-
Notifications
You must be signed in to change notification settings - Fork 27
/
run_predict.py
280 lines (261 loc) · 13.3 KB
/
run_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
USAGE_DESCRIPTION = """
Run prediction by loading a fine-tuned model
"""
import sys
# import from official repo
sys.path.append('tensorflow_models')
from official.utils.misc import distribution_utils
from official.nlp.bert import bert_models
from official.nlp.bert import configs as bert_configs
from official.nlp.bert import tokenization
from official.nlp.bert.input_pipeline import single_file_dataset
import os
import datetime
import time
import argparse
import logging
from tqdm import tqdm
import json
import tensorflow as tf
from utils.misc import ArgParseDefault, add_bool_arg, save_to_json
from config import PRETRAINED_MODELS
import collections
import pandas as pd
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s [%(levelname)-5.5s] [%(name)-12.12s]: %(message)s')
logger = logging.getLogger(__name__)
VOCAB_PATH = 'vocabs'
# remove duplicate logger (not sure why this is happening, possibly an issue with the imports)
tf_logger = tf.get_logger()
tf_logger.handlers.pop()
def get_model(args, model_config, num_labels, max_seq_length):
if args.use_tf_hub and PRETRAINED_MODELS[args.model_class]['is_tfhub_model']:
hub_module_url = f"https://tfhub.dev/{PRETRAINED_MODELS[args.model_class]['hub_url']}"
hub_module_trainable = True
else:
hub_module_url = None
hub_module_trainable = False
classifier_model, _ = bert_models.classifier_model(
model_config,
num_labels,
max_seq_length,
hub_module_url=hub_module_url,
hub_module_trainable=hub_module_trainable)
return classifier_model
def get_model_config_path(args):
try:
config_path = PRETRAINED_MODELS[args.model_class]['config']
except KeyError:
raise ValueError(f'Could not find a pretrained model matching the model class {args.model_class}')
return os.path.join('configs', config_path)
def get_model_config(config_path):
config = bert_configs.BertConfig.from_json_file(config_path)
return config
def read_run_log(run_dir):
with tf.io.gfile.GFile(os.path.join(run_dir, 'run_logs.json'), 'rb') as reader:
run_log = json.loads(reader.read().decode('utf-8'))
return run_log
def get_tokenizer(model_class):
model = PRETRAINED_MODELS[model_class]
vocab_file = os.path.join(VOCAB_PATH, model['vocab_file'])
tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=model['lower_case'])
return tokenizer
def create_example(text, tokenizer, max_seq_length):
tokens = ['[CLS]']
input_tokenized = tokenizer.tokenize(text)
if len(input_tokenized) + 2 > max_seq_length:
# truncate
input_tokenized = input_tokenized[:(max_seq_length + 2)]
tokens.extend(input_tokenized)
tokens.append('[SEP]')
input_ids = tokenizer.convert_tokens_to_ids(tokens)
num_tokens = len(input_ids)
input_mask = num_tokens * [1]
# pad
input_ids += (max_seq_length - num_tokens) * [0]
input_mask += (max_seq_length - num_tokens) * [0]
segment_ids = max_seq_length * [0]
return tf.constant(input_ids, dtype=tf.int32), tf.constant(input_mask, dtype=tf.int32), tf.constant(segment_ids, dtype=tf.int32)
def format_prediction(preds, label_mapping, label_name):
preds = tf.nn.softmax(preds, axis=1)
formatted_preds = []
for pred in preds.numpy():
# convert to Python types and sort
pred = {label: float(probability) for label, probability in zip(label_mapping.values(), pred)}
pred = {k: v for k, v in sorted(pred.items(), key=lambda item: item[1], reverse=True)}
formatted_preds.append({label_name: list(pred.keys())[0], f'{label_name}_probabilities': pred})
return formatted_preds
def generate_single_example(text, tokenizer, max_seq_length):
example = create_example(text, tokenizer, max_seq_length)
example_features = {
'input_word_ids': example[0][None, :],
'input_mask': example[1][None, :],
'input_type_ids': example[2][None, :]
}
return example_features
def generate_examples_from_txt_file(input_file, tokenizer, max_seq_length, batch_size):
dataset = tf.data.TextLineDataset(input_file)
dataset = dataset.batch(batch_size)
for batch in dataset:
batch = batch.numpy()
batch = [create_example(t, tokenizer, max_seq_length) for t in batch]
yield {
'input_word_ids': tf.stack([b[0] for b in batch], axis=0),
'input_mask': tf.stack([b[1] for b in batch], axis=0),
'input_type_ids': tf.stack([b[2] for b in batch], axis=0)
}
def create_tfrecord_dataset_pipeline(input_file, max_seq_length, batch_size, input_pipeline_context=None):
name_to_features = {
'input_word_ids': tf.io.FixedLenFeature([max_seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([max_seq_length], tf.int64),
'input_type_ids': tf.io.FixedLenFeature([max_seq_length], tf.int64),
}
dataset = single_file_dataset(input_file, name_to_features)
# shard dataset between hosts
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines, input_pipeline_context.input_pipeline_id)
dataset = dataset.batch(batch_size, drop_remainder=False)
dataset = dataset.prefetch(1024)
return dataset
def get_tfrecord_dataset(input_file, eval_batch_size, max_seq_length):
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed prediction."""
batch_size = ctx.get_per_replica_batch_size(eval_batch_sizeglobal_batch_size) if ctx else eval_batch_size
dataset = create_tfrecord_dataset_pipeline(input_file, max_seq_length, batch_size, input_pipeline_context=ctx)
return dataset
return _dataset_fn
def run(args):
# start time
s_time = time.time()
# paths
run_dir = f'gs://{args.bucket_name}/{args.project_name}/finetune/runs/{args.run_name}'
ts = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S_%f')
output_folder = os.path.join('data', 'predictions', f'predictions_{ts}')
predictions_output_folder = os.path.join('data', 'predictions', f'predictions_{ts}', 'predictions')
if not os.path.isdir(predictions_output_folder):
os.makedirs(predictions_output_folder)
# read configs
logger.info(f'Reading run configs...')
run_log = read_run_log(run_dir)
pretrained_model_config_path = get_model_config_path(args)
model_config = get_model_config(pretrained_model_config_path)
max_seq_length = run_log['max_seq_length']
label_mapping = run_log['label_mapping']
num_labels = len(label_mapping)
# load tokenizer
logger.info(f'Loading tokenizer...')
tokenizer = get_tokenizer(args.model_class)
# load model
logger.info(f'Loading model...')
model = get_model(args, model_config, num_labels, max_seq_length)
# restore fine-tuned run
checkpoint_path = os.path.join(run_dir, 'checkpoint')
logger.info(f'Restore run checkpoint {checkpoint_path}...')
# load weights (expect partial state because we don't want need the optimizer state)
try:
model.load_weights(checkpoint_path).expect_partial()
except:
logger.error(f'Restoring from checkpoint unsuccessful. Use the flag --use_tf_hub if the TFHub was used to initialize the model.')
return
else:
logger.info(f'... successfully restored checkpoint')
# predict
num_predictions = 0
predictions = []
if args.input_text:
example = generate_single_example(args.input_text, tokenizer, max_seq_length)
preds = model.predict(example)
preds = format_prediction(preds, label_mapping, args.label_name)
print(json.dumps(preds, indent=4))
return
elif args.interactive_mode:
while True:
text = input('Type text to predict. Quit by typing "q".\n>>> ')
if text.lower() == 'q':
break
example = generate_single_example(text, tokenizer, max_seq_length)
preds = model.predict(example)
preds = format_prediction(preds, label_mapping, args.label_name)
print(json.dumps(preds, indent=4))
return
elif args.input_txt_files:
s_time_predict = time.time()
for input_file in args.input_txt_files:
num_lines = sum(1 for _ in open(input_file, 'r'))
num_batches = int(num_lines/args.eval_batch_size) + 1
f_out_name = os.path.basename(input_file).split('.')[-2]
f_out = os.path.join(predictions_output_folder, f'{f_out_name}.jsonl')
logger.info(f'Predicting file {input_file}...')
for batch in tqdm(generate_examples_from_txt_file(input_file, tokenizer, max_seq_length, args.eval_batch_size), total=num_batches, unit='batch'):
preds = model.predict(batch)
preds = format_prediction(preds, label_mapping, args.label_name)
num_predictions += len(preds)
with open(f_out, 'a') as f:
for pred in preds:
f.write(json.dumps(pred) + '\n')
e_time_predict = time.time()
prediction_time_min = (e_time_predict - s_time_predict)/60
logger.info(f'Wrote {num_predictions:,} predictions in {prediction_time_min:.1f} min ({num_predictions/prediction_time_min:.1f} predictions per min)')
elif args.input_tfrecord_files:
s_time_predict = time.time()
for input_file_pattern in args.input_tfrecord_files:
for input_file in tf.io.gfile.glob(input_file_pattern):
logger.info(f'Processing file {input_file}')
dataset = get_tfrecord_dataset(input_file, args.eval_batch_size, max_seq_length)()
num_batches = sum(1 for _ in tf.data.TFRecordDataset(input_file).batch(args.eval_batch_size))
f_out_name = os.path.basename(input_file).split('.')[-2]
f_out = os.path.join(predictions_output_folder, f'{f_out_name}.jsonl')
for batch in tqdm(dataset, total=num_batches, unit='batch'):
preds = model.predict(batch)
preds = format_prediction(preds, label_mapping, args.label_name)
num_predictions += len(preds)
with open(f_out, 'a') as f:
for pred in preds:
f.write(json.dumps(pred) + '\n')
e_time_predict = time.time()
prediction_time_min = (e_time_predict - s_time_predict)/60
logger.info(f'Wrote {num_predictions:,} predictions in {prediction_time_min:.1f} min ({num_predictions/prediction_time_min:.1f} predictions per min)')
e_time = time.time()
total_time_min = (e_time - s_time)/60
f_config = os.path.join(output_folder, 'predict_config.json')
logger.info(f'Saving config to {f_config}')
data = {
'prediction_time_min': prediction_time_min,
'total_time_min': total_time_min,
'num_predictions': num_predictions,
**vars(args)}
save_to_json(data, f_config)
def main(args):
# Set TF Hub caching to bucket
os.environ['TFHUB_CACHE_DIR'] = os.path.join(f'gs://{args.bucket_name}/tmp')
# Get distribution strategy
if args.use_tpu:
logger.info(f'Intializing TPU on address {args.tpu_ip}...')
tpu_address = f'grpc://{args.tpu_ip}:8470'
strategy = distribution_utils.get_distribution_strategy(distribution_strategy='tpu', tpu_address=tpu_address, num_gpus=args.num_gpus)
else:
strategy = distribution_utils.get_distribution_strategy(distribution_strategy='mirrored', num_gpus=args.num_gpus)
# Run training
with strategy.scope():
run(args)
def parse_args():
# Parse commandline
parser = ArgParseDefault(usage=USAGE_DESCRIPTION)
parser.add_argument('--run_name', required=True, help='Finetune run name. The model will be loaded from gs://{bucket_name}/{project_name}/finetune/runs/{run_name}.')
parser.add_argument('--bucket_name', required=True, help='Bucket name')
parser.add_argument('--project_name', required=False, default='covid-bert', help='Name of subfolder in Google bucket')
parser.add_argument('--input_text', required=False, help='Predict arbitrary input text and print prediction to stdout')
parser.add_argument('--input_txt_files', nargs='+', required=False, help='Predict text from local txt files. One example per line.')
parser.add_argument('--input_tfrecord_files', nargs='+', required=False, help='Predict text from tfrecord files (local or on bucket).')
parser.add_argument('--tpu_ip', required=False, help='IP-address of the TPU')
parser.add_argument('--model_class', default='bert_large_uncased_wwm', choices=PRETRAINED_MODELS.keys(), help='Model class to use')
parser.add_argument('--num_gpus', default=1, type=int, help='Number of GPUs to use')
parser.add_argument('--eval_batch_size', default=32, type=int, help='Eval batch size')
parser.add_argument('--label_name', default='label', type=str, help='Name of label to predicted')
add_bool_arg(parser, 'use_tf_hub', default=False, help='Use TF-Hub to initialize model')
add_bool_arg(parser, 'interactive_mode', default=False, help='Interactive mode')
add_bool_arg(parser, 'use_tpu', default=False, help='Use TPU (only works when using input_tfrecord_files stored on a Google bucket)')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)