-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvector.py
197 lines (160 loc) · 6.46 KB
/
vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""3-D vector library. This library is designed to make working with
vectors as easy as working with regular numbers. The main class is the Threevec
class which stores the vectors in recangular coordinates and allows
standard operations. There are generator functions to return vectors defined
in rectangular coordinates, cylindrical coordinates, and spherical coordinates.
This is an extension of a vector library in C which I started developing in
1993 and was later ported to Java and now Python.
Copyright 2012 Christopher De Vries"""
import math
import numbers
class Threevec(numbers.Number):
def __init__(self,x=0,y=0,z=0):
self.x=x
self.y=y
self.z=z
def __str__(self):
return "(%g,%g,%g)"%(self.x,self.y,self.z)
def __repr__(self):
return "Threevec(%g,%g,%g)"%(self.x,self.y,self.z)
def __add__(self,other):
"""Vector addition."""
result = Threevec()
if isinstance(other,Threevec):
result.x=self.x+other.x
result.y=self.y+other.y
result.z=self.z+other.z
return result
else:
raise TypeError("A Threevec can only be added to another Threevec")
def __mul__(self,other):
"""Dot product between vectors or vector, scalar multiplication."""
if isinstance(other,Threevec):
result = self.x*other.x+self.y*other.y+self.z*other.z
return result
elif isinstance(other,numbers.Real):
result = Threevec(other*self.x,other*self.y,other*self.z)
return result
else:
raise TypeError("A Threevec can only be multiplied by a Threevec or real number")
def __rmul__(self,other):
"""Multiplication of a scalar by a vector."""
return self*other
def __mod__(self,other):
"""The % operator is used to calculate a cross-product."""
result = Threevec()
if isinstance(other,Threevec):
result.x=self.y*other.z-self.z*other.y
result.y=self.z*other.x-self.x*other.z
result.z=self.x*other.y-self.y*other.x
return result
else:
raise TypeError("A cross product can only be calculated between two Threevecs")
def __truediv__(self,other):
"""Division of a vector by a scalar."""
if isinstance(other,numbers.Real):
result = self*(1.0/other)
return result
else:
raise TypeError("A Threevec can only be divided by a real number.")
def __neg__(self):
"""Inversion of a vector is done by the - sign."""
result = Threevec(-self.x,-self.y,-self.z)
return result
def __sub__(self,other):
"""Subtraction of a vector from a vector. Equivalent to addition of
a vector and its inverse."""
return self+(-other)
def __abs__(self):
"""The magnitude of a vector is obtained using the abs() operator."""
return math.sqrt(self.x**2+self.y**2+self.z**2)
def __eq__(self,other):
"""Vectors are defined as equal if all their elements are equal."""
return self.x==other.x and self.y==other.y and self.z==other.z
def __ne__(self,other):
"""Vectors are defined as unequal if any of the elements are not equal."""
return self.x!=other.x or self.y!=other.y or self.z!=other.z
def __len__(self):
"""We can treat a Threevec as a sequence of length 3."""
length = 3
return length
def __contains__(self,item):
"""The expression "n in vector" will return True if n is one of the
components of the vector."""
return self.x==item or self.y==item or self.z==item
def __getitem__(self,key):
"""Vectors also act as three element typles. Element 0 is the x
component, Element 1 is the y component, and Element 2 is the z
component."""
if isinstance(key,int):
if key==0:
return self.x
elif key==1:
return self.y
elif key==2:
return self.z
else:
raise IndexError("Only elements 0, 1, and 2 are defined in a Threevec")
else:
raise TypeError("The keys of a Threevec must be integers")
def __iter__(self):
"""As an iterator, the vector returns the elements x, y, and z in that
order."""
yield self.x
yield self.y
yield self.z
def copy(self):
"""Return a copy of the current vector."""
result = Threevec(self.x,self.y,self.z)
return result
@property
def rho(self):
"""The cylindrical radius component. Equal to the square root of the
x component squared and the y component squared."""
return math.sqrt(self.x**2+self.y**2)
@property
def phi(self):
"""The spherical phi component, which is the angle between the
projection of the vector on the x-y plane and the x-axis.
This ranges from -pi to pi."""
return math.atan2(self.y,self.x)
@property
def theta(self):
"""The spherical theta component, which is the angle between the vector
and the z axis."""
return math.acos(self.z/abs(self))
def unit(self):
"""Return a new vector in the same direction as this vector, but with unit length."""
result = self/abs(self)
return result
def rotate(self,axis,angle):
"""Return a vector which has been rotated around the axis vector by
an angle in the right-handed sense."""
ea = axis.unit()
eb = (axis%self).unit()
ec = eb%ea
ea_mag = self*ea
eb_mag = math.sin(angle)*self*ec
ec_mag = math.cos(angle)*self*ec
result = ea_mag*ea+eb_mag*eb+ec_mag*ec
return result
i = Threevec(1,0,0)
j = Threevec(0,1,0)
k = Threevec(0,0,1)
def recvec(x,y,z):
"""A function which returns a vector defined by x, y, and z in
rectangular coordinates."""
return Threevec(x,y,z)
def cylvec(rho,phi,z):
"""A function which returns a vector defined by rho, phi, z in
cylindrical coordinates."""
x = rho*math.cos(phi)
y = rho*math.sin(phi)
return Threevec(x,y,z)
def sphvec(r,theta,phi):
"""A function which returns a vector defined by r, theta, phi in
spherical coordinates."""
x = r*math.sin(theta)*math.cos(phi)
y = r*math.sin(theta)*math.sin(phi)
z = r*math.cos(theta)
return Threevec(x,y,z)