-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathc3d_primitive.py
419 lines (357 loc) · 17.5 KB
/
c3d_primitive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
'''
The code has been derived from https://github.com/jfzhang95/pytorch-video-recognition
MIT License
Copyright (c) 2018 Pyjcsx
Copyright (c) 2021 DATA Lab at Texas A&M University
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import os
import warnings
import cv2
import numpy as np
import torch
import torch.nn as nn
import typing
import uuid
from urllib.parse import urlparse
from d3m import container, utils as d3m_utils
from d3m.metadata import base as metadata_base, hyperparams
from d3m.primitive_interfaces import base
from d3m.primitive_interfaces.base import CallResult
from d3m.primitive_interfaces.featurization import FeaturizationTransformerPrimitiveBase
from torch.autograd import Variable
from torch.nn.init import normal, constant
from torch.hub import load_state_dict_from_url
from torchvision import transforms
from PIL import Image
import torchvision.models as models
from autovideo.base.supervised_base import SupervisedParamsBase, SupervisedHyperparamsBase, SupervisedPrimitiveBase
from autovideo.utils import wrap_predictions, construct_primitive_metadata, compute_accuracy, make_predictions, get_video_loader, adjust_learning_rate, logger
pretrained_url = "https://drive.google.com/u/1/uc?export=download&confirm=Z7Yt&id=19NWziHWh1LgCcHU34geoKwYezAogv9fX"
pretrained_path = "weights/c3d-pretrained.pth"
__all__ = ('C3DPrimitive',)
Inputs = container.DataFrame
Outputs = container.DataFrame
class Params(SupervisedParamsBase):
pass
class Hyperparams(SupervisedHyperparamsBase):
num_workers = hyperparams.Hyperparameter[int](
semantic_types=['https://metadata.datadrivendiscovery.org/types/ResourcesUseParameter'],
default=2,#4
description='The number of subprocesses to use for data loading. 0 means that the data will be loaded in the '
'main process.'
)
batch_size = hyperparams.Hyperparameter[int](
default=2,
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="The batch size of training"
)
epochs = hyperparams.Hyperparameter[int](
default=50,
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="How many epochs to be trained"
)
learning_rate = hyperparams.Hyperparameter[float](
default=0.01, #1e-3
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="The learning rate of the optimizer"
)
momentum = hyperparams.Hyperparameter[float](
default=0.9,
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="The momentum of the optimizer"
)
weight_decay = hyperparams.Hyperparameter[float](
default=1e-7,
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="The learning rate of the optimizer"
)
num_segments = hyperparams.Hyperparameter[int](
default=16,
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="The number of segments of frames in each video per training loop"
)
valid_ratio = hyperparams.Hyperparameter[float](
default=0.05,
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="The ratio of validation data"
)
modality = hyperparams.Enumeration(
values=['RGB', 'RGBDiff', 'Flow'],
default='RGB',
semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'],
description="The modality of input data to be used for the model",
)
num_steps_per_update = hyperparams.Hyperparameter[int](
default=4,
semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'],
description="The num_steps to update weights"
)
class C3DPrimitive(SupervisedPrimitiveBase[Inputs, Outputs, Params, Hyperparams]):
"""
Implementation of C3D pre-trained on UCF101 and HMDB51 ??
"""
metadata = construct_primitive_metadata('recognition', 'c3d')
def get_params(self) -> Params:
return super().get_params()
def set_params(self, *, params: Params) -> None:
super().set_params(params=params)
def _init_model(self, pretrained):
"""
Initialize the model. Loading the weights if pretrained is True
"""
print("Loading C3D")
self.model = C3D(51, pretrained)
logger.info("Loaded C3D Model")
self.model = self.model.to(self.device)
def _fit(self, *, timeout: float = None, iterations: int = None):
"""
Training
"""
#Randomly split 5% data for validation
frame_list = self._frame_list
idx = np.array([i for i in range(len(frame_list))])
np.random.shuffle(idx)
train_idx, valid_idx = idx[:int(len(idx)*(1-self.hyperparams['valid_ratio']))], idx[int(len(idx)*(1-self.hyperparams['valid_ratio'])):]
train_list, valid_list = frame_list[train_idx], frame_list[valid_idx]
# Get optimizer and loss
# optimizer = torch.optim.SGD(self.model.get_optim_policies(self.hyperparams['learning_rate']),
# self.hyperparams['learning_rate'],
# momentum=self.hyperparams['momentum'],
# weight_decay=self.hyperparams['weight_decay'])
# criterion = nn.CrossEntropyLoss()
# #Scheduler divides the lr by 10 every 10 epochs
# # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
optimizer = torch.optim.Adam(self.model.parameters(),
lr=self.hyperparams['learning_rate'],
betas=(0.5, 0.999),
weight_decay=self.hyperparams['weight_decay'])
criterion = torch.nn.CrossEntropyLoss()
#Create Dataloaders
train_loader = get_video_loader(video_list=train_list,
crop_size=self.model.crop_size,
scale_size=self.model.scale_size,
input_mean=self.model.input_mean,
input_std=self.model.input_std,
train_transformation=self._transformation,
train_augmentation=self._augmentation,
modality=self.hyperparams['modality'],
num_segments=self.hyperparams['num_segments'],
batch_size=self.hyperparams['batch_size'],
num_workers=self.hyperparams['num_workers'],
shuffle=True,
input_format="NCTHW")
valid_loader = get_video_loader(video_list=valid_list,
crop_size=self.model.crop_size,
scale_size=self.model.scale_size,
input_mean=self.model.input_mean,
input_std=self.model.input_std,
modality=self.hyperparams['modality'],
num_segments=self.hyperparams['num_segments'],
batch_size=self.hyperparams['batch_size'],
num_workers=self.hyperparams['num_workers'],
shuffle=False,
input_format="NCTHW")
best_valid_acc = 0.0
tmp_file_path = os.path.join(self.tmp_dir, str(uuid.uuid4()))
total_steps = self.hyperparams['epochs'] * len(train_loader)
num_steps_per_update = self.hyperparams['num_steps_per_update']
s1, s2 = 0.125 / num_steps_per_update, 0.375 / num_steps_per_update
lr_steps = [int(total_steps * s1), int(total_steps * s2)] #Steps after which lr decays by a factor of 10
lr_sched = torch.optim.lr_scheduler.MultiStepLR(optimizer, lr_steps)
#Training Loop
for epoch in range(self.hyperparams['epochs']):
#Iterate over a batch of videos with num_segments in each video
num_iter = 0
self.model.train()
for i, (inputs,target) in enumerate(train_loader):
num_iter += 1
inputs, target = inputs.to(self.device), target.to(self.device)
#inputs = Variable(inputs, requires_grad=True).to(self.device)
#target = target.to(self.device)
output = self.model(inputs)
loss = criterion(output, target)
#optimizer.zero_grad()
loss /= num_steps_per_update
loss.backward()
#optimizer.step()
if num_iter == num_steps_per_update:
num_iter = 0
optimizer.step()
optimizer.zero_grad()
lr_sched.step()
# Evaluation
self.model.eval()
train_acc = compute_accuracy(train_loader, self.model, self.device)
valid_acc = compute_accuracy(valid_loader, self.model, self.device)
logger.info('Epoch {}, training accuracy {:5.4f}, validation accuracy {:5.4f}'.format(epoch, train_acc*100, valid_acc*100))
#Save best model
if valid_acc >= best_valid_acc:
best_valid_acc = valid_acc
torch.save(self.model.state_dict(), tmp_file_path)
# Load the best model with the highest accuracy on validation data
self.model.load_state_dict(torch.load(tmp_file_path))
self.model.eval()
os.remove(tmp_file_path)
def produce(self, *, inputs: container.DataFrame, timeout: float=None, iterations: int=None) -> CallResult[container.DataFrame]:
"""
make the predictions
"""
#Create DataLoader
test_list = inputs.to_numpy()
test_loader = get_video_loader(video_list=test_list,
crop_size=self.model.crop_size,
scale_size=self.model.scale_size,
input_mean=self.model.input_mean,
input_std=self.model.input_std,
modality=self.hyperparams['modality'],
num_segments=self.hyperparams['num_segments'],
batch_size=self.hyperparams['batch_size'],
num_workers=self.hyperparams['num_workers'],
shuffle=False,
test_mode=True,
input_format="NCTHW")
# Make predictions
self.model.eval()
preds = make_predictions(test_loader, self.model, self.device)
outputs = wrap_predictions(inputs, preds, self.__class__.metadata.query()['name'])
return CallResult(outputs)
class C3D(nn.Module):
"""
The C3D network.
"""
def __init__(self, num_classes, pretrained=False):
self._prepare_base_model()
super(C3D, self).__init__()
self.conv1 = nn.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.conv2 = nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv3a = nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv3b = nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv4a = nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv4b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv5a = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv5b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1))
self.fc6 = nn.Linear(8192, 4096)
self.fc7 = nn.Linear(4096, 4096)
self.fc8 = nn.Linear(4096, num_classes)
self.dropout = nn.Dropout(p=0.5)
self.relu = nn.ReLU()
self.__init_weight()
if pretrained:
self.__load_pretrained_weights()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool1(x)
x = self.relu(self.conv2(x))
x = self.pool2(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool3(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
x = self.pool4(x)
x = self.relu(self.conv5a(x))
x = self.relu(self.conv5b(x))
x = self.pool5(x)
x = x.view(-1, 8192)
x = self.relu(self.fc6(x))
x = self.dropout(x)
x = self.relu(self.fc7(x))
x = self.dropout(x)
logits = self.fc8(x)
return logits
def __load_pretrained_weights(self):
"""Initialiaze network."""
corresp_name = {
# Conv1
"features.0.weight": "conv1.weight",
"features.0.bias": "conv1.bias",
# Conv2
"features.3.weight": "conv2.weight",
"features.3.bias": "conv2.bias",
# Conv3a
"features.6.weight": "conv3a.weight",
"features.6.bias": "conv3a.bias",
# Conv3b
"features.8.weight": "conv3b.weight",
"features.8.bias": "conv3b.bias",
# Conv4a
"features.11.weight": "conv4a.weight",
"features.11.bias": "conv4a.bias",
# Conv4b
"features.13.weight": "conv4b.weight",
"features.13.bias": "conv4b.bias",
# Conv5a
"features.16.weight": "conv5a.weight",
"features.16.bias": "conv5a.bias",
# Conv5b
"features.18.weight": "conv5b.weight",
"features.18.bias": "conv5b.bias",
# fc6
"classifier.0.weight": "fc6.weight",
"classifier.0.bias": "fc6.bias",
# fc7
"classifier.3.weight": "fc7.weight",
"classifier.3.bias": "fc7.bias",
}
p_dict = torch.load(pretrained_path)
#p_dict = load_state_dict_from_url(pretrained_url)
s_dict = self.state_dict()
for name in p_dict:
if name not in corresp_name:
continue
s_dict[corresp_name[name]] = p_dict[name]
self.load_state_dict(s_dict)
def __init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv3d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def get_optim_policies(self, lr):
return [{'params': get_1x_lr_params(self), 'lr': lr},
{'params': get_10x_lr_params(self), 'lr': lr * 10}]
def _prepare_base_model(self):
self.crop_size = 112
self.scale_size = 256
self.input_mean = [0.43216, 0.394666, 0.37645]
self.input_std = [0.22803, 0.22145, 0.216989]
def get_1x_lr_params(model):
"""
This generator returns all the parameters for conv and two fc layers of the net.
"""
b = [model.conv1, model.conv2, model.conv3a, model.conv3b, model.conv4a, model.conv4b,
model.conv5a, model.conv5b, model.fc6, model.fc7]
for i in range(len(b)):
for k in b[i].parameters():
if k.requires_grad:
yield k
def get_10x_lr_params(model):
"""
This generator returns all the parameters for the last fc layer of the net.
"""
b = [model.fc8]
for j in range(len(b)):
for k in b[j].parameters():
if k.requires_grad:
yield k