-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpiliko_plot.py
489 lines (435 loc) · 12.8 KB
/
piliko_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from piliko_bbox import *
from piliko_scuts import *
from piliko import *
##################### render objects into text
def bounding_box_txt( b ):
s = '[ ' + str(b.min) + ' , ' + str(b.max) + ' ]'
return s
def complex_txt( c ):
s = '[ '+str(c.x)+' + '+str(c.y)+'*i ]'
return s
def point_txt( p ):
s = '['+str(p.x)+','+str(p.y)
if hasattr(p,'z'): s += ',' + str(p.z)
s += ']'
return s
def bivector_txt( bv ):
return vector_txt( bv.v1 ) + 'V' + vector_txt( bv.v2 ) + ' value: ' + str(bv.value())
def vector_txt( v ):
s = '('+str(v.x)+','+str(v.y)
if hasattr(v,'z'): s += ',' + str(v.z)
s += ')'
return s
def line_txt( l ):
s = '<'+str(l.a)+":"+str(l.b)+":"+str(l.c)
s += '>'
return s
def plane_txt( l ):
s = '<'+str(l.a)+":"+str(l.b)+":"+str(l.c)+":"+str(l.d)
s += '>'
return s
def lineseg_txt( l ):
s = str(l.p0) +'-'+str(l.p1)
return s
def projective_form_txt( pf ):
s = str('['+ str(pf.d)+':'+str(pf.e)+':'+str(pf.f)+']')
if pf.d==1 and pf.e==0 and pf.f == 1: s += ' (blue)'
elif pf.d==1 and pf.e==0 and pf.f == -1: s += ' (red)'
elif pf.d==0 and pf.e==1 and pf.f == 0: s += ' (green)'
else: s += ' (unknown)'
return s
def circle_txt( c ):
s = str('['+str(c.center)+','+str(c.radial_quadrance)+'<->'+str(c.curvature_quadrance)+']')
return s
def sphere_txt( c ):
s = str('['+str(c.center)+','+str(c.radial_quadrance)+'<->'+str(c.curvature_quadrance)+']')
return s
def triangle_txt( tri ):
#spreads = str(tri.s0)+','+str(tri.s1)+','+str(tri.s2)
#line_eqns = str(tri.l0)+','+str(tri.l1)+','+str(tri.l2)
#linesegs = str(tri.ls0)+' '+str(tri.ls1)+' '+str(tri.ls2)
#points = str(tri.p0)+','+str(tri.p1)+','+str(tri.p2)
#quadrances = str(tri.q0)+','+str(tri.q1)+','+str(tri.q2)
#s ='\ntriangle: '
#s+='\n line eqns: ' + line_eqns
#s+='\n line segs: ' + linesegs
#s+='\n points: ' + points
#s+='\n blue quadrances: ' + quadrances
#s+='\n blue spreads: ' + spreads
s = '['+str(tri.p0)+','+str(tri.p1)+','+str(tri.p2)+']'
return s
def spherical_triangle_txt( tri ):
s = '['+str(tri.p1)+','+str(tri.p2)+','+str(tri.p3)+']'
return s
############################## render objects into MatPlotLib graphics
# everything is done with rationals, except for a few
# calls to matplotlib's "ax" functions that require floats.
plotstarted=False
fig,ax,plt=None,None,None
plotbbox=None
# call matplotlib's "ax" plot function 'func', but convert from
# rationals to floats first.
#
# example:
# ax_floatplot( [1,5],[2,12],ax.scatter) # < scatter plot points at 1,2 5,12
# ax_floatplot( [0,4,5],[2,3,5],ax.plot ) #< plot line from 0,2 to 4,3 to 5,5
def ax_floatplot( xs, ys, func ):
plotbbox.extend( xs,ys )
fxs,fys=[],[]
for x in xs: fxs += [float(x)]
for y in ys: fys += [float(y)]
func( xs, ys )
def getax():
global ax
return ax
def plotinit( startitem ):
global plotstarted,fig,ax,plt,plotbbox
if plotstarted: return
import numpy as np
import matplotlib.pylab as plt
fig,ax = plt.subplots(figsize=(8,8))
plotstarted = True
plotbbox = bounding_box( startitem )
def plotshow():
ax.set_aspect(1)
fmin,fmax = plotbbox.frame()
ax.set_xlim(float(fmin.x),float(fmax.x))
ax.set_ylim(float(fmin.y),float(fmax.y))
plt.show()
def plot_show(): plotshow()
def plot_triangles( *args ):
if checktypes(list,*args):
plot_triangles(*args[0])
return
if checktypes(tuple,*args):
plot_triangles(*args[0])
return
triangles = args
plotinit( triangles[0] )
print len(triangles), 'triangles'
xs,ys=[],[]
for t in triangles:
xs,ys=[],[]
for i in 0,1,2:
xs+=[t[i].x]
ys+=[t[i].y]
xs += [xs[0]]
ys += [ys[0]]
ax_floatplot(xs,ys,ax.plot)
def plot_line_seg( ls ):
plotinit( ls[0] )
xs = [ls[0].x,ls[1].x]
ys = [ls[0].y,ls[1].y]
ax_floatplot( xs, ys, ax.plot )
plot_lineseg=plot_line_seg
def plot_line_segs( segs ):
for ls in segs: plot_line_seg( ls )
def plot_vector( v ):
plot_line_seg( lineseg(0,0,v.x,v.y) )
def plot_vectors( vecs ):
for v in vecs: plot_vector( v )
def plot_line( l ):
if l.a==0 and l.b==0:
plot_point(0,0)
return
plotinit(point(0,0))
xaxis = line(0,1,0)
yaxis = line(1,0,0)
p1,p2 = meet(l,xaxis),meet(l,yaxis)
if p1==None and p2!=None: p1 = p2 + point(p2.x+1,0)
elif p2==None and p1!=None: p2 = p1 + point(0,p1.y+1)
if p1==p2: p2=p1+vector(Fraction(l.b),Fraction(-l.a))
if p1!=None and p2!=None:
ls = line_seg( p1, p2 )
v = vector(p2-p1)
ls2 = translate( ls, v )
v = vector(p1-p2)
ls3 = translate( ls, v )
plot_line_seg( ls )
plot_line_seg( ls2 )
plot_line_seg( ls3 )
def plot_lines( *args ):
if checktypes( line, *args):
for a in args: plot_line(a)
elif checktypes(list,*args):
if checktypes(line,*args[0]):
plot_lines(*args[0])
else: raise Exception('unknown type for plot lines')
else: raise Exception('unknown type for plot lines')
def plot_points( *args ):
#print args
if checktypes(point,*args):
plotinit( args[0] )
print len( args ), 'points'
xs,ys=[],[]
for p in args:
xs += [p.x]
ys += [p.y]
ax_floatplot(xs,ys,ax.scatter) # scatter plot
elif checktypes(list,*args):
if checktypes(point,args[0]):
print len(args),'points'
plot_points(*args[0])
elif checktypes(list,args[0]):
if checkrationals(args[0][0]) and len(args)==2:
plotinit( point(args[0][0],args[1][0]) )
ax_floatplot(args[0],args[1],ax.scatter) # scatter plot
elif checktypes(point,args[0][0]):
plot_points(*args[0])
else: raise Exception('unknown type fed to plot_points')
else: raise Exception('unknown type fed to plot_points')
def plot_blue_circle_w_radius( cx, cy, cr, depth ):
pdic={}
xs,ys=[],[]
for m in range(0,depth):
for n in range(0,depth):
if (blueq(m,n)==0): continue
x = cr*Fraction(redq(m,n),blueq(m,n))
y = cr*Fraction(greenq(m,n),blueq(m,n))
#print 'x,y,x^2+y^2',x,y,x*x+y*y
pdic[x]=y
sortedkeys = pdic.keys()
sortedkeys.sort()
# top half
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx+x]
ys += [cy+y]
sortedkeys.reverse()
# bottom half
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx+x]
ys += [cy-y]
ax_floatplot(xs,ys,ax.plot)
# rational paramterization.
def plot_blue_circles( *args ):
if checktypes(list,*args):
plot_blue_circles(*args[0])
return
circles = list(args)
print len(circles), 'blue circles'
plotinit( circles[0] )
xs,ys=[],[]
depth=10
for c in circles:
depth=8
cx,cy=c.center.x,c.center.y
cr = babylonian_square_root(c.radial_quadrance)
plot_blue_circle_w_radius( cx, cy, cr, depth )
# (red circle = hyperbola)
# rational parameterization.
def plot_red_circle_w_radius( cx, cy, cr, depth ):
pdic={}
xs,ys=[],[]
for m in range(0,int(Fraction(depth,2))):
for n in range(-m,m):
if (redq(m,n)==0): continue
x = cr*Fraction(blueq(m,n),redq(m,n))
y = cr*Fraction(greenq(m,n),redq(m,n))
#print 'x,y,x^2-y^2',x,y,x*x-y*y
pdic[y]=x
sortedkeys = pdic.keys()
sortedkeys.sort()
# right half
for key in sortedkeys:
y,x=key,pdic[key]
xs += [cx+x]
ys += [cy+y]
ax_floatplot(xs,ys,ax.plot)
# left half
xs,ys=[],[]
for key in sortedkeys:
y,x=key,pdic[key]
xs += [cx-x]
ys += [cy+y]
ax_floatplot(xs,ys,ax.plot)
# (red circle = hyperbola)
# rational paramterization.
# imaginary radius.... represents red circles with negative radial quadrance.
# the hyperbola in this case is 'flipped' over the line x=y from the ordinary
# red circle
def plot_red_circle_w_imaginary_radius( cx, cy, cr, depth ):
pdic={}
for m in range(0,int(Fraction(depth,2))):
for n in range(-m,m):
if (redq(m,n)==0): continue
y = cr*Fraction(blueq(m,n),redq(m,n))
x = cr*Fraction(greenq(m,n),redq(m,n))
#print 'x,y,x^2+y^2',x,y,x*x+y*y
pdic[x]=y
sortedkeys = pdic.keys()
sortedkeys.sort()
# top half
xs,ys=[],[]
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx+x]
ys += [cy+y]
ax_floatplot(xs,ys,ax.plot)
# top half
xs,ys=[],[]
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx+x]
ys += [cy-y]
ax_floatplot(xs,ys,ax.plot)
# (red circle = hyperbola)
def plot_red_circles( *args ):
if checktypes(list,*args):
plot_red_circles(*args[0])
return
circles = list(args)
print len(circles), 'red circles'
plotinit( circles[0] )
for c in circles:
depth=10
cx,cy=c.center.x,c.center.y
if c.radial_quadrance>0:
crlo = babylonian_square_root(c.radial_quadrance)
plot_red_circle_w_radius( cx, cy, crlo, depth )
else:
crlo = babylonian_square_root(-c.radial_quadrance)
plot_red_circle_w_imaginary_radius( cx, cy, crlo, depth )
def plot_green_circle_w_imaginary_radius( cx, cy, cr ):
depth=5
pdic={}
for m in range(0,depth):
for n in range(0,2*depth):
if (greenq(m,n)==0): continue
x = Fraction(m,n)
y = Fraction(n,2*m)
#print '2xy',x,y,2*x*y
x = cr*x
y = cr*y
pdic[x]=y
sortedkeys = pdic.keys()
sortedkeys.sort()
# right half
xs,ys=[],[]
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx-x]
ys += [cy+y]
ax_floatplot(xs,ys,ax.plot)
# right half
xs,ys=[],[]
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx+x]
ys += [cy-y]
ax_floatplot(xs,ys,ax.plot)
def plot_green_circle_w_radius( cx, cy, cr ):
depth=5
pdic={}
for m in range(0,depth):
for n in range(0,2*depth):
if (greenq(m,n)==0): continue
x = Fraction(m,n)
y = Fraction(n,2*m)
#print '2xy',x,y,2*x*y
x = cr*x
y = cr*y
pdic[x]=y
sortedkeys = pdic.keys()
sortedkeys.sort()
# right half
xs,ys=[],[]
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx+x]
ys += [cy+y]
ax_floatplot(xs,ys,ax.plot)
# right half
xs,ys=[],[]
for key in sortedkeys:
x,y=key,pdic[key]
xs += [cx-x]
ys += [cy-y]
ax_floatplot(xs,ys,ax.plot)
# (green circle = hyperbola)
# rational paramterization.
#
# bug - slow on small circles.
#
def plot_green_circles( *args ):
if checktypes(list,*args):
plot_green_circles(*args[0])
return
circles = list(args)
print len(circles), 'green circles'
plotinit( circles[0] )
for c in circles:
depth=5
cx,cy=c.center.x,c.center.y
if c.radial_quadrance>0:
cr = babylonian_square_root(c.radial_quadrance)
plot_green_circle_w_radius( cx, cy, cr )
else:
cr = babylonian_square_root(-c.radial_quadrance)
plot_green_circle_w_imaginary_radius( cx, cy, cr )
#############################
### 3d
def triangles_to_stl(*args):
if checktypes(list,*args):
return triangles_to_stl(*args[0])
triangles = list(args)
#if checktypes(spherical_triangle,*args):
# for t in args: newargs+=[t]
# triangles_to_stl( newargs )
stl='solid piliko_model\n'
for t in triangles:
x0,y0,z0=str(float(t[0].x)),str(float(t[0].y)),str(float(t[0].z))
x1,y1,z1=str(float(t[1].x)),str(float(t[1].y)),str(float(t[1].z))
x2,y2,z2=str(float(t[2].x)),str(float(t[2].y)),str(float(t[2].z))
stl+=' facet normal 0 0 1\n'
stl+=' outer loop\n'
stl+=' vertex '+x0+' '+y0+' '+z0+'\n'
stl+=' vertex '+x1+' '+y1+' '+z1+'\n'
stl+=' vertex '+x2+' '+y2+' '+z2+'\n'
stl+=' endloop\n'
stl+=' endfacet\n'
stl+='endsolid piliko_model\n'
return stl
# shortcuts
# for bad spellers etc
def plot_circles(*args): plot_blue_circles(*args)
def drawtriangles(tris): plot_triangles(tris)
def drawtriangle(tri): plot_triangles([tri])
def draw_triangle(tri): plot_triangles([tri])
def plottriangles(tris): plot_triangles(tris)
def plottriangle(tri): plot_triangles([tri])
def plot_triangle(tri): plot_triangles([tri])
def plotpoints(points): plot_points(points)
def plotpoint(*args): plot_point(*args)
def plot_point(*args):
if checkrationals(*args) and len(args)==2:
ax_floatplot([args[0]],[args[1]],ax.scatter)
else: plot_points(*args)
def drawpoints(points): plot_points(points)
def drawpoint(point): plot_points([point])
def draw_point(point): plot_points([point])
def plotcircles(circs): plot_circles(circs)
def plotcircle(circ): plot_circles([circ])
def plot_circle(circ): plot_circles([circ])
def drawcircles(circs): plot_circles(circs)
def drawcircle(circ): plot_circles([circ])
def draw_circle(circ): plot_circles([circ])
def plotbluecircles(circs): plot_blue_circles(circs)
def plotbluecircle(circ): plot_blue_circles([circ])
def plot_blue_circle(circ): plot_blue_circles([circ])
def drawbluecircles(circs): plot_blue_circles(circs)
def drawbluecircle(circ): plot_blue_circles([circ])
def draw_blue_circle(circ): plot_blue_circles([circ])
def plotredcircles(circs): plot_red_circles(circs)
def plotredcircle(circ): plot_red_circles([circ])
def plot_red_circle(circ): plot_red_circles([circ])
def drawredcircles(circs): plot_red_circles(circs)
def drawredcircle(circ): plot_red_circles([circ])
def draw_red_circle(circ): plot_red_circles([circ])
def plotgreencircles(circs): plot_green_circles(circs)
def plotgreencircle(circ): plot_green_circles([circ])
def plot_green_circle(circ): plot_green_circles([circ])
def drawgreencircles(circs): plot_green_circles(circs)
def drawgreencircle(circ): plot_green_circles([circ])
def draw_green_circle(circ): plot_green_circles([circ])