-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
79 lines (56 loc) · 2.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from tensorflow import keras
from tensorflow.keras.layers import (
Dense,
Conv2D,
MaxPool2D,
Flatten,
Dropout,
LocallyConnected2D,
)
import os
from pathlib import Path
import zipfile
import gdown
def get_input_shape():
return (152, 152)
def load_FbDeepFace():
# model = keras.Sequential()
# model.add(Conv2D(filters=32, kernel_size=(11,11), activation='relu', name='C1', input_shape=(152,152,3)))
# model.add(MaxPool2D(pool_size=(3,3), strides=2, padding='same', name='M2'))
# model.add(Conv2D(filters=16, kernel_size=(9,9), activation='relu', name='C3'))
# model.add(LocallyConnected2D(filters=16, kernel_size=(9,9), activation='relu', name='L4'))
# model.add(LocallyConnected2D(filters=16, kernel_size=(7,7), strides=2, activation='relu', name='L5'))
# model.add(LocallyConnected2D(filters=16, kernel_size=(5,5), activation='relu', name='L6'))
# model.add(Flatten(name='F0'))
# model.add(Dense(4096, activation='relu', name='F7'))
# model.add(Dropout(rate=0.5, name='D0'))
# model.add(Dense(8631, activation='softmax', name='F8'))
# =====================================================================================
# fmt: off
deepface_inputs = keras.Input(shape=(152,152,3), name="In1")
x = Conv2D(filters=32, kernel_size=(11,11), activation='relu', name='C1')(deepface_inputs)
x = MaxPool2D(pool_size=(3,3), strides=2, padding='same', name='M2')(x)
x = Conv2D(filters=16, kernel_size=(9,9), activation='relu', name='C3')(x)
x = LocallyConnected2D(filters=16, kernel_size=(9,9), activation='relu', name='L4')(x)
x = LocallyConnected2D(filters=16, kernel_size=(7,7), strides=2, activation='relu', name='L5')(x)
x = LocallyConnected2D(filters=16, kernel_size=(5,5), activation='relu', name='L6')(x)
flat = Flatten(name='F0')(x)
embedding_layer = Dense(4096, activation='relu', name='F7')(flat)
drop_1 = Dropout(rate=0.5, name='D0')(embedding_layer)
deepface_outputs = Dense(8631, activation='softmax', name='F8')(drop_1)
model = keras.Model(inputs=deepface_inputs, outputs=deepface_outputs)
# fmt: on
# Download the weights
home = str(Path.home())
model_path = home + "/.deepface/weights/VGGFace2_DeepFace_weights_val-0.9034.h5"
if os.path.isfile(model_path) != True:
print("DeepFace weights by will be downloaded ")
os.makedirs(home + "/.deepface/weights")
url = "https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip"
output = model_path + ".zip"
gdown.download(url, output, quiet=False)
with zipfile.ZipFile(output, "r") as z:
z.extractall(home + "/.deepface/weights")
model.load_weights(model_path)
fb_deepface_model = keras.Model(inputs=deepface_inputs, outputs=embedding_layer)
return fb_deepface_model