-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_forest_spectra.py
559 lines (479 loc) · 25.1 KB
/
random_forest_spectra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import numpy as np
import matplotlib.pyplot as plt
from astropy.table import Table
from astropy.table import Column
from astropy.table import vstack
from astropy.table import join
from sklearn import ensemble
from sklearn import linear_model
from sklearn import neighbors
from sklearn.decomposition import FastICA
from sklearn.decomposition import SparsePCA
from sklearn import preprocessing as skpp
from sklearn.pipeline import make_pipeline
from sklearn.cross_decomposition import PLSRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression as Linear
import ICAize
import fnmatch
import os
import os.path
import sys
from astropy.utils.compat import argparse
rfr_random_state = 456371
<<<<<<< HEAD
include_linear = True
linear_only = True
order_3 = True
order_4 = True #False
def load_all_spectra_data(path, noncon_file=None, con_file=None, use_spca=False):
=======
hide_plots=True #False
use_spca=False #True
use_pca=False #True
restrict_delta = True
restrict_color = 'blue'
include_knn = False #True
include_linear = False #True
linear_only = False #True
order_3 = False #True
order_4 = False #True #False
n_estimators = 200
save_out = False
scale = False #True
scale_std = False
proc_ecliptic_angles = False
proc_lunar_sep = False #True
proc_lunar_mag = False #True
reg_type = 'etr'
bootstrap = False
min_samples_split = 1
compute_chi_fit = True
use_filter_split = False
def load_all_spectra_data(path, noncon_file=None, con_file=None, use_spca=False, use_pca=False):
nc_sources, nc_mixing, noncon_exposures = load_spectra_data(path,
target_type='noncontinuum', filename=noncon_file,
use_spca=use_spca)
c_sources, c_mixing, c_exposures = load_spectra_data(path,
target_type='continuum', filename=con_file,
use_spca=use_spca)
return c_sources, c_mixing, c_exposures, nc_sources, nc_mixing, noncon_exposures
def load_spectra_data(path, target_type='continuum', filter_str='em', filename=None, use_spca=False, use_pca=False):
if filename is None:
if use_spca:
filename = ICAize.spca_data_file.format(target_type, filter_str)
elif use_pca:
filename = ICAize.pca_data_file.format(target_type, filter_str)
else:
filename = ICAize.ica_data_file.format(target_type, filter_str)
npz = np.load(os.path.join(path, filename))
sources = npz['sources']
if not use_spca and not use_pca:
mixing = npz['mixing']
else:
mixing = None
exposures = npz['exposures']
wavelengths = npz['wavelengths']
filter_split_arr = npz['filter_split_arr']
npz.close()
return sources, mixing, exposures, wavelengths, filter_split_arr
def load_observation_metadata(path, file = "annotated_metadata.csv"):
data = Table.read(os.path.join(path, file), format="ascii.csv")
if proc_ecliptic_angles:
data['ECLIPTIC_PLANE_SOLAR_SEP'] = np.sqrt(np.pi) - np.sqrt(data['ECLIPTIC_PLANE_SOLAR_SEP'] / 180 * np.pi) + np.sin(data['ECLIPTIC_PLANE_SOLAR_SEP'] / 360 * np.pi)
data['ECLIPTIC_PLANE_SEP'] = np.expm1(np.sqrt(np.pi) - np.sqrt(np.abs(data['ECLIPTIC_PLANE_SEP']) / 180 * np.pi) ) / np.exp(np.sqrt(np.pi))
if proc_lunar_mag:
data['LUNAR_MAGNITUDE'] = np.power(2.512, -data['LUNAR_MAGNITUDE'])
if proc_lunar_sep:
#data['LUNAR_SEP'] = 5405*np.power(data['LUNAR_SEP'],-1.25) - 0.00019*np.power(data['LUNAR_SEP'],3) + 0.07085*np.power(data['LUNAR_SEP'],2) - 8.5*data['LUNAR_SEP'] + 340
data['LUNAR_SEP'] = np.cos(data['LUNAR_SEP']) * np.abs(data['LUNAR_MAGNITUDE']) * (data['LUNAR_ELV'] > 0)
return data
def trim_observation_metadata(data, copy=False):
if copy:
data = data.copy()
kept_columns = ['EXP_ID', 'RA', 'DEC',
#'AZ_COR',
'AZ',
'ALT', 'AIRMASS', #'TIME_BLOCK','WEEK_OF_YEAR',
'LUNAR_MAGNITUDE', 'LUNAR_ELV', 'LUNAR_SEP', 'SOLAR_ELV',
'SOLAR_SEP', 'GALACTIC_CORE_SEP',
#'GALACTIC_PLANE_SEP_COR',
'GALACTIC_PLANE_SEP',
'SS_COUNT', 'SS_AREA',
#'ECLIPTIC_PLANE_SEP_COR',
'ECLIPTIC_PLANE_SEP',
'ECLIPTIC_PLANE_SOLAR_SEP'] #,
#'BLOCKS_TO_TWILIGHT']
removed_columns = [name for name in data.colnames if name not in kept_columns]
data.remove_columns(removed_columns)
return data
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Build a model to prediction sky spectra based on input metadata')
parser.add_argument(
'--metadata_path', type=str, default='.', metavar='METADATA_PATH',
help='Metadata path to work from, if not ''.'''
)
parser.add_argument(
'--spectra_path', type=str, default='.', metavar='SPECTRA_PATH',
help='Spectra path to work from, if not ''.'''
)
parser.add_argument(
'--test_inds', type=str, default='0', metavar='TEST_INDS',
help='Either a single index (file order) or ''ALL,start,end'''
)
parser.add_argument(
'--show_plots', action='store_true', metavar='SHOW_PLOTS',
help='Whether or not to show actual vs. model plots'
)
parser.add_argument(
'--red_method', type=str, default='ICA', metavar='RED_METHOD',
help='Which dimensionality reduction results to (attempt to) use'
)
parser.add_argument(
'--save_model', action='store_true', metavar='SAVE_MODEL',
help='Whether to save the model out'
)
parser.add_argument(
'--load_model', action='store_true', metavar='LOAD_MODEL',
help='Whether to load the model in'
)
parser.add_argument(
'--model_file', type=str, default=None, metavar='MODEL_FILE',
help='Model file to use for --load_model and --save_model'
)
parser.add_argument(
'--model_type', type=str, default='ERF',
help='Model type to build (if building a model)'
)
wavelengths = None
for target_type in target_types:
if test_inds[0] == 'ALL':
test_inds = range(int(test_inds[1]), int(test_inds[2]))
else:
test_inds = [int(test_inds[0])]
load_plot_etc_target_type(metadata_path, spectra_path, test_inds, target_type,
no_plot=hide_plots, save_out=save_out, restrict_delta=restrict_delta,
use_spca=use_spca, use_pca=use_pca)
def load_plot_etc_target_type(metadata_path, spectra_path, test_inds, target_type, no_plot=False,
save_out=False, restrict_delta=False, use_spca=False, use_pca=False):
obs_metadata = trim_observation_metadata(load_observation_metadata(metadata_path))
if use_filter_split:
c_sources, c_mixing, c_exposures, c_wavelengths, c_filter_split_arr = load_spectra_data(spectra_path,
target_type=target_type, filter_str='nonem', use_spca=use_spca, use_pca=use_pca)
c_sources_e, c_mixing_e, c_exposures_e, c_wavelengths_e, c_filter_split_arr_e = load_spectra_data(spectra_path,
target_type=target_type, filter_str='em', use_spca=use_spca, use_pca=use_pca)
else:
c_sources, c_mixing, c_exposures, c_wavelengths, c_filter_split_arr = load_spectra_data(spectra_path,
target_type=target_type, filter_str='both', use_spca=use_spca, use_pca=use_pca)
reduced_obs_metadata = obs_metadata[np.in1d(obs_metadata['EXP_ID'], c_exposures)]
reduced_obs_metadata.sort('EXP_ID')
sorted_inds = np.argsort(c_exposures)
if use_filter_split:
sorted_e_inds = np.argsort(c_exposures_e)
if not linear_only:
if reg_type == 'etr':
rfr = ensemble.ExtraTreesRegressor(n_estimators=n_estimators, min_samples_split=min_samples_split,
random_state=rfr_random_state, n_jobs=-1, verbose=False, bootstrap=bootstrap)
if use_filter_split:
rfr_e = ensemble.ExtraTreesRegressor(n_estimators=n_estimators, min_samples_split=min_samples_split,
random_state=rfr_random_state, n_jobs=-1, verbose=False, bootstrap=bootstrap)
else:
rfr = ensemble.RandomForestRegressor(n_estimators=n_estimators, min_samples_split=min_samples_split,
random_state=rfr_random_state, n_jobs=-1, verbose=False, bootstrap=bootstrap)
if use_filter_split:
rfr_e = ensemble.RandomForestRegressor(n_estimators=n_estimators, min_samples_split=min_samples_split,
random_state=rfr_random_state, n_jobs=-1, verbose=False, bootstrap=bootstrap)
if include_knn:
knn = neighbors.KNeighborsRegressor(weights='distance', n_neighbors=10, p=64)
if use_filter_split:
knn_e = neighbors.KNeighborsRegressor(weights='distance', n_neighbors=10, p=64)
if include_linear:
linear = Linear(fit_intercept=True, copy_X=True, n_jobs=-1)
poly_2_linear = Pipeline([('poly', PolynomialFeatures(degree=2)),
('linear', Linear(fit_intercept=True, copy_X=True, n_jobs=-1))])
poly_3_linear = Pipeline([('poly', PolynomialFeatures(degree=3)),
('linear', Linear(fit_intercept=True, copy_X=True, n_jobs=-1))])
poly_4_linear = Pipeline([('poly', PolynomialFeatures(degree=4)),
('linear', Linear(fit_intercept=True, copy_X=True, n_jobs=-1))])
if use_filter_split:
linear_e = Linear(fit_intercept=True, copy_X=True, n_jobs=-1)
poly_2_linear_e = Pipeline([('poly', PolynomialFeatures(degree=2)),
('linear', Linear(fit_intercept=True, copy_X=True, n_jobs=-1))])
poly_3_linear_e = Pipeline([('poly', PolynomialFeatures(degree=3)),
('linear', Linear(fit_intercept=True, copy_X=True, n_jobs=-1))])
poly_4_linear_e = Pipeline([('poly', PolynomialFeatures(degree=4)),
('linear', Linear(fit_intercept=True, copy_X=True, n_jobs=-1))])
reduced_obs_metadata.remove_column('EXP_ID')
md_len = len(reduced_obs_metadata)
var_count = len(reduced_obs_metadata.columns)
X_arr = np.array(reduced_obs_metadata).view('f8').reshape((md_len,-1))
ica = None
if not use_spca and not use_pca:
if use_filter_split:
ica = ICAize.unpickle_FastICA(path=spectra_path, target_type=target_type, filter_str='nonem')
ica_e = ICAize.unpickle_FastICA(path=spectra_path, target_type=target_type, filter_str='em')
else:
ica = ICAize.unpickle_FastICA(path=spectra_path, target_type=target_type, filter_str='both')
elif use_spca:
ica = ICAize.unpickle_SPCA(path=spectra_path, target_type=target_type)
else:
if use_filter_split:
ica = ICAize.unpickle_PCA(path=spectra_path, target_type=target_type, filter_str='nonem')
ica_e = ICAize.unpickle_PCA(path=spectra_path, target_type=target_type, filter_str='em')
else:
ica = ICAize.unpickle_PCA(path=spectra_path, target_type=target_type, filter_str='both')
spectra_dir_list = os.listdir(spectra_path)
################################################################
results = None
for test_ind in test_inds:
test_X = X_arr[test_ind]
train_X = np.vstack( [X_arr[:test_ind], X_arr[test_ind+1:]] )
test_y = (c_sources[sorted_inds])[test_ind]
train_y = np.vstack( [(c_sources[sorted_inds])[:test_ind], (c_sources[sorted_inds])[test_ind+1:]] )
if use_filter_split:
test_y_e = (c_sources_e[sorted_e_inds])[test_ind]
train_y_e = np.vstack( [(c_sources_e[sorted_e_inds])[:test_ind], (c_sources_e[sorted_e_inds])[test_ind+1:]] )
if scale:
scaler = StandardScaler(with_std=scale_std)
train_X = scaler.fit_transform(train_X)
test_X = scaler.transform(test_X)
title_str = "exp{}, {}".format(c_exposures[sorted_inds[test_ind]], target_type)
if not linear_only:
rfr.fit(X=train_X, y=train_y)
if use_filter_split:
rfr_e.fit(X=train_X, y=train_y_e)
if include_knn:
knn.fit(X=train_X, y=train_y)
if user_filter_split:
knn_e.fit(X=train_X, y=train_y_e)
if include_linear:
linear.fit(train_X, train_y)
poly_2_linear.fit(train_X, train_y)
if order_3:
poly_3_linear.fit(train_X, train_y)
if order_4:
poly_4_linear.fit(train_X, train_y)
if use_filter_split and include_linear:
linear_e.fit(train_X, train_y_e)
poly_2_linear_e.fit(train_X, train_y_e)
if order_3:
poly_3_linear_e.fit(train_X, train_y_e)
if order_4:
poly_4_linear_e.fit(train_X, train_y_e)
print test_ind, c_exposures[sorted_inds[test_ind]],
data = None
actual = None
mask = None
delta_mask = None
ivar = None
for file in spectra_dir_list:
if fnmatch.fnmatch(file, "stacked_sky_*exp{}.csv".format(c_exposures[sorted_inds[test_ind]])):
data = Table.read(os.path.join(spectra_path, file), format="ascii.csv")
ivar = data['ivar']
mask = (data['ivar'] == 0)
delta_mask = mask.copy()
if restrict_delta:
if restrict_color == 'blue':
delta_mask[2700:] = True
else:
delta_mask[:2700] = True
actual = data['flux']
break
if actual is None:
continue
if not linear_only:
rfr_prediction = rfr.predict(test_X)
if not use_spca and not use_pca:
rfr_predicted = ica.inverse_transform(rfr_prediction, copy=True)
else:
rfr_predicted = np.zeros( (1, ica.components_.shape[1]) )
rfr_predicted[0,:] = np.sum(rfr_prediction.T * ica.components_, 0)
if use_filter_split:
rfr_e_prediction = rfr_e.predict(test_X)
if not use_spca and not use_pca:
rfr_e_predicted = ica_e.inverse_transform(rfr_e_prediction, copy=True)
else:
rfr_e_predicted = np.zeros( (1, ica_e.components_.shape[1]) )
rfr_e_predicted[0,:] = np.sum(rfr_e_prediction.T * ica_e.components_, 0)
rfr_predicted = rfr_predicted + rfr_e_predicted
rfr_delta = rfr_predicted[0] - actual
if not no_plot:
plt.plot(c_wavelengths[~mask], rfr_predicted[0][~mask])
plt.plot(c_wavelengths[~mask], actual[~mask])
plt.plot(c_wavelengths[~mask], rfr_delta[~mask])
if not no_plot:
plt.plot(c_wavelengths, [0]*len(c_wavelengths))
err_term = np.sum(np.power(rfr_delta[~delta_mask], 2))/len(c_wavelengths[~delta_mask])
err_sum = np.sum(rfr_delta[~delta_mask])/len(rfr_delta[~delta_mask])
red_chi = np.sum(np.power(rfr_delta[~delta_mask], 2)*ivar[~delta_mask])/(len(c_wavelengths[~delta_mask])-var_count-1)
if not no_plot:
plt.legend(['Predicted', 'Actual', 'Delta {:0.5f}'.format(err_term)])
plt.tight_layout()
plt.title("Random Forest Regressor: {}".format(title_str))
plt.show()
plt.close()
print err_term, red_chi, err_sum,
if include_knn:
knn_prediction = knn.predict(test_X)
if not use_spca and not use_pca:
knn_predicted = ica.inverse_transform(knn_prediction, copy=True)
else:
knn_predicted = np.zeros( (1, ica.components_.shape[1]) )
knn_predicted[0,:] = np.sum(knn_prediction.T * ica.components_, 0)
if use_filter_split:
knn_e_prediction = knn_e.predict(test_X)
if not use_spca and not use_pca:
knn_e_predicted = ica_e.inverse_transform(knn_e_prediction, copy=True)
else:
knn_e_predicted = np.zeros( (1, ica_e.components_.shape[1]) )
knn_e_predicted[0,:] = np.sum(knn_e_prediction.T * ica_e.components_, 0)
knn_predicted = knn_predicted + knn_e_predicted
if not no_plot:
plt.plot(c_wavelengths[~mask], knn_predicted[0][~mask])
plt.plot(c_wavelengths[~mask], actual[~mask])
knn_delta = knn_predicted[0] - actual
err_term = np.sum(np.power(knn_delta[~delta_mask], 2))/len(c_wavelengths[~delta_mask])
err_sum = np.sum(knn_delta[~delta_mask])/len(knn_delta[~delta_mask])
red_chi = np.sum(np.power(knn_delta[~delta_mask], 2)*ivar[~delta_mask])/(len(c_wavelengths[~delta_mask])-var_count-1)
if not no_plot:
plt.plot(c_wavelengths[~mask], knn_delta[~mask])
plt.plot(c_wavelengths, [0]*len(c_wavelengths))
plt.legend(['Predicted', 'Actual', 'Delta {:0.5f}'.format(err_term)])
plt.tight_layout()
plt.title("Good 'ol K-NN: {}".format(title_str))
plt.show()
plt.close()
print err_term, red_chi, err_sum,
if include_linear:
poly_1_prediction = linear.predict(test_X)
if not use_spca and not use_pca:
poly_1_predicted = ica.inverse_transform(poly_1_prediction, copy=True)
else:
poly_1_predicted = np.zeros( (1, ica.components_.shape[1]) )
poly_1_predicted[0,:] = np.sum(poly_1_prediction.T * ica.components_, 0)
if use_filter_split:
poly_1_e_prediction = linear.predict(test_X)
if not use_spca and not use_pca:
poly_1_e_predicted = ica_e.inverse_transform(poly_1_e_prediction, copy=True)
else:
poly_1_e_predicted = np.zeros( (1, ica_e.components_.shape[1]) )
poly_1_e_predicted[0,:] = np.sum(poly_1_e_prediction.T * ica_e.components_, 0)
poly_1_predicted = poly_1_predicted + poly_1_e_predicted
poly_1_delta = poly_1_predicted[0] - actual
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_1_predicted[0][~mask])
plt.plot(c_wavelengths[~mask], actual[~mask])
err_term = np.sum(np.power(poly_1_delta[~delta_mask], 2))/len(c_wavelengths[~delta_mask])
err_sum = np.sum(poly_1_delta[~delta_mask])/len(poly_1_delta[~delta_mask])
red_chi = np.sum(np.power(poly_1_delta[~delta_mask], 2)*ivar[~delta_mask])/(len(c_wavelengths[~delta_mask])-var_count-1)
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_1_delta[~mask])
plt.plot(c_wavelengths, [0]*len(c_wavelengths))
plt.legend(['Predicted', 'Actual', 'Delta {:0.5f}'.format(err_term)])
plt.tight_layout()
plt.title("Poly 1: {}".format(title_str))
plt.show()
plt.close()
print err_term, red_chi, err_sum,
poly_2_prediction = poly_2_linear.predict(test_X)
if not use_spca and not use_pca:
poly_2_predicted = ica.inverse_transform(poly_2_prediction, copy=True)
else:
poly_2_predicted = np.zeros( (1, ica.components_.shape[1]) )
poly_2_predicted[0,:] = np.sum(poly_2_prediction.T * ica.components_, 0)
poly_2_delta = poly_2_predicted[0] - actual
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_2_predicted[0][~mask])
plt.plot(c_wavelengths[~mask], actual[~mask])
err_term = np.sum(np.power(poly_2_delta[~delta_mask], 2))/len(c_wavelengths[~delta_mask])
err_sum = np.sum(poly_2_delta[~delta_mask])/len(poly_2_delta[~delta_mask])
red_chi = np.sum(np.power(poly_2_delta[~delta_mask], 2)*ivar[~delta_mask])/(len(c_wavelengths[~delta_mask])-var_count-1)
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_2_delta[~mask])
plt.plot(c_wavelengths, [0]*len(c_wavelengths))
plt.legend(['Predicted', 'Actual', 'Delta {:0.5f}'.format(err_term)])
plt.tight_layout()
plt.title("Poly 2: {}".format(title_str))
plt.show()
plt.close()
print err_term, red_chi, err_sum,
err_ind =+ 1
if order_3:
poly_3_prediction = poly_3_linear.predict(test_X)
if not use_spca and not use_pca:
poly_3_predicted = ica.inverse_transform(poly_3_prediction, copy=True)
else:
poly_3_predicted = np.zeros( (1, ica.components_.shape[1]) )
poly_3_predicted[0,:] = np.sum(poly_3_prediction.T * ica.components_, 0)
poly_3_delta = poly_3_predicted[0] - actual
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_3_predicted[0][~mask])
plt.plot(c_wavelengths[~mask], actual[~mask])
err_term = np.sum(np.power(poly_3_delta[~delta_mask], 2))/len(c_wavelengths[~delta_mask])
err_sum = np.sum(poly_3_delta[~delta_mask])/len(poly_3_delta[~delta_mask])
red_chi = np.sum(np.power(poly_3_delta[~delta_mask], 2)*ivar[~delta_mask])/(len(c_wavelengths[~delta_mask])-var_count-1)
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_3_delta[~mask])
plt.plot(c_wavelengths, [0]*len(c_wavelengths))
plt.legend(['Predicted', 'Actual', 'Delta {:0.5f}'.format(err_term)])
plt.tight_layout()
plt.title("Poly 3: {}".format(title_str))
plt.show()
plt.close()
print err_term, red_chi, err_sum,
err_ind =+ 1
if order_4:
poly_4_prediction = poly_4_linear.predict(test_X)
if not use_spca and not use_pca:
poly_4_predicted = ica.inverse_transform(poly_4_prediction, copy=True)
else:
poly_4_predicted = np.zeros( (1, ica.components_.shape[1]) )
poly_4_predicted[0,:] = np.sum(poly_4_prediction.T * ica.components_, 0)
poly_4_delta = poly_4_predicted[0] - actual
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_4_predicted[0][~mask])
plt.plot(c_wavelengths[~mask], actual[~mask])
err_term = np.sum(np.power(poly_4_delta[~delta_mask], 2))/len(c_wavelengths[~delta_mask])
err_sum = np.sum(poly_4_delta[~delta_mask])/len(poly_4_delta[~delta_mask])
red_chi = np.sum(np.power(poly_4_delta[~delta_mask], 2)*ivar[~delta_mask])/(len(c_wavelengths[~delta_mask])-var_count-1)
if not no_plot:
plt.plot(c_wavelengths[~mask], poly_4_delta[~mask])
plt.plot(c_wavelengths, [0]*len(c_wavelengths))
plt.legend(['Predicted', 'Actual', 'Delta {:0.5f}'.format(err_term)])
plt.tight_layout()
plt.title("Poly 4: {}".format(title_str))
plt.show()
plt.close()
print err_term, red_chi, err_sum,
err_ind =+ 1
print
if save_out:
out_table = Table()
wavelength_col = Column(c_wavelengths, name="wavelength", dtype=float)
out_table.add_columns([wavelength_col])
if not linear_only:
rf_col = Column(rfr_predicted[0], name="rf_flux", dtype=float)
out_table.add_columns([rf_col])
if include_knn:
knn_col = Column(knn_predicted[0], name="knn_flux", dtype=float)
avg_col = Column(avg_predicted[0], name="avg_flux", dtype=float)
out_table.add_columns([knn_col, avg_col])
if include_linear:
poly_1_col = Column(poly_1_predicted[0], name="poly_1_flux", dtype=float)
poly_2_col = Column(poly_2_predicted[0], name="poly_2_flux", dtype=float)
out_table.add_columns([poly_1_col, poly_2_col])
if order_3:
poly_3_col = Column(poly_3_predicted[0], name="poly_3_flux", dtype=float)
out_table.add_columns([poly_3_col])
if order_4:
poly_4_col = Column(poly_4_predicted[0], name="poly_4_flux", dtype=float)
out_table.add_columns([poly_4_col])
mask_col = Column(~mask, name="mask_col", dtype=bool)
out_table.add_columns([mask_col])
out_table.write("predicted_sky_exp{}.csv".format(c_exposures[sorted_inds[test_ind]]), format="ascii.csv")
if __name__ == '__main__':
main()