-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_array_object.py
525 lines (457 loc) · 21.7 KB
/
test_array_object.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import operator
from builtins import all as all_
from numpy.testing import assert_raises, suppress_warnings
import numpy as np
import pytest
from .. import ones, asarray, result_type, all, equal
from .._array_object import Array, CPU_DEVICE, Device
from .._dtypes import (
_all_dtypes,
_boolean_dtypes,
_real_floating_dtypes,
_floating_dtypes,
_complex_floating_dtypes,
_integer_dtypes,
_integer_or_boolean_dtypes,
_real_numeric_dtypes,
_numeric_dtypes,
int8,
int16,
int32,
int64,
uint64,
float64,
bool as bool_,
)
from .._flags import set_array_api_strict_flags
import array_api_strict
def test_validate_index():
# The indexing tests in the official array API test suite test that the
# array object correctly handles the subset of indices that are required
# by the spec. But the NumPy array API implementation specifically
# disallows any index not required by the spec, via Array._validate_index.
# This test focuses on testing that non-valid indices are correctly
# rejected. See
# https://data-apis.org/array-api/latest/API_specification/indexing.html
# and the docstring of Array._validate_index for the exact indexing
# behavior that should be allowed. This does not test indices that are
# already invalid in NumPy itself because Array will generally just pass
# such indices directly to the underlying np.ndarray.
a = ones((3, 4))
# Out of bounds slices are not allowed
assert_raises(IndexError, lambda: a[:4])
assert_raises(IndexError, lambda: a[:-4])
assert_raises(IndexError, lambda: a[:3:-1])
assert_raises(IndexError, lambda: a[:-5:-1])
assert_raises(IndexError, lambda: a[4:])
assert_raises(IndexError, lambda: a[-4:])
assert_raises(IndexError, lambda: a[4::-1])
assert_raises(IndexError, lambda: a[-4::-1])
assert_raises(IndexError, lambda: a[...,:5])
assert_raises(IndexError, lambda: a[...,:-5])
assert_raises(IndexError, lambda: a[...,:5:-1])
assert_raises(IndexError, lambda: a[...,:-6:-1])
assert_raises(IndexError, lambda: a[...,5:])
assert_raises(IndexError, lambda: a[...,-5:])
assert_raises(IndexError, lambda: a[...,5::-1])
assert_raises(IndexError, lambda: a[...,-5::-1])
# Boolean indices cannot be part of a larger tuple index
assert_raises(IndexError, lambda: a[a[:,0]==1,0])
assert_raises(IndexError, lambda: a[a[:,0]==1,...])
assert_raises(IndexError, lambda: a[..., a[0]==1])
assert_raises(IndexError, lambda: a[[True, True, True]])
assert_raises(IndexError, lambda: a[(True, True, True),])
# Integer array indices are not allowed (except for 0-D)
idx = asarray([[0, 1]])
assert_raises(IndexError, lambda: a[idx])
assert_raises(IndexError, lambda: a[idx,])
assert_raises(IndexError, lambda: a[[0, 1]])
assert_raises(IndexError, lambda: a[(0, 1), (0, 1)])
assert_raises(IndexError, lambda: a[[0, 1]])
# NumPy arrays are not allowed
assert_raises(IndexError, lambda: a[np.ones((3, 4), dtype=bool)])
assert_raises(IndexError, lambda: a[np.array([[0, 1]])])
# Multiaxis indices must contain exactly as many indices as dimensions
assert_raises(IndexError, lambda: a[()])
assert_raises(IndexError, lambda: a[0,])
assert_raises(IndexError, lambda: a[0])
assert_raises(IndexError, lambda: a[:])
def test_promoted_scalar_inherits_device():
device1 = Device("device1")
x = asarray([1., 2, 3], device=device1)
y = x ** 2
assert y.device == device1
def test_operators():
# For every operator, we test that it works for the required type
# combinations and raises TypeError otherwise
binary_op_dtypes = {
"__add__": "numeric",
"__and__": "integer_or_boolean",
"__eq__": "all",
"__floordiv__": "real numeric",
"__ge__": "real numeric",
"__gt__": "real numeric",
"__le__": "real numeric",
"__lshift__": "integer",
"__lt__": "real numeric",
"__mod__": "real numeric",
"__mul__": "numeric",
"__ne__": "all",
"__or__": "integer_or_boolean",
"__pow__": "numeric",
"__rshift__": "integer",
"__sub__": "numeric",
"__truediv__": "floating",
"__xor__": "integer_or_boolean",
}
# Recompute each time because of in-place ops
def _array_vals():
for d in _integer_dtypes:
yield asarray(1, dtype=d)
for d in _boolean_dtypes:
yield asarray(False, dtype=d)
for d in _floating_dtypes:
yield asarray(1.0, dtype=d)
BIG_INT = int(1e30)
for op, dtypes in binary_op_dtypes.items():
ops = [op]
if op not in ["__eq__", "__ne__", "__le__", "__ge__", "__lt__", "__gt__"]:
rop = "__r" + op[2:]
iop = "__i" + op[2:]
ops += [rop, iop]
for s in [1, 1.0, 1j, BIG_INT, False]:
for _op in ops:
for a in _array_vals():
# Test array op scalar. From the spec, the following combinations
# are supported:
# - Python bool for a bool array dtype,
# - a Python int within the bounds of the given dtype for integer array dtypes,
# - a Python int or float for real floating-point array dtypes
# - a Python int, float, or complex for complex floating-point array dtypes
if ((dtypes == "all"
or dtypes == "numeric" and a.dtype in _numeric_dtypes
or dtypes == "real numeric" and a.dtype in _real_numeric_dtypes
or dtypes == "integer" and a.dtype in _integer_dtypes
or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes
or dtypes == "boolean" and a.dtype in _boolean_dtypes
or dtypes == "floating" and a.dtype in _floating_dtypes
)
# bool is a subtype of int, which is why we avoid
# isinstance here.
and (a.dtype in _boolean_dtypes and type(s) == bool
or a.dtype in _integer_dtypes and type(s) == int
or a.dtype in _real_floating_dtypes and type(s) in [float, int]
or a.dtype in _complex_floating_dtypes and type(s) in [complex, float, int]
)):
if a.dtype in _integer_dtypes and s == BIG_INT:
assert_raises(OverflowError, lambda: getattr(a, _op)(s))
else:
# Only test for no error
with suppress_warnings() as sup:
# ignore warnings from pow(BIG_INT)
sup.filter(RuntimeWarning,
"invalid value encountered in power")
getattr(a, _op)(s)
else:
assert_raises(TypeError, lambda: getattr(a, _op)(s))
# Test array op array.
for _op in ops:
for x in _array_vals():
for y in _array_vals():
# See the promotion table in NEP 47 or the array
# API spec page on type promotion. Mixed kind
# promotion is not defined.
if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
or x.dtype in _boolean_dtypes and y.dtype not in _boolean_dtypes
or y.dtype in _boolean_dtypes and x.dtype not in _boolean_dtypes
or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
):
assert_raises(TypeError, lambda: getattr(x, _op)(y))
# Ensure in-place operators only promote to the same dtype as the left operand.
elif (
_op.startswith("__i")
and result_type(x.dtype, y.dtype) != x.dtype
):
assert_raises(TypeError, lambda: getattr(x, _op)(y))
# Ensure only those dtypes that are required for every operator are allowed.
elif (dtypes == "all" and (x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
or x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
or (dtypes == "real numeric" and x.dtype in _real_numeric_dtypes and y.dtype in _real_numeric_dtypes)
or (dtypes == "numeric" and x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
or dtypes == "integer" and x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
or dtypes == "integer_or_boolean" and (x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
or x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes)
or dtypes == "boolean" and x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
or dtypes == "floating" and x.dtype in _floating_dtypes and y.dtype in _floating_dtypes
):
getattr(x, _op)(y)
else:
assert_raises(TypeError, lambda: getattr(x, _op)(y))
# finally, test that array op ndarray raises
# XXX: as long as there is __array__, __rop__s still
# return ndarrays
if not _op.startswith("__r"):
with assert_raises(TypeError):
getattr(x, _op)(y._array)
unary_op_dtypes = {
"__abs__": "numeric",
"__invert__": "integer_or_boolean",
"__neg__": "numeric",
"__pos__": "numeric",
}
for op, dtypes in unary_op_dtypes.items():
for a in _array_vals():
if (
dtypes == "numeric"
and a.dtype in _numeric_dtypes
or dtypes == "integer_or_boolean"
and a.dtype in _integer_or_boolean_dtypes
):
# Only test for no error
getattr(a, op)()
else:
assert_raises(TypeError, lambda: getattr(a, op)())
# Finally, matmul() must be tested separately, because it works a bit
# different from the other operations.
def _matmul_array_vals():
yield from _array_vals()
for d in _all_dtypes:
yield ones((3, 4), dtype=d)
yield ones((4, 2), dtype=d)
yield ones((4, 4), dtype=d)
# Scalars always error
for _op in ["__matmul__", "__rmatmul__", "__imatmul__"]:
for s in [1, 1.0, False]:
for a in _matmul_array_vals():
if (type(s) in [float, int] and a.dtype in _floating_dtypes
or type(s) == int and a.dtype in _integer_dtypes):
# Type promotion is valid, but @ is not allowed on 0-D
# inputs, so the error is a ValueError
assert_raises(ValueError, lambda: getattr(a, _op)(s))
else:
assert_raises(TypeError, lambda: getattr(a, _op)(s))
for x in _matmul_array_vals():
for y in _matmul_array_vals():
if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
or x.dtype in _boolean_dtypes
or y.dtype in _boolean_dtypes
):
assert_raises(TypeError, lambda: x.__matmul__(y))
assert_raises(TypeError, lambda: y.__rmatmul__(x))
assert_raises(TypeError, lambda: x.__imatmul__(y))
elif x.shape == () or y.shape == () or x.shape[1] != y.shape[0]:
assert_raises(ValueError, lambda: x.__matmul__(y))
assert_raises(ValueError, lambda: y.__rmatmul__(x))
if result_type(x.dtype, y.dtype) != x.dtype:
assert_raises(TypeError, lambda: x.__imatmul__(y))
else:
assert_raises(ValueError, lambda: x.__imatmul__(y))
else:
x.__matmul__(y)
y.__rmatmul__(x)
if result_type(x.dtype, y.dtype) != x.dtype:
assert_raises(TypeError, lambda: x.__imatmul__(y))
elif y.shape[0] != y.shape[1]:
# This one fails because x @ y has a different shape from x
assert_raises(ValueError, lambda: x.__imatmul__(y))
else:
x.__imatmul__(y)
def test_python_scalar_construtors():
b = asarray(False)
i = asarray(0)
f = asarray(0.0)
c = asarray(0j)
assert bool(b) == False
assert int(i) == 0
assert float(f) == 0.0
assert operator.index(i) == 0
# bool/int/float/complex should only be allowed on 0-D arrays.
assert_raises(TypeError, lambda: bool(asarray([False])))
assert_raises(TypeError, lambda: int(asarray([0])))
assert_raises(TypeError, lambda: float(asarray([0.0])))
assert_raises(TypeError, lambda: complex(asarray([0j])))
assert_raises(TypeError, lambda: operator.index(asarray([0])))
# bool should work on all types of arrays
assert bool(b) is bool(i) is bool(f) is bool(c) is False
# int should fail on complex arrays
assert int(b) == int(i) == int(f) == 0
assert_raises(TypeError, lambda: int(c))
# float should fail on complex arrays
assert float(b) == float(i) == float(f) == 0.0
assert_raises(TypeError, lambda: float(c))
# complex should work on all types of arrays
assert complex(b) == complex(i) == complex(f) == complex(c) == 0j
# index should only work on integer arrays
assert operator.index(i) == 0
assert_raises(TypeError, lambda: operator.index(b))
assert_raises(TypeError, lambda: operator.index(f))
assert_raises(TypeError, lambda: operator.index(c))
def test_device_property():
a = ones((3, 4))
assert a.device == CPU_DEVICE
assert not isinstance(a.device, str)
assert all(equal(a.to_device(CPU_DEVICE), a))
assert_raises(ValueError, lambda: a.to_device('cpu'))
assert_raises(ValueError, lambda: a.to_device('gpu'))
assert all(equal(asarray(a, device=CPU_DEVICE), a))
assert_raises(ValueError, lambda: asarray(a, device='cpu'))
assert_raises(ValueError, lambda: asarray(a, device='gpu'))
def test_array_properties():
a = ones((1, 2, 3))
b = ones((2, 3))
assert_raises(ValueError, lambda: a.T)
assert isinstance(b.T, Array)
assert b.T.shape == (3, 2)
assert isinstance(a.mT, Array)
assert a.mT.shape == (1, 3, 2)
assert isinstance(b.mT, Array)
assert b.mT.shape == (3, 2)
def test_array_conversion():
# Check that arrays on the CPU device can be converted to NumPy
# but arrays on other devices can't. Note this is testing the logic in
# __array__, which is only used in asarray when converting lists of
# arrays.
a = ones((2, 3))
asarray([a])
for device in ("device1", "device2"):
a = ones((2, 3), device=array_api_strict.Device(device))
with pytest.raises(RuntimeError, match="Can not convert array"):
asarray([a])
def test__array__():
# __array__ should work for now
a = ones((2, 3))
np.array(a)
# Test the _allow_array private global flag for disabling it in the
# future.
from .. import _array_object
original_value = _array_object._allow_array
try:
_array_object._allow_array = False
a = ones((2, 3))
with pytest.raises(ValueError, match="Conversion from an array_api_strict array to a NumPy ndarray is not supported"):
np.array(a)
finally:
_array_object._allow_array = original_value
def test_allow_newaxis():
a = ones(5)
indexed_a = a[None, :]
assert indexed_a.shape == (1, 5)
def test_disallow_flat_indexing_with_newaxis():
a = ones((3, 3, 3))
with pytest.raises(IndexError):
a[None, 0, 0]
def test_disallow_mask_with_newaxis():
a = ones((3, 3, 3))
with pytest.raises(IndexError):
a[None, asarray(True)]
@pytest.mark.parametrize("shape", [(), (5,), (3, 3, 3)])
@pytest.mark.parametrize("index", ["string", False, True])
def test_error_on_invalid_index(shape, index):
a = ones(shape)
with pytest.raises(IndexError):
a[index]
def test_mask_0d_array_without_errors():
a = ones(())
a[asarray(True)]
@pytest.mark.parametrize(
"i", [slice(5), slice(5, 0), asarray(True), asarray([0, 1])]
)
def test_error_on_invalid_index_with_ellipsis(i):
a = ones((3, 3, 3))
with pytest.raises(IndexError):
a[..., i]
with pytest.raises(IndexError):
a[i, ...]
def test_array_keys_use_private_array():
"""
Indexing operations convert array keys before indexing the internal array
Fails when array_api array keys are not converted into NumPy-proper arrays
in __getitem__(). This is achieved by passing array_api arrays with 0-sized
dimensions, which NumPy-proper treats erroneously - not sure why!
TODO: Find and use appropriate __setitem__() case.
"""
a = ones((0, 0), dtype=bool_)
assert a[a].shape == (0,)
a = ones((0,), dtype=bool_)
key = ones((0, 0), dtype=bool_)
with pytest.raises(IndexError):
a[key]
def test_array_namespace():
a = ones((3, 3))
assert a.__array_namespace__() == array_api_strict
assert array_api_strict.__array_api_version__ == "2023.12"
assert a.__array_namespace__(api_version=None) is array_api_strict
assert array_api_strict.__array_api_version__ == "2023.12"
assert a.__array_namespace__(api_version="2022.12") is array_api_strict
assert array_api_strict.__array_api_version__ == "2022.12"
assert a.__array_namespace__(api_version="2023.12") is array_api_strict
assert array_api_strict.__array_api_version__ == "2023.12"
with pytest.warns(UserWarning):
assert a.__array_namespace__(api_version="2021.12") is array_api_strict
assert array_api_strict.__array_api_version__ == "2021.12"
with pytest.warns(UserWarning):
assert a.__array_namespace__(api_version="2024.12") is array_api_strict
assert array_api_strict.__array_api_version__ == "2024.12"
pytest.raises(ValueError, lambda: a.__array_namespace__(api_version="2021.11"))
pytest.raises(ValueError, lambda: a.__array_namespace__(api_version="2025.12"))
def test_iter():
pytest.raises(TypeError, lambda: iter(asarray(3)))
assert list(ones(3)) == [asarray(1.), asarray(1.), asarray(1.)]
assert all_(isinstance(a, Array) for a in iter(ones(3)))
assert all_(a.shape == () for a in iter(ones(3)))
assert all_(a.dtype == float64 for a in iter(ones(3)))
pytest.raises(TypeError, lambda: iter(ones((3, 3))))
@pytest.mark.parametrize("api_version", ['2021.12', '2022.12', '2023.12'])
def test_dlpack_2023_12(api_version):
if api_version == '2021.12':
with pytest.warns(UserWarning):
set_array_api_strict_flags(api_version=api_version)
else:
set_array_api_strict_flags(api_version=api_version)
a = asarray([1, 2, 3], dtype=int8)
# Never an error
a.__dlpack__()
if api_version < '2023.12':
pytest.raises(ValueError, lambda:
a.__dlpack__(dl_device=a.__dlpack_device__()))
pytest.raises(ValueError, lambda:
a.__dlpack__(dl_device=None))
pytest.raises(ValueError, lambda:
a.__dlpack__(max_version=(1, 0)))
pytest.raises(ValueError, lambda:
a.__dlpack__(max_version=None))
pytest.raises(ValueError, lambda:
a.__dlpack__(copy=False))
pytest.raises(ValueError, lambda:
a.__dlpack__(copy=True))
pytest.raises(ValueError, lambda:
a.__dlpack__(copy=None))
elif np.lib.NumpyVersion(np.__version__) < '2.1.0':
pytest.raises(NotImplementedError, lambda:
a.__dlpack__(dl_device=CPU_DEVICE))
a.__dlpack__(dl_device=None)
pytest.raises(NotImplementedError, lambda:
a.__dlpack__(max_version=(1, 0)))
a.__dlpack__(max_version=None)
pytest.raises(NotImplementedError, lambda:
a.__dlpack__(copy=False))
pytest.raises(NotImplementedError, lambda:
a.__dlpack__(copy=True))
a.__dlpack__(copy=None)
else:
a.__dlpack__(dl_device=a.__dlpack_device__())
a.__dlpack__(dl_device=None)
a.__dlpack__(max_version=(1, 0))
a.__dlpack__(max_version=None)
a.__dlpack__(copy=False)
a.__dlpack__(copy=True)
a.__dlpack__(copy=None)