|
1 | 1 | from __future__ import annotations
|
2 | 2 |
|
3 |
| -import math |
4 | 3 | from collections import defaultdict
|
5 |
| -from itertools import compress, product |
| 4 | +from itertools import product |
6 | 5 | from typing import TYPE_CHECKING, NamedTuple
|
7 | 6 |
|
8 | 7 | import dask
|
@@ -73,34 +72,6 @@ def rechunk_p2p(x: da.Array, chunks: ChunkedAxes) -> da.Array:
|
73 | 72 | # Special case for empty array, as the algorithm below does not behave correctly
|
74 | 73 | return da.empty(x.shape, chunks=chunks, dtype=x.dtype)
|
75 | 74 |
|
76 |
| - old_chunks = x.chunks |
77 |
| - new_chunks = chunks |
78 |
| - |
79 |
| - def is_unknown(dim: ChunkedAxis) -> bool: |
80 |
| - return any(math.isnan(chunk) for chunk in dim) |
81 |
| - |
82 |
| - old_is_unknown = [is_unknown(dim) for dim in old_chunks] |
83 |
| - new_is_unknown = [is_unknown(dim) for dim in new_chunks] |
84 |
| - |
85 |
| - if old_is_unknown != new_is_unknown or any( |
86 |
| - new != old for new, old in compress(zip(old_chunks, new_chunks), old_is_unknown) |
87 |
| - ): |
88 |
| - raise ValueError( |
89 |
| - "Chunks must be unchanging along dimensions with missing values.\n\n" |
90 |
| - "A possible solution:\n x.compute_chunk_sizes()" |
91 |
| - ) |
92 |
| - |
93 |
| - old_known = [dim for dim, unknown in zip(old_chunks, old_is_unknown) if not unknown] |
94 |
| - new_known = [dim for dim, unknown in zip(new_chunks, new_is_unknown) if not unknown] |
95 |
| - |
96 |
| - old_sizes = [sum(o) for o in old_known] |
97 |
| - new_sizes = [sum(n) for n in new_known] |
98 |
| - |
99 |
| - if old_sizes != new_sizes: |
100 |
| - raise ValueError( |
101 |
| - f"Cannot change dimensions from {old_sizes!r} to {new_sizes!r}" |
102 |
| - ) |
103 |
| - |
104 | 75 | dsk: dict = {}
|
105 | 76 | token = tokenize(x, chunks)
|
106 | 77 | _barrier_key = barrier_key(ShuffleId(token))
|
|
0 commit comments