\n", + " | area | \n", + "
---|---|
0 | \n", + "8450 | \n", + "
1 | \n", + "9600 | \n", + "
2 | \n", + "11250 | \n", + "
3 | \n", + "9550 | \n", + "
4 | \n", + "14260 | \n", + "
... | \n", + "... | \n", + "
1455 | \n", + "7917 | \n", + "
1456 | \n", + "13175 | \n", + "
1457 | \n", + "9042 | \n", + "
1458 | \n", + "9717 | \n", + "
1459 | \n", + "9937 | \n", + "
1460 rows × 1 columns
\n", + "\n", + " | price | \n", + "
---|---|
0 | \n", + "208500 | \n", + "
1 | \n", + "181500 | \n", + "
2 | \n", + "223500 | \n", + "
3 | \n", + "140000 | \n", + "
4 | \n", + "250000 | \n", + "
... | \n", + "... | \n", + "
1455 | \n", + "175000 | \n", + "
1456 | \n", + "210000 | \n", + "
1457 | \n", + "266500 | \n", + "
1458 | \n", + "142125 | \n", + "
1459 | \n", + "147500 | \n", + "
1460 rows × 1 columns
\n", + "LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
SVR()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SVR()
\n", + " | area | \n", + "
---|---|
0 | \n", + "8450 | \n", + "
1 | \n", + "9600 | \n", + "
2 | \n", + "11250 | \n", + "
3 | \n", + "9550 | \n", + "
4 | \n", + "14260 | \n", + "
... | \n", + "... | \n", + "
1455 | \n", + "7917 | \n", + "
1456 | \n", + "13175 | \n", + "
1457 | \n", + "9042 | \n", + "
1458 | \n", + "9717 | \n", + "
1459 | \n", + "9937 | \n", + "
1460 rows × 1 columns
\n", + "\n", + " | area | \n", + "
---|---|
0 | \n", + "8450 | \n", + "
1 | \n", + "9600 | \n", + "
2 | \n", + "11250 | \n", + "
3 | \n", + "9550 | \n", + "
4 | \n", + "14260 | \n", + "
... | \n", + "... | \n", + "
1455 | \n", + "7917 | \n", + "
1456 | \n", + "13175 | \n", + "
1457 | \n", + "9042 | \n", + "
1458 | \n", + "9717 | \n", + "
1459 | \n", + "9937 | \n", + "
1460 rows × 1 columns
\n", + "\n", + " | price | \n", + "
---|---|
0 | \n", + "208500 | \n", + "
1 | \n", + "181500 | \n", + "
2 | \n", + "223500 | \n", + "
3 | \n", + "140000 | \n", + "
4 | \n", + "250000 | \n", + "
... | \n", + "... | \n", + "
1455 | \n", + "175000 | \n", + "
1456 | \n", + "210000 | \n", + "
1457 | \n", + "266500 | \n", + "
1458 | \n", + "142125 | \n", + "
1459 | \n", + "147500 | \n", + "
1460 rows × 1 columns
\n", + "LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
SVR()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SVR()
\n", + " | Left Hand Side | \n", + "Right Hand Side | \n", + "Support | \n", + "
---|---|---|---|
0 | \n", + "body spray | \n", + "avocado | \n", + "0.014286 | \n", + "
1 | \n", + "brownies | \n", + "avocado | \n", + "0.014286 | \n", + "
2 | \n", + "cider | \n", + "avocado | \n", + "0.014286 | \n", + "
3 | \n", + "fresh bread | \n", + "avocado | \n", + "0.014286 | \n", + "
4 | \n", + "grated cheese | \n", + "avocado | \n", + "0.014286 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "
271 | \n", + "strawberries | \n", + "turkey | \n", + "0.014286 | \n", + "
272 | \n", + "tomato sauce | \n", + "tomatoes | \n", + "0.014286 | \n", + "
273 | \n", + "tomatoes | \n", + "turkey | \n", + "0.028571 | \n", + "
274 | \n", + "toothpaste | \n", + "white wine | \n", + "0.014286 | \n", + "
275 | \n", + "whole wheat pasta | \n", + "whole wheat rice | \n", + "0.014286 | \n", + "
276 rows × 3 columns
\n", + "\n", + " | Left Hand Side | \n", + "Right Hand Side | \n", + "Support | \n", + "
---|---|---|---|
146 | \n", + "fresh tuna | \n", + "mineral water | \n", + "0.057143 | \n", + "
186 | \n", + "ground beef | \n", + "mineral water | \n", + "0.057143 | \n", + "
29 | \n", + "body spray | \n", + "green tea | \n", + "0.042857 | \n", + "
149 | \n", + "fresh tuna | \n", + "spaghetti | \n", + "0.042857 | \n", + "
182 | \n", + "green tea | \n", + "soup | \n", + "0.042857 | \n", + "
236 | \n", + "whole wheat rice | \n", + "mineral water | \n", + "0.042857 | \n", + "
249 | \n", + "pasta | \n", + "shrimp | \n", + "0.042857 | \n", + "
261 | \n", + "salmon | \n", + "spaghetti | \n", + "0.042857 | \n", + "
24 | \n", + "black tea | \n", + "salmon | \n", + "0.028571 | \n", + "
33 | \n", + "body spray | \n", + "pancakes | \n", + "0.028571 | \n", + "
RandomForestClassifier(n_estimators=200, random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier(n_estimators=200, random_state=0)
SVC(kernel='linear')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SVC(kernel='linear')
\n", + " | sepal length (cm) | \n", + "sepal width (cm) | \n", + "petal length (cm) | \n", + "petal width (cm) | \n", + "
---|---|---|---|---|
0 | \n", + "5.1 | \n", + "3.5 | \n", + "1.4 | \n", + "0.2 | \n", + "
1 | \n", + "4.9 | \n", + "3.0 | \n", + "1.4 | \n", + "0.2 | \n", + "
2 | \n", + "4.7 | \n", + "3.2 | \n", + "1.3 | \n", + "0.2 | \n", + "
3 | \n", + "4.6 | \n", + "3.1 | \n", + "1.5 | \n", + "0.2 | \n", + "
4 | \n", + "5.0 | \n", + "3.6 | \n", + "1.4 | \n", + "0.2 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
145 | \n", + "6.7 | \n", + "3.0 | \n", + "5.2 | \n", + "2.3 | \n", + "
146 | \n", + "6.3 | \n", + "2.5 | \n", + "5.0 | \n", + "1.9 | \n", + "
147 | \n", + "6.5 | \n", + "3.0 | \n", + "5.2 | \n", + "2.0 | \n", + "
148 | \n", + "6.2 | \n", + "3.4 | \n", + "5.4 | \n", + "2.3 | \n", + "
149 | \n", + "5.9 | \n", + "3.0 | \n", + "5.1 | \n", + "1.8 | \n", + "
150 rows × 4 columns
\n", + "DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)
KNeighborsClassifier(n_neighbors=2)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
KNeighborsClassifier(n_neighbors=2)
\n", + " | Pclass | \n", + "Sex | \n", + "Age | \n", + "Fare | \n", + "
---|---|---|---|---|
0 | \n", + "3 | \n", + "1 | \n", + "22.0 | \n", + "7.2500 | \n", + "
1 | \n", + "1 | \n", + "0 | \n", + "38.0 | \n", + "71.2833 | \n", + "
2 | \n", + "3 | \n", + "0 | \n", + "26.0 | \n", + "7.9250 | \n", + "
3 | \n", + "1 | \n", + "0 | \n", + "35.0 | \n", + "53.1000 | \n", + "
4 | \n", + "3 | \n", + "1 | \n", + "35.0 | \n", + "8.0500 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
886 | \n", + "2 | \n", + "1 | \n", + "27.0 | \n", + "13.0000 | \n", + "
887 | \n", + "1 | \n", + "0 | \n", + "19.0 | \n", + "30.0000 | \n", + "
888 | \n", + "3 | \n", + "0 | \n", + "NaN | \n", + "23.4500 | \n", + "
889 | \n", + "1 | \n", + "1 | \n", + "26.0 | \n", + "30.0000 | \n", + "
890 | \n", + "3 | \n", + "1 | \n", + "32.0 | \n", + "7.7500 | \n", + "
891 rows × 4 columns
\n", + "\n", + " | Survived | \n", + "
---|---|
0 | \n", + "0 | \n", + "
1 | \n", + "1 | \n", + "
2 | \n", + "1 | \n", + "
3 | \n", + "1 | \n", + "
4 | \n", + "0 | \n", + "
... | \n", + "... | \n", + "
886 | \n", + "0 | \n", + "
887 | \n", + "1 | \n", + "
888 | \n", + "0 | \n", + "
889 | \n", + "1 | \n", + "
890 | \n", + "0 | \n", + "
891 rows × 1 columns
\n", + "GaussianNB()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
GaussianNB()
\n", + " | Left Hand Side | \n", + "Right Hand Side | \n", + "Support | \n", + "Confidence | \n", + "Lift | \n", + "
---|---|---|---|---|---|
0 | \n", + "light cream | \n", + "chicken | \n", + "0.004533 | \n", + "0.290598 | \n", + "4.843305 | \n", + "
1 | \n", + "mushroom cream sauce | \n", + "escalope | \n", + "0.005733 | \n", + "0.300699 | \n", + "3.790327 | \n", + "
2 | \n", + "pasta | \n", + "escalope | \n", + "0.005867 | \n", + "0.372881 | \n", + "4.700185 | \n", + "
3 | \n", + "fromage blanc | \n", + "honey | \n", + "0.003333 | \n", + "0.245098 | \n", + "5.178128 | \n", + "
4 | \n", + "herb & pepper | \n", + "ground beef | \n", + "0.016000 | \n", + "0.323450 | \n", + "3.291555 | \n", + "
5 | \n", + "tomato sauce | \n", + "ground beef | \n", + "0.005333 | \n", + "0.377358 | \n", + "3.840147 | \n", + "
6 | \n", + "light cream | \n", + "olive oil | \n", + "0.003200 | \n", + "0.205128 | \n", + "3.120612 | \n", + "
7 | \n", + "whole wheat pasta | \n", + "olive oil | \n", + "0.008000 | \n", + "0.271493 | \n", + "4.130221 | \n", + "
8 | \n", + "pasta | \n", + "shrimp | \n", + "0.005067 | \n", + "0.322034 | \n", + "4.514494 | \n", + "
XGBClassifier(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
XGBClassifier(base_score=None, booster=None, callbacks=None,\n", + " colsample_bylevel=None, colsample_bynode=None,\n", + " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", + " enable_categorical=False, eval_metric=None, feature_types=None,\n", + " gamma=None, grow_policy=None, importance_type=None,\n", + " interaction_constraints=None, learning_rate=None, max_bin=None,\n", + " max_cat_threshold=None, max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None, max_leaves=None,\n", + " min_child_weight=None, missing=nan, monotone_constraints=None,\n", + " multi_strategy=None, n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None, random_state=None, ...)