Skip to content

Latest commit

 

History

History
26 lines (23 loc) · 2 KB

README.md

File metadata and controls

26 lines (23 loc) · 2 KB

Mercari Price Suggestion

This case study is based on the Kaggle Competition: https://www.kaggle.com/c/mercari-price-suggestion-challenge

Detailed Blog can be found at: https://medium.com/analytics-vidhya/suggesting-the-price-of-items-for-online-platforms-using-machine-learning-8b2e424f9a48

The code files are:

Code File Description
Final.ipynb Function 1: Takes input X, returns prediction Y
Final.ipynb Function 2: Rakes input (X,Y), returns evaluation metric (RMSLE)

Contents:

S.No Section Jupyter Notebook
1. Problem Description 1_EDA.ipynb
2. Exploratory Data Analysis 1_EDA.ipynb
3. Data Preprocessing 2_Preprocessing_and_featurizations.ipynb
4. Feature Engineering 2_Preprocessing_and_featurizations.ipynb
5. Final Data Preparation 3_Machine_Learning_and_Deep_Learning_Models.ipynb
6. Model 1: Ridge Regression (TF-IDF Features) 3_Machine_Learning_and_Deep_Learning_Models.ipynb
7. Model 2: Lasso Regression (TF-IDF Features) 3_Machine_Learning_and_Deep_Learning_Models.ipynb
8. Model 3: XGBoost (TF-IDF Features) 3_Machine_Learning_and_Deep_Learning_Models.ipynb
9. Model 4: XGBoost (Word2Vec Features) 3_Machine_Learning_and_Deep_Learning_Models.ipynb
10. Model 5: MLP Model-1 and Model-2 3_Machine_Learning_and_Deep_Learning_Models.ipynb
11. Final Model: Ensemble of MLP-1 and MLP-2 3_Machine_Learning_and_Deep_Learning_Models.ipynb
12. Final Summary 3_Machine_Learning_and_Deep_Learning_Models.ipynb