-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodeword_visuals.py
149 lines (128 loc) · 4.81 KB
/
codeword_visuals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
'''
Created on May 24, 2013
@author: djordje
'''
from pylab import *
import parameters as P
import cv2
ACHROMATIC=0
CHROMATIC = 1
def codeword_as_img(code_word, word_shape, w_type,
show=False, save=False):
#codeword is ndarray
w_height = word_shape[0]
w_length = word_shape[1]
if w_type == ACHROMATIC:
full_channel_img = np.ndarray((w_height, w_length, 1), dtype=np.uint8)
code_mat = code_word.reshape(word_shape)
for x in xrange(w_height):
for y in xrange(w_length):
val = int(round(code_mat[x,y]*128))
full_channel_img[x,y] = val
elif w_type == CHROMATIC:
w_height /= 2
w_length /= 2
word_shape = (w_height, w_length)
full_channel_img = np.ndarray((w_height, w_length, 3), dtype=np.uint8)
word_ch1 = code_word[:(w_height*w_length)]
word_ch2 = code_word[(w_height*w_length):]
word_ch1 = word_ch1.reshape(word_shape)
word_ch2 = word_ch2.reshape(word_shape)
if P.parameters['chrom_word_averaging']: rescaling_factor = 128
else: rescaling_factor = 255.
for x in xrange(w_height):
for y in xrange(w_length):
val_cb = int(round(word_ch1[x,y]*rescaling_factor))
val_cr = int(round(word_ch2[x,y]*rescaling_factor))
full_channel_img[x,y] = [128, val_cb, val_cr]
full_channel_img = cv2.cvtColor(full_channel_img, cv2.cv.CV_YCrCb2BGR)
return full_channel_img
def show_codewords(code_dict, wtype, wshape):
line = concatinate_all_imgs(code_dict, wtype, wshape)
cv2.namedWindow("str(i)",2)
cv2.resizeWindow("str(i)", 800, 600)
cv2.imshow("str(i)", line)
cv2.waitKey()
def concatinate_all_imgs(code_dict, wtype, wshape, straight=False):
code_img = []
for i in xrange(len(code_dict)):
code_img.append(codeword_as_img(code_dict[i], wshape, wtype))
if straight:
line = reduce(lambda acc, el:
concatinate_2imgs(acc, el, place=1), code_img)
else:
line = glue_images(code_img)
return line
def save_words(code_dict, wtype, wshape, filename, codewords=False):
# Codewords are concatenated in straight line
if codewords: strght = True
else: strght = False
line = concatinate_all_imgs(code_dict, wtype, wshape, straight=strght)
if codewords:
line = cv2.resize(line, (0,0),
fx = 100, fy=100,
interpolation=cv2.INTER_NEAREST)
cv2.imwrite(filename, line)
def glue_images(code_img):
storage = []
storage.append(list(code_img))
storage.append([])
switch = 0
flip_it = lambda s: (s+1)%2
while len(storage[switch]) > 1:
# switch holds the index of the list that is currently
# used as a storage for the results. It resonates between 0 and 1
switch = flip_it(switch)
n_imgs = len(storage[flip_it(switch)])
for i in xrange(0, n_imgs, 2):
if i+1 < n_imgs:
img1 = storage[flip_it(switch)][i]
img2 = storage[flip_it(switch)][i+1]
storage[switch].append(concatinate_2imgs(img1, img2, switch))
else:
img_ = storage[flip_it(switch)][i]
storage[switch].append(img_)
storage[flip_it(switch)] = []
bucket = storage[switch][0]
# bucket = cv2.resize(bucket, (0,0), fx = 2,
# fy=2, interpolation=cv2.INTER_NEAREST)
return bucket
def concatinate_2imgs(img1, img2, place=0):
''' place == 0 means that images will be concatenated horizontally,
place == 1 means that images will be concatenated vertically'''
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
if place == 0:
h = max(h1, h2)
w = w1+w2
elif place == 1:
h = h1 + h2
w = max(w1, w2)
if len(img1.shape) == 3 :
ch = img1.shape[2]
vis = np.zeros((h, w, ch), np.uint8)
else:
vis = np.zeros((h, w), np.uint8)
if place == 0:
vis[:h1, :w1] = img1
vis[:h2, w1:w1+w2] = img2
elif place == 1:
vis[:h1, :w1] = img1
vis[h1:h1+h2, :w2] = img2
return vis
def draw_1histogram(histogram, label, glabel=''):
n = len(histogram)
X = np.arange(n)
bar(X, histogram, facecolor='blue', edgecolor='black', label=label)
xlim(0, n)
#legend(loc='upper left')
xticks(xrange(n))
savefig(P.parameters['histograms_dict']+label+glabel+'.png',dpi=72)
close()
if __name__ == '__main__':
bag = []
for i in xrange(900):
bag.append(np.zeros((1,1), np.uint8) + 255)
m = glue_images(bag)
m = cv2.resize(m, (0,0), fx = 100, fy=100, interpolation=cv2.INTER_NEAREST)
cv2.imwrite('./words/test_concat.png', m)