-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
644 lines (534 loc) · 22.2 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import pandas as pd
import json
from pathlib import Path
from typing import List
from macro_tracker import MacroTracker
from base_types import UserStats, DailyLog, DietMode, ActivityLevel, TrainingLevel, MacroPreset, MacroPresets
# Unit conversion functions
def kg_to_lbs(kg: float) -> float:
"""Convert kilograms to pounds"""
return kg * 2.20462
def lbs_to_kg(lbs: float) -> float:
"""Convert pounds to kilograms"""
return lbs / 2.20462
def cm_to_inches(cm: float) -> float:
"""Convert centimeters to inches"""
return cm / 2.54
def inches_to_cm(inches: float) -> float:
"""Convert inches to centimeters"""
return inches * 2.54
def l_to_fl_oz(liters: float) -> float:
"""Convert liters to fluid ounces"""
return liters * 33.814
def fl_oz_to_l(fl_oz: float) -> float:
"""Convert fluid ounces to liters"""
return fl_oz / 33.814
def l_to_cups(liters: float) -> float:
"""Convert liters to cups"""
return liters * 4.227
def cups_to_l(cups: float) -> float:
"""Convert cups to liters"""
return cups / 4.227
def format_weight(weight: float, unit_system: str) -> str:
"""Format weight with appropriate unit"""
if unit_system == 'imperial':
return f"{kg_to_lbs(weight):.1f} lbs"
return f"{weight:.1f} kg"
def format_height(height: float, unit_system: str) -> str:
"""Format height with appropriate unit"""
if unit_system == 'imperial':
inches = cm_to_inches(height)
feet = int(inches // 12)
remaining_inches = inches % 12
return f"{feet}'{remaining_inches:.1f}\""
return f"{height:.1f} cm"
def format_volume(volume: float, unit_system: str) -> str:
"""Format volume with appropriate unit"""
if unit_system == 'imperial':
if volume > 4: # Use cups for larger amounts
cups = l_to_cups(volume)
return f"{cups:.1f} cups"
else: # Use fl oz for smaller amounts
fl_oz = l_to_fl_oz(volume)
return f"{fl_oz:.1f} fl oz"
return f"{volume:.1f} L"
def calculate_projected_weight_change(target_calories: int, maintenance_calories: int,
unit_system: str = 'metric') -> str:
"""Calculate and format projected weekly weight change"""
daily_deficit = target_calories - maintenance_calories
weekly_cal_deficit = daily_deficit * 7
# 3500 calories per pound of body weight
weekly_lb_change = weekly_cal_deficit / 3500
weekly_kg_change = weekly_lb_change / 2.20462
if abs(weekly_lb_change) < 0.1: # Less than 0.1 lbs/week is negligible
return "Projected to maintain weight"
direction = "loss" if weekly_lb_change < 0 else "gain"
if unit_system == 'imperial':
return (f"Projected weekly {direction}: "
f"{abs(weekly_lb_change):.1f} lbs")
else:
return (f"Projected weekly {direction}: "
f"{abs(weekly_kg_change):.1f} kg")
def save_preferences(preferences: dict):
"""Save user preferences to file"""
prefs_file = Path("user_preferences.json")
try:
prefs_file.write_text(json.dumps(preferences))
except Exception as e:
st.warning(f"Could not save preferences: {e}")
def load_preferences() -> dict:
"""Load user preferences from file"""
prefs_file = Path("user_preferences.json")
default_prefs = {
"unit_system": "metric",
"diet_mode": "STANDARD_CUT",
"macro_preset": "BALANCED",
"custom_macro_settings": {
"protein_factor": 2.0,
"fat_ratio": 0.30,
"min_fat": 0.8,
"protein_source": "body_weight"
}
}
if prefs_file.exists():
try:
saved_prefs = json.loads(prefs_file.read_text())
# Merge with defaults in case new preferences were added
return {**default_prefs, **saved_prefs}
except Exception:
pass
return default_prefs
def initialize_session_state():
"""Initialize session state variables"""
if 'tracker' not in st.session_state:
st.session_state.tracker = MacroTracker()
if 'current_stats' not in st.session_state:
st.session_state.current_stats = None
if 'preferences' not in st.session_state:
st.session_state.preferences = load_preferences()
def create_metrics_chart(df: pd.DataFrame, metrics: List[str]) -> go.Figure:
"""Create a line chart for selected metrics"""
fig = go.Figure()
for metric in metrics:
fig.add_trace(go.Scatter(
x=df['date'],
y=df[metric],
name=metric.replace('_', ' ').title(),
mode='lines+markers'
))
fig.update_layout(
height=400,
margin=dict(l=20, r=20, t=40, b=20),
title_text='Progress Over Time',
hovermode='x'
)
return fig
def show_settings_sidebar():
"""Display settings sidebar"""
with st.sidebar:
st.header("User Settings")
# Add unit system selection
unit_system = st.radio(
"Unit System",
options=['metric', 'imperial'],
index=0 if st.session_state.preferences["unit_system"] == "metric" else 1,
key="unit_system",
on_change=lambda: save_preferences(st.session_state.preferences)
)
st.session_state.preferences["unit_system"] = unit_system
# Basic Info
if unit_system == 'imperial':
weight = lbs_to_kg(st.number_input("Current Weight (lbs)", 90.0, 440.0, 176.0, key="settings_weight"))
height = inches_to_cm(st.number_input("Height (inches)", 48.0, 96.0, 67.0, key="settings_height"))
target_weight = lbs_to_kg(
st.number_input("Target Weight (lbs)", 90.0, 440.0, 165.0, key="settings_target_weight"))
else:
weight = st.number_input("Current Weight (kg)", 40.0, 200.0, 80.0, key="settings_weight")
height = st.number_input("Height (cm)", 100.0, 250.0, 170.0, key="settings_height")
target_weight = st.number_input("Target Weight (kg)", 40.0, 200.0, 75.0, key="settings_target_weight")
body_fat = st.number_input("Body Fat %", 5.0, 50.0, 15.0, key="settings_bf")
target_bf = st.number_input("Target Body Fat %", 5.0, 50.0, 12.0, key="settings_target_bf")
# Additional Settings
activity = st.selectbox(
"Activity Level",
options=[level.name for level in ActivityLevel],
format_func=lambda x: x.replace('_', ' ').title(),
key="settings_activity"
)
training = st.selectbox(
"Training Experience",
options=[level.name for level in TrainingLevel],
format_func=lambda x: x.replace('_', ' ').title(),
key="settings_training"
)
# Diet Mode selection with persistence
diet_mode = st.selectbox(
"Diet Mode",
options=[mode.name for mode in DietMode],
index=[mode.name for mode in DietMode].index(st.session_state.preferences["diet_mode"]),
format_func=lambda x: x.replace('_', ' ').title(),
key="settings_diet_mode",
on_change=lambda: _save_diet_preferences()
)
preset_config = MacroPresets.get_presets()
# Macro Preset selection with persistence
macro_preset = st.selectbox(
"Macro Split Preset",
options=[preset.name for preset in MacroPreset],
index=[preset.name for preset in MacroPreset].index(st.session_state.preferences["macro_preset"]),
format_func=lambda x: preset_config[MacroPreset[x]].name,
key="settings_macro_preset",
on_change=lambda: _save_diet_preferences()
)
# Show custom macro inputs if custom selected
if macro_preset == MacroPreset.CUSTOM.name:
with st.expander("Custom Macro Settings"):
custom_settings = st.session_state.preferences["custom_macro_settings"]
new_protein_factor = st.number_input(
"Protein (g/kg bodyweight)",
min_value=1.0,
max_value=3.0,
value=float(custom_settings["protein_factor"]),
step=0.1,
key="custom_protein_factor"
)
new_fat_ratio = st.slider(
"Fat (% of total calories)",
min_value=15,
max_value=75,
value=int(custom_settings["fat_ratio"] * 100),
key="custom_fat_ratio"
)
new_min_fat = st.number_input(
"Minimum Fat (g/kg bodyweight)",
min_value=0.3,
max_value=2.0,
value=float(custom_settings["min_fat"]),
step=0.1,
key="custom_min_fat"
)
new_protein_source = st.radio(
"Calculate protein based on",
options=["body_weight", "lean_mass"],
index=0 if custom_settings["protein_source"] == "body_weight" else 1,
key="custom_protein_source"
)
# Update custom settings in preferences
st.session_state.preferences["custom_macro_settings"].update({
"protein_factor": new_protein_factor,
"fat_ratio": new_fat_ratio / 100,
"min_fat": new_min_fat,
"protein_source": new_protein_source
})
save_preferences(st.session_state.preferences)
# Optional Info
with st.expander("Additional Information"):
age = st.number_input("Age", 18, 100, 30, key="settings_age")
gender = st.selectbox("Gender", ["male", "female"], key="settings_gender")
# Create UserStats object
st.session_state.current_stats = UserStats(
weight=weight,
body_fat=body_fat,
target_weight=target_weight,
target_body_fat=target_bf,
height=height,
age=age,
gender=gender,
activity_level=ActivityLevel[activity],
training_level=TrainingLevel[training]
)
return DietMode[diet_mode], MacroPreset[macro_preset]
def _save_diet_preferences():
"""Helper function to save diet and macro preferences"""
st.session_state.preferences.update({
"diet_mode": st.session_state.settings_diet_mode,
"macro_preset": st.session_state.settings_macro_preset
})
save_preferences(st.session_state.preferences)
def show_daily_log_tab():
"""Display daily logging interface"""
st.header("Daily Log")
unit_system = st.session_state.preferences["unit_system"]
col1, col2, col3 = st.columns(3)
with col1:
log_date = st.date_input("Date", datetime.now(), key="log_date")
if unit_system == 'imperial':
weight_lbs = st.number_input(
"Weight (lbs)", 0.0, 660.0,
kg_to_lbs(st.session_state.current_stats.weight),
key="log_weight"
)
log_weight = lbs_to_kg(weight_lbs)
else:
log_weight = st.number_input(
"Weight (kg)", 0.0, 300.0,
st.session_state.current_stats.weight,
key="log_weight"
)
log_bf = st.number_input("Body Fat %", 0.0, 50.0,
st.session_state.current_stats.body_fat,
key="log_bf")
with col2:
calories = st.number_input("Calories", 0, 10000, 2000, key="log_calories")
protein = st.number_input("Protein (g)", 0, 500, 150, key="log_protein")
carbs = st.number_input("Carbs (g)", 0, 1000, 200, key="log_carbs")
fat = st.number_input("Fat (g)", 0, 200, 70, key="log_fat")
with col3:
steps = st.number_input("Steps", 0, 100000, 0, key="log_steps")
if unit_system == 'imperial':
water_cups = st.number_input("Water (cups)", 0.0, 20.0, 0.0, key="log_water")
water = cups_to_l(water_cups)
else:
water = st.number_input("Water (L)", 0.0, 10.0, 0.0, key="log_water")
sleep = st.number_input("Sleep (hours)", 0.0, 24.0, 0.0, key="log_sleep")
notes = st.text_area("Notes", "", key="log_notes")
if st.button("Add Log", key="btn_add_log"):
log = DailyLog(
date=datetime.combine(log_date, datetime.min.time()),
weight=log_weight,
body_fat=log_bf,
calories=calories,
protein=protein,
carbs=carbs,
fat=fat,
steps=steps,
water=water,
sleep=sleep,
notes=notes
)
st.session_state.tracker.add_log(log)
st.success("Log added successfully!")
def show_recommendations_tab(diet_mode: DietMode, macro_preset: MacroPreset):
"""Display recommendations with manual adjustments and projections"""
st.header("Your Recommendations")
if not st.session_state.current_stats:
st.warning("Please set your stats in the sidebar first.")
return
recs = st.session_state.tracker.get_recommendations(st.session_state.current_stats, diet_mode, macro_preset)
# Base calories and manual adjustment
if 'calories' in recs:
st.subheader("Calorie Targets")
col1, col2, col3 = st.columns([2, 1, 2])
with col1:
st.metric("Base Target Calories", f"{recs['calories']} kcal")
with col2:
calorie_adjustment = st.number_input(
"Adjust Calories",
min_value=-500,
max_value=500,
value=0,
step=25,
help="Fine-tune your daily calories"
)
adjusted_calories = recs['calories'] + calorie_adjustment
with col3:
st.metric("Adjusted Target Calories", f"{adjusted_calories} kcal")
# Show projected weekly changes
if 'maintenance_calories' in recs:
projection = calculate_projected_weight_change(
adjusted_calories,
recs['maintenance_calories'],
st.session_state.preferences["unit_system"]
)
st.info(projection)
# Recalculate macros based on adjusted calories
if calorie_adjustment != 0:
macros = st.session_state.tracker.calculator.calculate_macros(
adjusted_calories,
st.session_state.current_stats,
diet_mode
)
else:
macros = recs['macros']
# Display macros
st.subheader("Macro Targets")
macro_cols = st.columns(3)
with macro_cols[0]:
st.metric("Protein", f"{macros['protein']}g")
with macro_cols[1]:
st.metric("Carbs", f"{macros['carbs']}g")
with macro_cols[2]:
st.metric("Fat", f"{macros['fat']}g")
# Display ratios if available
if 'ratios' in macros:
ratio_cols = st.columns(3)
with ratio_cols[0]:
st.caption(f"Protein: {macros['ratios']['protein']}%")
with ratio_cols[1]:
st.caption(f"Carbs: {macros['ratios']['carbs']}%")
with ratio_cols[2]:
st.caption(f"Fat: {macros['ratios']['fat']}%")
# Display meal timing if available
if 'meal_timing' in recs and recs['meal_timing']:
st.subheader("Meal Timing")
meal_cols = st.columns(len(recs['meal_timing']))
total_calories = adjusted_calories if 'calories' in recs else sum(recs['meal_timing'].values())
for i, (meal, cals) in enumerate(recs['meal_timing'].items()):
# Adjust meal calories proportionally
if 'calories' in recs:
cals = round(cals * (adjusted_calories / recs['calories']))
with meal_cols[i]:
st.metric(meal.replace('_', ' ').title(), f"{cals} kcal")
# Display minimum nutrients if available
if 'minimum_nutrients' in recs and recs['minimum_nutrients']:
st.subheader("Minimum Daily Targets")
min_nutrients = recs['minimum_nutrients']
cols = st.columns(len(min_nutrients))
for col, (nutrient, value) in zip(cols, min_nutrients.items()):
with col:
if nutrient == 'water':
display_value = format_volume(value, st.session_state.preferences["unit_system"])
else:
unit = 'g'
display_value = f"{value}{unit}"
st.metric(nutrient.title(), display_value)
# Display adjustments if any
if recs.get('adjustments'):
st.subheader("Suggested Adjustments")
for adj in recs['adjustments']:
severity_color = {
'low': 'blue',
'medium': 'orange',
'high': 'red'
}[adj.severity]
st.markdown(f":{severity_color}[{adj.suggestion}]")
if 'explanation' in recs:
st.info(recs['explanation'])
def show_progress_tab():
"""Display progress charts and analysis"""
st.header("Progress Analysis")
if len(st.session_state.tracker.logs) == 0:
st.info("Add some logs to see progress charts!")
return
unit_system = st.session_state.preferences["unit_system"]
summary = st.session_state.tracker.get_progress_summary()
# Progress charts
metrics = st.multiselect(
"Select metrics to display",
['weight', 'body_fat', 'calories', 'protein', 'carbs', 'fat'],
default=['weight'],
key="metric_select"
)
df = st.session_state.tracker.data_manager.to_dataframe()
if not df.empty:
# Convert weight values if using imperial
if unit_system == 'imperial' and 'weight' in metrics:
display_df = df.copy()
display_df['weight'] = display_df['weight'].apply(kg_to_lbs)
st.plotly_chart(create_metrics_chart(display_df, metrics), use_container_width=True)
else:
st.plotly_chart(create_metrics_chart(df, metrics), use_container_width=True)
# Summary stats with unit conversion
col1, col2 = st.columns(2)
with col1:
st.subheader("Overall Changes")
if 'overall_changes' in summary and summary['overall_changes']:
for metric, value in summary['overall_changes'].items():
if value is not None:
if 'weight' in metric.lower() and unit_system == 'imperial':
display_value = kg_to_lbs(value)
unit = "lbs"
else:
display_value = value
unit = "kg" if 'weight' in metric.lower() else "%"
st.metric(
metric.replace('_', ' ').title(),
f"{display_value:.1f} {unit}"
)
else:
st.info("Need more data to calculate changes")
with col2:
st.subheader("Current Estimates")
tdee = summary.get('current_tdee')
if tdee:
st.metric("Estimated TDEE", f"{tdee:.0f} kcal")
else:
st.info("Need more data to estimate TDEE (at least 7 days)")
adherence = summary.get('adherence', {}).get('logging_adherence')
if adherence is not None:
st.metric("Adherence Rate", f"{adherence:.1%}")
else:
st.info("Need more data to calculate adherence")
# Suggestions
if summary.get('suggestions'):
st.subheader("Suggestions")
for suggestion in summary['suggestions']:
st.info(suggestion, icon="ℹ️")
def show_data_tab():
"""Display data management options"""
st.header("Data Management")
tab1, tab2 = st.tabs(["Export Data", "Import Data"])
with tab1:
export_format = st.selectbox(
"Export Format",
["CSV", "Excel", "JSON"],
key="export_format"
)
if st.button("Export Data", key="btn_export"):
try:
filename = f"macro_tracker_export_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
result = st.session_state.tracker.export_data(
format=export_format.lower(),
filename=filename
)
st.success(result)
except Exception as e:
st.error(f"Export failed: {str(e)}")
with tab2:
uploaded_file = st.file_uploader(
"Choose a file to import",
type=['csv', 'xlsx', 'json'],
key="file_uploader"
)
col1, col2 = st.columns(2)
with col1:
source = st.selectbox(
"Data Source",
["General", "MyFitnessPal", "Custom"],
key="import_source"
)
with col2:
import_units = st.selectbox(
"Input Units",
["metric", "imperial"],
help="Select the unit system used in your import file",
key="import_units"
)
if uploaded_file and st.button("Import Data", key="btn_import"):
try:
st.session_state.tracker.load_data(
uploaded_file,
source=source.lower(),
units=import_units
)
st.success("Data imported successfully!")
except Exception as e:
st.error(f"Import failed: {str(e)}")
def main():
st.set_page_config(
page_title="Macro Tracker",
page_icon="🎯",
layout="wide"
)
st.title("Macro Tracker")
initialize_session_state()
# Call show_settings_sidebar once and store the result
diet_mode, macro_preset = show_settings_sidebar()
# Main content area
tab1, tab2, tab3, tab4 = st.tabs([
"Daily Log", "Recommendations", "Progress", "Data Management"
])
with tab1:
show_daily_log_tab()
with tab2:
show_recommendations_tab(diet_mode, macro_preset)
with tab3:
show_progress_tab()
with tab4:
show_data_tab()
if __name__ == "__main__":
main()