-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTriCutObject.py
256 lines (200 loc) · 10.2 KB
/
TriCutObject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from util import *
# 2 - n - 3
# | \ / |
# w 0 e
# | / \ |
# 1 - s - 4
initCellVerts = np.vstack([[0, 0], quadVerts])
edgeCenters = np.vstack([np.eye(2), -np.eye(2), initCellVerts[1:] * 0.5])
edgeNormals = np.vstack([np.eye(2), -np.eye(2), initCellVerts[1:]])
# e: +x n: +y w: -x s: -y
triIdxs = [[0, 3, 4], [0, 2, 3], [0, 1, 2], [0, 4, 1]]
ecIdxs = [[6, 0, 7], [5, 1, 6], [4, 2, 5], [7, 3, 4]]
enIdxs = [[5, 0, 4], [4, 1, 7], [7, 2, 6], [6, 3, 5]]
class TriCutObject:
initCellVerts = initCellVerts
def __init__(self, site, di, scale, M):
self.edges = list(map(np.int32, [[0, 1], [1, 2], [2, 0]]))
self.polys = {1: [0, 1, 2]}
self.edgePolyIdxs = [np.int64([1, -1]) for e in self.edges]
vertScales = [[1, 1], [scale[(di + 1) % 4], scale[di]], [scale[di - 1], scale[di]]] if di % 2 else [[1, 1], [scale[di], scale[di + 1]], [scale[di], scale[(di - 1) % 4]]]
eCenterScales = [[scale[(di + 1) % 4], scale[di]], [1, scale[di]], [scale[(di - 1) % 4], scale[di]]] if di % 2 else [[scale[di], scale[(di + 1) % 4]], [scale[di], 1], [scale[di], scale[(di - 1) % 4]]]
eNormalScales = [[scale[di], scale[(di + 1) % 4]], [1, 1], [scale[di], scale[(di - 1) % 4]]] if di % 2 else [[scale[(di + 1) % 4], scale[di]], [1, 1], [scale[(di - 1) % 4], scale[di]]]
self.vertices = site + np.dot(self.initCellVerts[triIdxs[di]] * vertScales, M.T)
eCenters = site + np.dot(edgeCenters[ecIdxs[di]] * eCenterScales, M.T)
eNormals = normVec(np.dot(edgeNormals[enIdxs[di]] * eNormalScales, M.T))
self.edgesPlanes = {-(i + 4): [eCenters[i], eNormals[i]] for i in range(3)}
self.edgePlaneKeys = [-4, -5, -6]
def clipWithPlane(self, o, n, cutPlaneKey):
# in 2D not so crucial for performance
self.cutWithPlane(o, n, cutPlaneKey)
def cutWithPlane(self, o, n, cutPlaneKey):
dots = np.dot(self.vertices - o, n)
vMasks = simpleSign(dots, eps)
onLine = np.abs(dots) < eps
if np.all(vMasks > 0) or np.all(vMasks < 0):
return
edgeMasks = [vMasks[edge] for edge in self.edges]
edgeHashs = cantorPiV(np.int32(self.edges))
newPolys = {}
cutPolyKeys = set()
for polyKey in self.polys.keys():
signs = set()
for eIdx in self.polys[polyKey]:
signs.update(edgeMasks[eIdx])
if 1 in signs and -1 in signs:
cutPolyKeys.add(polyKey)
newPolys[polyKey * 2] = []
newPolys[polyKey * 2 + 1] = []
else:
newPolys[polyKey] = self.polys[polyKey]
cutEdgesMasks = {}
oldEdgesMasks = {}
newEdgePolyIdxs = []
for edgeMask, edgeHash, epi in zip(edgeMasks, edgeHashs, self.edgePolyIdxs):
if all(edgeMask <= 0):
oldEdgesMasks[edgeHash] = edgeMask
if epi[0] in cutPolyKeys and epi[1] in cutPolyKeys:
newEdgePolyIdxs.append(epi * 2)
elif epi[0] in cutPolyKeys:
newEdgePolyIdxs.append(epi * [2, 1])
elif epi[1] in cutPolyKeys:
newEdgePolyIdxs.append(epi * [1, 2])
else:
newEdgePolyIdxs.append(epi)
elif all(edgeMask >= 0):
oldEdgesMasks[edgeHash] = edgeMask
if epi[0] in cutPolyKeys and epi[1] in cutPolyKeys:
newEdgePolyIdxs.append(epi * 2 + 1)
elif epi[0] in cutPolyKeys:
newEdgePolyIdxs.append(epi * [2, 1] + [1, 0])
elif epi[1] in cutPolyKeys:
newEdgePolyIdxs.append(epi * [1, 2] + [0, 1])
else:
newEdgePolyIdxs.append(epi)
else:
newEdgePolyIdxs.append(epi)
cutEdgesMasks[edgeHash] = edgeMask
numVerts = len(self.vertices)
cutPlaneKeys = []
edgesReplaced = {}
edgeUpdates = []
for cutPolyKey in cutPolyKeys:
newEdgeInner = []
eIdxs = self.polys[cutPolyKey]
for eIdx in eIdxs:
edge = self.edges[eIdx]
if vMasks[edge[0]] == 0 and edge[0] not in newEdgeInner:
newEdgeInner.append(edge[0])
if vMasks[edge[1]] == 0 and edge[1] not in newEdgeInner:
newEdgeInner.append(edge[1])
edgeHash = edgeHashs[eIdx]
if edgeHash in cutEdgesMasks.keys():
cutEdgeMask = cutEdgesMasks[edgeHash]
if edgeHash in edgesReplaced.keys():
newVertIdx, eJdx = edgesReplaced[edgeHash]
else:
newVertIdx = numVerts
numVerts += 1
cutPlaneKeys.append(self.edgePlaneKeys[eIdx])
eJdx = len(self.edges)
edgesReplaced[edgeHash] = [newVertIdx, eJdx]
# self.edges[eIdx][1] = newVertIdx # first half
edgeUpdates.append([eIdx, newVertIdx]) # update later
self.edges.append(np.int32([newVertIdx, edge[1]])) # second half
# self.edgePlaneKeys[eIdx] # first half unchanged
self.edgePlaneKeys.append(self.edgePlaneKeys[eIdx]) # second half
if cutEdgeMask[0] > 0 and cutEdgeMask[1] < 0: # 1 -> 0
newEdgePolyIdxs.append(newEdgePolyIdxs[eIdx] * 2)
newEdgePolyIdxs[eIdx] *= 2
newEdgePolyIdxs[eIdx] += 1
if cutEdgeMask[1] > 0 and cutEdgeMask[0] < 0: # 0 -> 1
newEdgePolyIdxs.append(newEdgePolyIdxs[eIdx] * 2 + 1)
newEdgePolyIdxs[eIdx] *= 2
newEdgeInner.append(newVertIdx) # new inner
for nepi in newEdgePolyIdxs[eIdx]:
if nepi > 0 and eIdx not in newPolys[nepi]:
newPolys[nepi].append(eIdx)
for nepi in newEdgePolyIdxs[eJdx]:
if nepi > 0 and eJdx not in newPolys[nepi]:
newPolys[nepi].append(eJdx)
else:
edgeMask = oldEdgesMasks[edgeHash]
if np.all(edgeMask <= 0):
newPolys[cutPolyKey * 2].append(eIdx)
elif np.all(edgeMask >= 0):
newPolys[cutPolyKey * 2 + 1].append(eIdx)
assert len(newEdgeInner) == 2, 'oh oh, this should not happen'
newPolys[cutPolyKey * 2].append(len(self.edges))
newPolys[cutPolyKey * 2 + 1].append(len(self.edges))
newEdgePolyIdxs.append(np.int64([cutPolyKey * 2, cutPolyKey * 2 + 1]))
self.edges.append(np.int32(newEdgeInner))
self.edgePlaneKeys.append(cutPlaneKey)
self.edgesPlanes[cutPlaneKey] = [o, n]
for eIdx, vIdx in edgeUpdates:
self.edges[eIdx][1] = vIdx
if len(cutPlaneKeys):
ePs = [self.edgesPlanes[cpKey] for cpKey in cutPlaneKeys]
newVerts = intersectLinesLine2D(np.float32(ePs), o, n)
self.vertices = np.vstack([self.vertices, newVerts])
self.polys = newPolys
self.edgePolyIdxs = newEdgePolyIdxs
def computePolysCentroidsAndWeights(self):
self.polysCentroids = np.empty((len(self.polys), 2), np.float32)
self.polysAreas = np.empty(len(self.polys), np.float32)
for pIdx, pk in enumerate(self.polys.keys()):
es = [self.edges[eIdx].tolist() for eIdx in self.polys[pk]]
self.polysCentroids[pIdx], self.polysAreas[pIdx] = computePolygonCentroid2D(self.vertices[edgesToPath(es)], True)
def getPolysCentroids(self, ioClipped=True):
if not hasattr(self, 'polysCentroids'):
self.computePolysCentroidsAndWeights()
return self.polysCentroids[self.cellPolyIdxs] if ioClipped and hasattr(self, 'cellPolyIdxs') else self.polysCentroids
def getPolysWeights(self, ioClipped=True):
if not hasattr(self, 'polysAreas'):
self.computePolysCentroidsAndWeights()
return self.polysAreas[self.cellPolyIdxs] if ioClipped and hasattr(self, 'cellPolyIdxs') else self.polysAreas
def getHullVerts(self):
es = {}
for e, ePolyIdx, ePlaneKey in zip(self.edges, self.edgePolyIdxs, self.edgePlaneKeys):
if simpleSign(ePolyIdx).sum() == 1:
if ePlaneKey in es.keys():
es[ePlaneKey].append(e)
else:
es[ePlaneKey] = [e]
if not len(es): # cell in init state
self.hullPlaneKeys = [-6]
return [self.vertices[self.edges[-1]]]
segs = []
for epk in es.keys():
ces = findConnectedEdgeSegments(es[epk])
for ce in ces:
ep = edgesToPath(ce)
segs.append([ep[0], ep[-1]])
self.hullPlaneKeys = list(es.keys())
return [self.vertices[seg] for seg in edgesToPaths(segs)]
def setPolyIoLabels(self, msk):
if not hasattr(self, 'polysIoLabel'):
self.polysIoLabel = {pk: True for pk in self.polys.keys()}
self.edgePolyIdxs = np.int64(self.edgePolyIdxs)
self.cellPolyIdxs = []
for pIdx, (pk, io) in enumerate(zip(self.polys.keys(), msk)):
self.polysIoLabel[pk] = io
if io:
self.cellPolyIdxs.append(pIdx)
else:
self.edgePolyIdxs[self.edgePolyIdxs == pk] *= 0
def plot(self):
if mplMissing:
warnings.warn('matplotlib missing.')
return
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
for pKey in self.polys.keys():
face = edgesToPath([self.edges[eIdx].tolist() for eIdx in self.polys[pKey]])
cVerts = self.vertices[face]
cVerts = cVerts - (cVerts - cVerts.mean(axis=0)) * 0.05
ax.fill(cVerts[:, 0], cVerts[:, 1], fill=self.polysIoLabel[pKey] if hasattr(self, 'polysIoLabel') else False)
for vIdx, vt in enumerate(self.vertices):
ax.text(vt[0], vt[1], str(vIdx))
ax.set_aspect('equal', 'box')
plt.show()