forked from blumareks/rag-chroma-streaming
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
246 lines (196 loc) · 9.65 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from urllib import request
from pydantic import BaseModel
from fastapi import FastAPI, Request, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
from ibm_watsonx_ai import APIClient
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.foundation_models import Model, ModelInference
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes, DecodingMethods
from dotenv import load_dotenv
import os
import http.client #token
import json #token
import requests #chroma
import time #measuring the time
load_dotenv() # take environment variables from .env.
# load the environment variables
# get the IAM API Key from the environment variable
iam_api_key = os.environ["WATSONX_IAM_APIKEY"]
#print(f"iam api key: {iam_api_key}")
watsonx_project_id = os.environ["WATSONX_PROJECT_ID"]
api_url = os.environ["WATSONX_API_URL"]
model_id = os.environ["WATSONX_MODEL_ID"]
number_of_responses_for_genai = int(os.environ["NUMBER_OF_RESPONSES_FOR_GENAI"])
retriver_discovery_or_chroma = os.environ["RETRIVER"]
json_chroma_for_wd_project = os.environ["CHROMA_FOR_WD_PROJECT"]
retriver_chroma_url = os.environ["CHROMA_URL"]
generate_params = {
GenParams.MAX_NEW_TOKENS: 1000,
GenParams.DECODING_METHOD: "greedy",
GenParams.REPETITION_PENALTY: 1,
GenParams.STOP_SEQUENCES: ["\\n\\n"]
}
watsonx_project_id=os.environ["WATSONX_PROJECT_ID"]
credentials=Credentials(
api_key = iam_api_key, #WX_API_KEY,
url = api_url #IBM_CLOUD_URL
)
#print(credentials)
client=APIClient(credentials)
client_project = APIClient(credentials, project_id = watsonx_project_id)
MODEL_ID = model_id #"ibm/granite-8b-code-instruct" #"mistralai/mixtral-8x7b-instruct-v01"
# Initialize the app and add CORS middleware
app = FastAPI()
#app.add_middleware(
# CORSMiddleware,
# allow_origins=['*'],
# allow_credentials=True,
# allow_methods=['*'],
# allow_headers=["*"]
#)
# code that connects to chromaDB API service per project;
def retrive_chroma(query, project_id):
#select the container to ping
url = retriver_chroma_url
# pick the url by project_id use-case
print("in retriver")
# connect to the container
#print(query)
# get results
try:
payload = json.dumps({
"query": query,
"no_results": number_of_responses_for_genai
})
headers = {
"Content-Type":"application/json"
}
#print(payload)
#print(headers)
response = requests.request("POST", url, headers=headers, data=payload, verify=False)
#print(response.text)
result = response.text
except Exception as e:
return {'error': str(e)}
return result
# code that adds an original query to the received top 3 answers and sends the data to watsonx.ai with the custom prompt
def augment_chroma(query, response_retriver):
#check if there are any answers, if no return empty
#{"results":{"data":null,"distances":[[0.29149818420410156,0.6023381948471069]],"documents":[["Cleanses are a pack of specific juices that are particularly picked to help the customer with a specific health problem or improve their specific health category.","list the juices and lemonades in the order provided above. - Recommend drinking water or tea between juices or lemonades. - For the Gut Whisperer cleanse, start the first juice at 8 AM and the last lemonade at 8 PM. - The Gut Whisperer cleanse is a specialty cleanse; find it by searching \"gut whisperer well juicery\" and visiting the Well Juicery website. - For other questions, refer to the guide on the Well Juicery website for detailed instructions on consuming the cleanses."]],"embeddings":null,"ids":[["id19","id28"]],"included":["metadatas","documents","distances"],"metadatas":[[{"question":"**Cleanses:**"},{"question":"If asked about the order of taking the cleanses,"}]],"uris":null}}
print("response from retriver")
#print (response_retriver)
if response_retriver is None:
return
# TODO select top three or n
# Add the original query to the received top 3 answers
# Extract the answer and source from the query result
answer = []
source = []
i = 0
response_json=json.loads(response_retriver)
for passage in response_json['results']['documents'][0]:
#print(passage)
if i < number_of_responses_for_genai :
text1 = passage#[i]
#print(f"text1 index {i}")
#print(text1)
question_json = response_json['results']['metadatas'][0][i]
text2 = question_json["question"]
found_answer= text2 + text1
answer.append(found_answer)
source.append(response_json['results']['ids'][0][i])#passage['document_id'])
i=i+1
print(f"counter: {i}")
# Return the answer, and source in a JSON response
# TODO reprioritize using some strategy
# TODO add query to the response
print(answer)
return {
'answer': answer,
'source': source
}
#suggested filter
# sample output
# {'model_id': 'ibm/granite-8b-code-instruct', 'model_version': '1.1.0', 'created_at': '2024-10-31T19:14:17.242Z', 'results': [{'generated_text': '\n', 'generated_token_count': 1, 'input_token_count': 0, 'stop_reason': 'not_finished'}]}
async def event_stream(watonsx_model: Model, llm_input, citation):
start_gen_time = time.perf_counter()
count = 0
# async for chunk in watonsx_model.generate_text_stream(prompt=llm_input, raw_response=True):
for chunk in watonsx_model.generate_text_stream(prompt=llm_input, raw_response=True):
json_data = json.dumps(chunk)
print(chunk)
if count == 0:
duration = int((time.perf_counter() - start_gen_time)*1000)
print(f"Time taken for FIRST TOKEN: {duration}")
count += 1
if citation is not None and chunk["results"][0]["stop_reason"] == "eos_token":
duration = int((time.perf_counter() - start_gen_time)*1000)
print(f"Time taken for last token: {duration}")
chunk["results"][0]["generated_text"] += citation
json_data = json.dumps(chunk)
yield f"data: {json_data}\n\n" # SSE format
@app.get("/")
async def root():
return {"message": "Hello Mengalo Streaming"}
@app.post('/query-streamed')
async def stream_response(request:Request):
payload_data = await request.json()
prompt = payload_data["prompt"].strip()
my_model = payload_data["model"].strip()
try:
query = payload_data["query"].strip()
#model = ModelInference(
model = Model(
model_id = my_model,
params = generate_params,
credentials = credentials,
project_id = watsonx_project_id #WX_PROJECT_ID
)
### start here
print("in query method")
#data = request.get_json()
#if data is None:
# return {"error": "Invalid request, JSON expected"}, 400
#query = data.get("query")
#project = query = payload_data["project_id"].strip()
#if query is None or project is None:
# return {"error": "Missing query or project"}, 400
### get chroma
# select chroma vs watson
start_retriver_time = time.perf_counter()
match retriver_discovery_or_chroma:
#case "discovery":
# response_retriver = retrive(query, project)
# response_augmenter = augment(query, response_retriver)
case "chroma":
print("in case chroma")
response_retriver = retrive_chroma(query, watsonx_project_id)
response_augmenter = augment_chroma(query, response_retriver)
# use just the text of the document placed in the filesystem
case _:
response_retriver = retrive_chroma(query, watsonx_project_id)
response_augmenter = augment_chroma(query, response_retriver)
stop_retriver_time = time.perf_counter()
retriver_elapsed_time = int((stop_retriver_time - start_retriver_time)*1000)
print(f"retrived in: {retriver_elapsed_time} ms")
#print(response_augmenter)
url = api_url
i = 0
responses = ""
for i in range(len(response_augmenter["answer"])):
responses = responses + f"answer {i+1}: "+ "".join(response_augmenter["answer"][i]) + "source: "+ response_augmenter["source"][i] +"\n"
print("my responses**********")
print(responses)
genai_prompt = f"You are a knowledge worker. You received the following question:\n{query}\n"
genai_prompt2 = f"these are the answers from the knowledge retriever:\n {responses}\n"
genai_prompt3_1 = """\n For example. The User asks the following question:
'tell me about green juice';
the expected answer:
' Our green juice is the WELL GREENS because of its name. This are the details on this particular juice - A 6-pack priced at $41.94, with ingredients including apple juice, spinach juice, kale juice, celery juice, lemon juice, and ginger juice 120 calories.'"""
genai_prompt3 = f"{prompt}\n Answer only with the retrieved facts, don't make up an answer. If you don't know the answer - say that you don't know the answer."
new_prompt = genai_prompt+genai_prompt2+genai_prompt3_1+genai_prompt3
return StreamingResponse(event_stream (model, new_prompt, ""), media_type="text/event-stream")
except Exception as e:
raise HTTPException(status_code=500, detail="Exception occurred: " + str(e))