调用函数
$mergeTwoLists(l_1, l_2.next)$ ,并将$l_2$ 的头节点与返回的链表头节点相连,返回$l_2$ 的头节点。
时间复杂度
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def mergeTwoLists(
self, list1: Optional[ListNode], list2: Optional[ListNode]
) -> Optional[ListNode]:
if list1 is None or list2 is None:
return list1 or list2
if list1.val <= list2.val:
list1.next = self.mergeTwoLists(list1.next, list2)
return list1
else:
list2.next = self.mergeTwoLists(list1, list2.next)
return list2
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
if (list1 == null) {
return list2;
}
if (list2 == null) {
return list1;
}
if (list1.val <= list2.val) {
list1.next = mergeTwoLists(list1.next, list2);
return list1;
} else {
list2.next = mergeTwoLists(list1, list2.next);
return list2;
}
}
}
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
if (!list1) return list2;
if (!list2) return list1;
if (list1->val <= list2->val) {
list1->next = mergeTwoLists(list1->next, list2);
return list1;
} else {
list2->next = mergeTwoLists(list1, list2->next);
return list2;
}
}
};
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func mergeTwoLists(list1 *ListNode, list2 *ListNode) *ListNode {
if list1 == nil {
return list2
}
if list2 == nil {
return list1
}
if list1.Val <= list2.Val {
list1.Next = mergeTwoLists(list1.Next, list2)
return list1
} else {
list2.Next = mergeTwoLists(list1, list2.Next)
return list2
}
}
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function mergeTwoLists(list1: ListNode | null, list2: ListNode | null): ListNode | null {
if (list1 == null || list2 == null) {
return list1 || list2;
}
if (list1.val < list2.val) {
list1.next = mergeTwoLists(list1.next, list2);
return list1;
} else {
list2.next = mergeTwoLists(list1, list2.next);
return list2;
}
}
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
impl Solution {
pub fn merge_two_lists(
list1: Option<Box<ListNode>>,
list2: Option<Box<ListNode>>,
) -> Option<Box<ListNode>> {
match (list1, list2) {
(None, None) => None,
(Some(list), None) => Some(list),
(None, Some(list)) => Some(list),
(Some(mut list1), Some(mut list2)) => {
if list1.val < list2.val {
list1.next = Self::merge_two_lists(list1.next, Some(list2));
Some(list1)
} else {
list2.next = Self::merge_two_lists(Some(list1), list2.next);
Some(list2)
}
}
}
}
}
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* @param {ListNode} list1
* @param {ListNode} list2
* @return {ListNode}
*/
var mergeTwoLists = function (list1, list2) {
if (!list1 || !list2) {
return list1 || list2;
}
if (list1.val <= list2.val) {
list1.next = mergeTwoLists(list1.next, list2);
return list1;
} else {
list2.next = mergeTwoLists(list1, list2.next);
return list2;
}
};
/**
* Definition for singly-linked list.
* public class ListNode {
* public int val;
* public ListNode next;
* public ListNode(int val=0, ListNode next=null) {
* this.val = val;
* this.next = next;
* }
* }
*/
public class Solution {
public ListNode MergeTwoLists(ListNode list1, ListNode list2) {
ListNode dummy = new ListNode();
ListNode cur = dummy;
while (list1 != null && list2 != null)
{
if (list1.val <= list2.val)
{
cur.next = list1;
list1 = list1.next;
}
else
{
cur.next = list2;
list2 = list2.next;
}
cur = cur.next;
}
cur.next = list1 == null ? list2 : list1;
return dummy.next;
}
}
# Definition for singly-linked list.
# class ListNode
# attr_accessor :val, :next
# def initialize(val = 0, _next = nil)
# @val = val
# @next = _next
# end
# end
# @param {ListNode} list1
# @param {ListNode} list2
# @return {ListNode}
def merge_two_lists(list1, list2)
dummy = ListNode.new()
cur = dummy
while list1 && list2
if list1.val <= list2.val
cur.next = list1
list1 = list1.next
else
cur.next = list2
list2 = list2.next
end
cur = cur.next
end
cur.next = list1 || list2
dummy.next
end
我们也可以用迭代的方式来实现两个排序链表的合并。
我们先定义一个虚拟头节点
最后返回
时间复杂度
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def mergeTwoLists(
self, list1: Optional[ListNode], list2: Optional[ListNode]
) -> Optional[ListNode]:
dummy = ListNode()
curr = dummy
while list1 and list2:
if list1.val <= list2.val:
curr.next = list1
list1 = list1.next
else:
curr.next = list2
list2 = list2.next
curr = curr.next
curr.next = list1 or list2
return dummy.next
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
ListNode dummy = new ListNode();
ListNode curr = dummy;
while (list1 != null && list2 != null) {
if (list1.val <= list2.val) {
curr.next = list1;
list1 = list1.next;
} else {
curr.next = list2;
list2 = list2.next;
}
curr = curr.next;
}
curr.next = list1 == null ? list2 : list1;
return dummy.next;
}
}
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
ListNode* dummy = new ListNode();
ListNode* curr = dummy;
while (list1 && list2) {
if (list1->val <= list2->val) {
curr->next = list1;
list1 = list1->next;
} else {
curr->next = list2;
list2 = list2->next;
}
curr = curr->next;
}
curr->next = list1 ? list1 : list2;
return dummy->next;
}
};
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func mergeTwoLists(list1 *ListNode, list2 *ListNode) *ListNode {
dummy := &ListNode{}
curr := dummy
for list1 != nil && list2 != nil {
if list1.Val <= list2.Val {
curr.Next = list1
list1 = list1.Next
} else {
curr.Next = list2
list2 = list2.Next
}
curr = curr.Next
}
if list1 != nil {
curr.Next = list1
} else {
curr.Next = list2
}
return dummy.Next
}
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function mergeTwoLists(list1: ListNode | null, list2: ListNode | null): ListNode | null {
const dummy = new ListNode(0);
let cur = dummy;
while (list1 != null && list2 != null) {
if (list1.val < list2.val) {
cur.next = list1;
list1 = list1.next;
} else {
cur.next = list2;
list2 = list2.next;
}
cur = cur.next;
}
cur.next = list1 || list2;
return dummy.next;
}
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
impl Solution {
pub fn merge_two_lists(
mut list1: Option<Box<ListNode>>,
mut list2: Option<Box<ListNode>>,
) -> Option<Box<ListNode>> {
let mut new_list = ListNode::new(0);
let mut cur = &mut new_list;
while list1.is_some() && list2.is_some() {
let (l1, l2) = (list1.as_deref_mut().unwrap(), list2.as_deref_mut().unwrap());
if l1.val < l2.val {
let next = l1.next.take();
cur.next = list1.take();
list1 = next;
} else {
let next = l2.next.take();
cur.next = list2.take();
list2 = next;
}
cur = cur.next.as_deref_mut().unwrap();
}
cur.next = list1.or(list2);
new_list.next
}
}
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* @param {ListNode} list1
* @param {ListNode} list2
* @return {ListNode}
*/
var mergeTwoLists = function (list1, list2) {
const dummy = new ListNode();
let curr = dummy;
while (list1 && list2) {
if (list1.val <= list2.val) {
curr.next = list1;
list1 = list1.next;
} else {
curr.next = list2;
list2 = list2.next;
}
curr = curr.next;
}
curr.next = list1 || list2;
return dummy.next;
};
# Definition for singly-linked list.
# class ListNode {
# public $val;
# public $next;
# public function __construct($val = 0, $next = null)
# {
# $this->val = $val;
# $this->next = $next;
# }
# }
class Solution {
/**
* @param ListNode $list1
* @param ListNode $list2
* @return ListNode
*/
function mergeTwoLists($list1, $list2) {
$dummy = new ListNode(0);
$current = $dummy;
while ($list1 != null && $list2 != null) {
if ($list1->val <= $list2->val) {
$current->next = $list1;
$list1 = $list1->next;
} else {
$current->next = $list2;
$list2 = $list2->next;
}
$current = $current->next;
}
if ($list1 != null) {
$current->next = $list1;
} elseif ($list2 != null) {
$current->next = $list2;
}
return $dummy->next;
}
}