-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
271 lines (213 loc) · 9.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, AveragePooling2D, Dropout, GlobalAveragePooling2D
from tensorflow.keras.layers import Flatten, BatchNormalization, Concatenate, Input, Activation
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
import os
import datetime
import pathlib
import argparse
import numpy as np
import matplotlib.pyplot as plt
IMG_WIDTH = 256
IMG_HEIGHT = 40
def train_model(batch_size, steps_per_epoch, epochs, data_dir, model_name, output_mode, depth):
# Define variables
train_dir = os.path.join(data_dir, 'training')
validation_dir = os.path.join(data_dir, 'validation')
classes = [int(x) for x in os.listdir(train_dir)]
n_classes = len(classes)
if model_name == None:
model_name = '%s.%s.%s.%d-%d' % (
os.path.basename(data_dir),
depth,
output_mode,
min(classes),
max(classes))
# Load datasets
is_categorical = output_mode == 'classification'
train_data = fetch_dataset(train_dir, batch_size, is_categorical, repeat=True)
validation_data = fetch_dataset(validation_dir, batch_size, is_categorical)
# Configure output layer
if is_categorical:
output_layer = Dense(n_classes, activation='softmax', name='Output')
else:
output_layer = Dense(1, activation='elu', name='Output')
# Configure model architecture
if depth == 'deep':
model = build_deep_model(output_layer, model_name)
elif depth == 'shallow':
model = build_shallow_model(output_layer, model_name)
else:
print('Unknown depth given: %s' % output_mode)
print('Please specify one of: deep, shallow')
return
# Compile model
if is_categorical:
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
else:
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
print(model.summary())
# Callback to log data for TensorBoard
log_dir = "temp\\logs\\fit\\" + model_name
tensorboard = TensorBoard(log_dir=log_dir, histogram_freq=1)
# Callback to save best weights
checkpoint = ModelCheckpoint('models/%s.best.h5' % model_name, verbose=1, save_best_only=True)
# Callback for early stopping
early_stop = EarlyStopping(monitor='val_loss', patience=3)
# Train model
history = model.fit(
train_data,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_data=validation_data,
callbacks=[tensorboard, checkpoint, early_stop]
)
# Save final model
model.save('models/' + model_name + '.final.h5')
# Plot graphs
plot_graph(model_name, history, is_categorical)
def img_to_tensor(img_path):
img_raw = tf.io.read_file(img_path)
image = tf.image.decode_png(img_raw, channels=1)
image = tf.image.resize(image, [IMG_WIDTH, IMG_HEIGHT])
image /= 255.0
return image
def fetch_dataset(ds_dir, batch_size, is_categorical, repeat=False):
if not os.path.isdir(ds_dir):
print("Dataset directory '%s' not found" % ds_dir)
return
image_paths = []
image_labels = []
# Iterate over dataset directories
for subdir in pathlib.Path(ds_dir).iterdir():
label = int(subdir.stem)
for file in subdir.iterdir():
if file.suffix != ".png":
continue
image_paths.append(os.path.abspath(str(file)))
image_labels.append(label)
# Encode labels if in categorical mode
if is_categorical:
m = min(image_labels)
image_labels = [i - m for i in image_labels]
image_labels = tf.keras.utils.to_categorical(image_labels)
# Build dataset from paths/labels
path_ds = tf.data.Dataset.from_tensor_slices(image_paths)
image_ds = path_ds.map(img_to_tensor)
label_ds = tf.data.Dataset.from_tensor_slices(image_labels)
ds = tf.data.Dataset.zip((image_ds, label_ds))
ds = ds.shuffle(buffer_size=len(os.listdir(ds_dir)))
ds = ds.batch(batch_size)
ds = ds.prefetch(buffer_size=1)
if repeat:
ds = ds.repeat()
return ds
def build_shallow_model(output_layer, model_name):
return Sequential([
# Short filters
Conv2D(16, (5, 1), padding='same', activation='elu', name='Conv1.1', input_shape=(IMG_WIDTH, IMG_HEIGHT, 1)),
Conv2D(16, (5, 1), padding='same', activation='elu', name='Conv1.2'),
BatchNormalization(name='BN1'),
AveragePooling2D(pool_size=(1, IMG_HEIGHT), name='AvgPool'),
# Long filters
Conv2D(16, (IMG_WIDTH, 1), padding='same', activation='elu', name='Conv2.1'),
Conv2D(16, (IMG_WIDTH, 1), padding='same', activation='elu', name='Conv2.2'),
BatchNormalization(name='BN2'),
Conv2D(32, (1, 1), padding='same', activation='elu', name='1x1'),
# Dense layers
GlobalAveragePooling2D(name='GlobalAvgPool'),
Dense(64, activation='elu', name='FC'),
BatchNormalization(name='BN4'),
output_layer
], name=model_name)
def build_deep_model(output_layer, model_name):
inputs = Input(shape=(IMG_WIDTH, IMG_HEIGHT, 1))
# Short filters
x = BatchNormalization(name='BN1')(inputs)
x = Conv2D(16, (5, 1), padding='same', activation='elu', name='Conv1')(x)
x = BatchNormalization(name='BN2')(x)
x = Conv2D(16, (5, 1), padding='same', activation='elu', name='Conv2')(x)
x = BatchNormalization(name='BN3')(x)
x = Conv2D(16, (5, 1), padding='same', activation='elu', name='Conv3')(x)
# Multi-filter modules
pools = [(1, 5), (1, 2), (1, 2), (1, 2)]
filters = [32, 64, 96, 128, 192, 256]
for i, pool_size in enumerate(pools):
x = AveragePooling2D(pool_size=pool_size, name='mf%d_AvgPool' % i)(x)
x = BatchNormalization(name='mf%d_BN' % i)(x)
convs = [Conv2D(24, (f, 1), padding='same', name='mf%d_Conv_%dx1' % (i, f))(x) for f in filters]
x = Concatenate(name='mf%d_Concat' % i)(convs)
x = Conv2D(36, (1, 1), name='mf%d_Conv_1x1' % i)(x)
# Dense layers
x = BatchNormalization(name='BN4')(x)
x = Dropout(0.5, name='DO')(x)
x = Flatten(name='Flat')(x)
x = Dense(64, activation='elu', name='FC1')(x)
x = BatchNormalization(name='BN5')(x)
x = Dense(64, activation='elu', name='FC2')(x)
x = BatchNormalization(name='BN6')(x)
x = output_layer(x)
return Model(inputs=inputs, outputs=x, name=model_name)
def plot_graph(model_name, history, is_categorical):
# Taken and modified from: https://www.tensorflow.org/tutorials/images/classification
if is_categorical:
metric = history.history['accuracy']
val_metric = history.history['val_accuracy']
metric_label = 'Accuracy'
else:
metric = history.history['mae']
val_metric = history.history['val_mae']
metric_label = 'MAE'
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = [i + 1 for i in range(len(loss))]
plt.figure(figsize=(8, 4))
plt.suptitle(model_name)
plt.subplot(1, 2, 1)
plt.xlabel('Epochs')
plt.plot(epochs_range, metric, label='Training ' + metric_label)
plt.plot(epochs_range, val_metric, label='Validation ' + metric_label)
plt.legend()
plt.title('Training and Validation ' + metric_label)
plt.subplot(1, 2, 2)
plt.xlabel('Epochs')
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend()
plt.title('Training and Validation Loss')
plt.savefig('graphs/' + model_name + '.png')
def create_dir(dir_name):
try:
os.makedirs(dir_name)
except FileExistsError:
# directory already exists
pass
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--batch-size', type=int, default=128,
help='Batch size for training (try a smaller value to reduce crashes).')
parser.add_argument('-s', '--steps-per-epoch', type=int, default=100,
help='Training steps per epoch.')
parser.add_argument('-e', '--epochs', type=int, default=100,
help='Maximum number of epochs to train for.')
parser.add_argument('-d', '--data-dir', default='data',
help='Directory where the training, validation, and test datasets are stored.')
parser.add_argument('-n', '--model-name',
help='An optional name for the model.')
parser.add_argument('-o', '--output-mode', choices=['classification', 'regression'], default='classification',
help='Specify whether to produce a classification or a regression based model.')
parser.add_argument('-a', '--architecture', choices=['deep', 'shallow'], default='shallow',
help='Specify whether to use the deep or the shallow model architecture.')
args = parser.parse_args()
create_dir('models')
create_dir('graphs')
train_model(
args.batch_size,
args.steps_per_epoch,
args.epochs,
os.path.abspath(args.data_dir),
args.model_name,
args.output_mode,
args.architecture)