forked from IMLHF/Real-Time-Voice-Cloning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthesizer_preprocess_embeds.py
30 lines (26 loc) · 1.48 KB
/
synthesizer_preprocess_embeds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from synthesizer.preprocess import create_embeddings
from utils.argutils import print_args
from pathlib import Path
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Creates embeddings for the synthesizer from the LibriSpeech utterances.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# parser.add_argument("synthesizer_root", type=Path,
# help="Path to the synthesizer training data that contains the audios and the train.txt file. "
# "If you let everything as default, it should be <datasets_root>/SV2TTS/synthesizer/.")
parser.add_argument("datasets_root", type=Path,
help="Path to the directory containing your datasets 'SV2TTS'.")
parser.add_argument("-e", "--encoder_model_fpath", type=Path,
default="encoder/saved_models/pretrained.pt",
help="Path your trained encoder model.")
parser.add_argument("-n", "--n_processes", type=int, default=26,
help="Number of parallel processes. An encoder is created for each, so you may need to lower "
"this value on GPUs with low memory. Set it to 1 if CUDA is unhappy.")
args = parser.parse_args()
# Process the arguments
args.synthesizer_root = args.datasets_root.joinpath("SV2TTS", "synthesizer")
# Preprocess the dataset
print_args(args, parser)
create_embeddings(**vars(args))