-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
37 lines (25 loc) · 1020 Bytes
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import cv2
import numpy as np
from keras.models import load_model
import cvzone
np.set_printoptions(suppress=True)
model = load_model('keras_model.h5', compile=False)
class_names = ['Nao esta fumando', 'Esta fumando']
img = cv2.imread('Test/not_smoking/avatar_cv.png')
while True:
image = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
image = (image / 127.5) - 1
prediction = model.predict(image)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
texto1 = f"Classe: {class_name}"
texto2 = f"Taxa de acerto: {str(np.round(confidence_score * 100))[:-2]} %"
cvzone.putTextRect(img, texto1, (50, 50), scale=3)
cvzone.putTextRect(img, texto2, (50, 100), scale=3)
cv2.imshow('Detector de Fumante', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
img.release()
cv2.destroyAllWindows()