-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathspotify_background_color.py
165 lines (126 loc) · 5.36 KB
/
spotify_background_color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import scipy.misc as sp
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from PIL import Image
class SpotifyBackgroundColor():
"""Analyzes an image and finds a fitting background color.
Main use is to analyze album artwork and calculate the background
color Spotify sets when playing on a Chromecast.
Attributes:
img (ndarray): The image to analyze.
"""
def __init__(self, img, format='RGB', image_processing_size=None):
"""Prepare the image for analyzation.
Args:
img (ndarray): The image to analyze.
format (str): Format of `img`, either RGB or BGR.
image_processing_size: (tuple): Process image or not.
tuple as (width, height) of the output image (must be integers)
Raises:
ValueError: If `format` is not RGB or BGR.
"""
if format == 'RGB':
self.img = img
elif format == 'BGR':
self.img = self.img[..., ::-1]
else:
raise ValueError('Invalid format. Only RGB and BGR image '\
'format supported.')
if image_processing_size:
img = Image.fromarray(self.img)
self.img = np.asarray(img.resize(image_processing_size, Image.BILINEAR))
def best_color(self, k=8, color_tol=10, plot=False):
"""Returns a suitable background color for the given image.
Uses k-means clustering to find `k` distinct colors in
the image. A colorfulness index is then calculated for each
of these colors. The color with the highest colorfulness
index is returned if it is greater than or equal to the
colorfulness tolerance `color_tol`. If no color is colorful
enough, a gray color will be returned. Returns more or less
the same color as Spotify in 80 % of the cases.
Args:
k (int): Number of clusters to form.
color_tol (float): Tolerance for a colorful color.
Colorfulness is defined as described by Hasler and
Süsstrunk (2003) in https://infoscience.epfl.ch/
record/33994/files/HaslerS03.pdf.
plot (bool): Plot the original image, k-means result and
calculated background color. Only used for testing.
Returns:
tuple: (R, G, B). The calculated background color.
"""
artwork = self.img.copy()
self.img = self.img.reshape((self.img.shape[0]*self.img.shape[1], 3))
clt = KMeans(n_clusters=k)
clt.fit(self.img)
hist = self.find_histogram(clt)
centroids = clt.cluster_centers_
colorfulness = [self.colorfulness(color[0], color[1], color[2]) for color in centroids]
max_colorful = np.max(colorfulness)
if max_colorful < color_tol:
# If not colorful, set to gray
best_color = [230, 230, 230]
else:
# Pick the most colorful color
best_color = centroids[np.argmax(colorfulness)]
if plot:
bar = np.zeros((50, 300, 3), dtype='uint8')
square = np.zeros((50, 50, 3), dtype='uint8')
start_x = 0
for (percent, color) in zip(hist, centroids):
# Plot the relative percentage of each cluster
end_x = start_x + (percent * 300)
bar[:, int(start_x):int(end_x)] = color
start_x = end_x
square[:] = best_color
plt.figure()
plt.subplot(1, 3, 1)
plt.title('Artwork')
plt.axis('off')
plt.imshow(artwork)
plt.subplot(1, 3, 2)
plt.title('k = {}'.format(k))
plt.axis('off')
plt.imshow(bar)
plt.subplot(1, 3, 3)
plt.title('Color {}'.format(square[0][0]))
plt.axis('off')
plt.imshow(square)
plt.tight_layout()
plt.plot()
plt.show(block=False)
return best_color[0], best_color[1], best_color[2]
def find_histogram(self, clt):
"""Create a histogram of image.
Args:
clt (array_like): Input data.
Returns:
array: The values of the histogram.
"""
num_labels = np.arange(0, len(np.unique(clt.labels_)) + 1)
hist, _ = np.histogram(clt.labels_, bins=num_labels)
hist = hist.astype('float')
hist /= hist.sum()
return hist
def colorfulness(self, r, g, b):
"""Returns a colorfulness index of given RGB combination.
Implementation of the colorfulness metric proposed by
Hasler and Süsstrunk (2003) in https://infoscience.epfl.ch/
record/33994/files/HaslerS03.pdf.
Args:
r (int): Red component.
g (int): Green component.
b (int): Blue component.
Returns:
float: Colorfulness metric.
"""
rg = np.absolute(r - g)
yb = np.absolute(0.5 * (r + g) - b)
# Compute the mean and standard deviation of both `rg` and `yb`.
rg_mean, rg_std = (np.mean(rg), np.std(rg))
yb_mean, yb_std = (np.mean(yb), np.std(yb))
# Combine the mean and standard deviations.
std_root = np.sqrt((rg_std ** 2) + (yb_std ** 2))
mean_root = np.sqrt((rg_mean ** 2) + (yb_mean ** 2))
return std_root + (0.3 * mean_root)