-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
188 lines (157 loc) · 4.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/python
# -*- coding: utf-8 -*-
from pymongo import MongoClient
import requests
import json
import types
import pandas as pd
from bson import json_util
from collections import namedtuple
from ast import literal_eval
import numpy as np
from bson import json_util
from bson.json_util import dumps
from flask import Flask, render_template
from flask import request
from datetime import datetime
import time
from flask_cors import CORS
app = Flask(__name__)
CORS(app)
@app.route('/')
def index():
return getTop15ByMarketCap()
@app.route('/top15bymc')
def Analysis1():
return getTop15ByMarketCap()
@app.route('/top15byhvol')
def Analysis3():
return getTop15ByHistoricalVol()
@app.route('/getrcorr/<pair>')
def Analysis2(pair=None):
return getRollingCorr(pair)
def GetMongoClient():
#client = MongoClient('mongodb://mongo:27017',connect=False) #getting unknown option connect
client = MongoClient('mongodb://mongo:27017')
#client = MongoClient(port=27017)
return client
def correlation1():
client = GetMongoClient()
db = client.final
result = db.coins.find({'time': { '$gt' : 1506816000, '$lt':1514764800}, 'FROM': 'BTC', 'TO': 'BTS'})
df = pd.DataFrame(list(result))
#print(df.describe())
print(df)
print(df.corr())
def correlation2():
client = GetMongoClient()
db = client.final
result = db.coins.find({'time': { '$gt' : 1514764800, '$lt':1522540800}})
print(json.dumps(list(result), sort_keys=True, indent=4, default=json_util.default))
def getData():
client = GetMongoClient()
db = client.finals
records = db.coins_usd.find({'time': { '$gt' : 1506816000, '$lt':1514764800}})
db.close
recjson = dumps(records)
bjson = json.loads(recjson)
dfret = pd.DataFrame(bjson)
#dfret = dfret.select(lambda col: col.find('close') > -1, axis=1)
return dfret
def getDataPeriod(start, end):
client = GetMongoClient()
db = client.finals
records = db.coins_usd.find({'time': { '$gt' : start, '$lt':end}})
db.close
recjson = dumps(records)
bjson = json.loads(recjson)
dfret = pd.DataFrame(bjson)
return dfret
def doCorr2():
client = GetMongoClient()
db = client.finals
records = db.coins_usd.find({'time': { '$gt' : 1514764800, '$lt':1522540800}})
recjson = dumps(records)
#print(recjson)
bjson = json.loads(recjson)
dfret = pd.DataFrame(bjson)
dfret.set_index('time')
dfret = dfret.select(lambda col: col.find('close') > -1, axis=1)
#dfret.filter(regex=("/close/"))
dfcorr = dfret.corr()
return dfcorr.to_json()
def getTop15ByMarketCap():
client = GetMongoClient()
db = client.finals
db.close
records = db.currencies.find({'rank': {'$lt': 20}})#.sort([{'rank':1}])
recjson = dumps(records)
bjson = json.loads(recjson)
dfret = pd.DataFrame(bjson)
currlist = (dfret.sort_values(by=['rank'])["symbol"])
cols = []
rencols = []
for curr in currlist:
cols.append(curr+"_"+"close")
rencols.append(curr)
dfData = getData()
dfset = dfData[cols]
dfset.colums = rencols
dfret = dfset.corr()
dfret = dfret.round(2)
return dfret.to_json()
def getRollingCorr(pair):
cols=[]
if pair== None:
arrpair = "BTC-ETH".split("-")
else:
arrpair = pair.split("-")
cols=[arrpair[0]+"_close", arrpair[1]+"_close"]
rencols = [arrpair[0], arrpair[1]]
dfData = getData()
dfset = dfData[cols]
dfset.columns = rencols
psret = pd.rolling_corr(dfset[arrpair[0]],dfset[arrpair[1]],20)
dfret = pd.DataFrame({'idx': dfData["time"], 'rcorr': psret.values})
dfret = pd.DataFrame(dfret.loc[dfret['rcorr'] > 0 ])
dfret = dfret.round(2)
#return dfret[~dfret.isnull()].to_json()
#return dfret.to_json()
return dfret.to_json()
def getTop15ByHistoricalVol():
client = GetMongoClient()
db = client.finals
db.close
records = db.currencies.find({'rank': {'$lt': 100}})#.sort([{'rank':1}])
recjson = dumps(records)
bjson = json.loads(recjson)
dfret = pd.DataFrame(bjson)
dt = datetime.today().date()
tstamp = time.mktime(dt.timetuple())
currts = int(datetime.fromtimestamp(tstamp).timestamp())
currlist = (dfret.sort_values(by=['rank'])["symbol"])
cols = []
for curr in currlist:
cols.append(curr+"_"+"close")
dfData = getDataPeriod(currts - 86400*30, currts)
dfset = dfData[cols]
dfset = dfset.pct_change()
ps = dfset.agg('std')
psresult = ps.apply(lambda x: x * np.sqrt(365)).sort_values(ascending=False)
j = 0
top15byvol = []
rencols = []
for ticker in psresult.index:
if(j < 15):
top15byvol.append(ticker)
rencols.append(ticker.replace("_close", ""))
j = j + 1
dfset = dfData[top15byvol]
dfset.columns= rencols
dfret = dfset.corr()
dfret = dfret.round(2)
return dfret.to_json()
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0")
#getTop15ByMarketCap()
#getTop15ByHistoricalVol()