From 1180cf86cc40708981df3deebe017e873dc87e2f Mon Sep 17 00:00:00 2001
From: aditya desle <50102208+adityadesle@users.noreply.github.com>
Date: Fri, 2 Oct 2020 20:35:46 +0530
Subject: [PATCH 1/2] Update README.md
---
README.md | 1 +
1 file changed, 1 insertion(+)
diff --git a/README.md b/README.md
index fc61313..c34dbdc 100644
--- a/README.md
+++ b/README.md
@@ -16,6 +16,7 @@ Course topics include:
* Fundamentals of Python and its data types
* Data analysis packages Numpy and Pandas
* Plotting packages Matplotlib and Seaborn
+* Example of data analysis : Uber raw data analysis report
* Statistics
* Regular expressions
* Interactive visualization
From d0dde4910a169aa31f1e7f37e259ba1d412930b0 Mon Sep 17 00:00:00 2001
From: aditya desle <50102208+adityadesle@users.noreply.github.com>
Date: Fri, 2 Oct 2020 20:36:12 +0530
Subject: [PATCH 2/2] Add files via upload
---
Uber_data.ipynb | 1829 +++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 1829 insertions(+)
create mode 100644 Uber_data.ipynb
diff --git a/Uber_data.ipynb b/Uber_data.ipynb
new file mode 100644
index 0000000..4976042
--- /dev/null
+++ b/Uber_data.ipynb
@@ -0,0 +1,1829 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n"
+ ]
+ }
+ ],
+ "source": [
+ "%pylab inline\n",
+ "import pandas as pd\n",
+ "import seaborn as sb"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "data = pd.read_csv('uber-raw-data-apr14.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Date/Time | \n",
+ " Lat | \n",
+ " Lon | \n",
+ " Base | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 4/1/2014 0:11:00 | \n",
+ " 40.7690 | \n",
+ " -73.9549 | \n",
+ " B02512 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 4/1/2014 0:17:00 | \n",
+ " 40.7267 | \n",
+ " -74.0345 | \n",
+ " B02512 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 4/1/2014 0:21:00 | \n",
+ " 40.7316 | \n",
+ " -73.9873 | \n",
+ " B02512 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4/1/2014 0:28:00 | \n",
+ " 40.7588 | \n",
+ " -73.9776 | \n",
+ " B02512 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 4/1/2014 0:33:00 | \n",
+ " 40.7594 | \n",
+ " -73.9722 | \n",
+ " B02512 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 564511 | \n",
+ " 4/30/2014 23:22:00 | \n",
+ " 40.7640 | \n",
+ " -73.9744 | \n",
+ " B02764 | \n",
+ "
\n",
+ " \n",
+ " | 564512 | \n",
+ " 4/30/2014 23:26:00 | \n",
+ " 40.7629 | \n",
+ " -73.9672 | \n",
+ " B02764 | \n",
+ "
\n",
+ " \n",
+ " | 564513 | \n",
+ " 4/30/2014 23:31:00 | \n",
+ " 40.7443 | \n",
+ " -73.9889 | \n",
+ " B02764 | \n",
+ "
\n",
+ " \n",
+ " | 564514 | \n",
+ " 4/30/2014 23:32:00 | \n",
+ " 40.6756 | \n",
+ " -73.9405 | \n",
+ " B02764 | \n",
+ "
\n",
+ " \n",
+ " | 564515 | \n",
+ " 4/30/2014 23:48:00 | \n",
+ " 40.6880 | \n",
+ " -73.9608 | \n",
+ " B02764 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
564516 rows × 4 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date/Time Lat Lon Base\n",
+ "0 4/1/2014 0:11:00 40.7690 -73.9549 B02512\n",
+ "1 4/1/2014 0:17:00 40.7267 -74.0345 B02512\n",
+ "2 4/1/2014 0:21:00 40.7316 -73.9873 B02512\n",
+ "3 4/1/2014 0:28:00 40.7588 -73.9776 B02512\n",
+ "4 4/1/2014 0:33:00 40.7594 -73.9722 B02512\n",
+ "... ... ... ... ...\n",
+ "564511 4/30/2014 23:22:00 40.7640 -73.9744 B02764\n",
+ "564512 4/30/2014 23:26:00 40.7629 -73.9672 B02764\n",
+ "564513 4/30/2014 23:31:00 40.7443 -73.9889 B02764\n",
+ "564514 4/30/2014 23:32:00 40.6756 -73.9405 B02764\n",
+ "564515 4/30/2014 23:48:00 40.6880 -73.9608 B02764\n",
+ "\n",
+ "[564516 rows x 4 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(564516, 4)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "data['Date/Time'] = pd.to_datetime(data['Date/Time'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'Tuesday'"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['Date/Time'][0].day_name()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 Tuesday\n",
+ "1 Tuesday\n",
+ "2 Tuesday\n",
+ "3 Tuesday\n",
+ "4 Tuesday\n",
+ " ... \n",
+ "564511 Wednesday\n",
+ "564512 Wednesday\n",
+ "564513 Wednesday\n",
+ "564514 Wednesday\n",
+ "564515 Wednesday\n",
+ "Name: Date/Time, Length: 564516, dtype: object"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['Date/Time'].dt.day_name()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data['Daysofweek'] = data['Date/Time'].dt.day_name()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Date/Time | \n",
+ " Lat | \n",
+ " Lon | \n",
+ " Base | \n",
+ " Daysofweek | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2014-04-01 00:11:00 | \n",
+ " 40.7690 | \n",
+ " -73.9549 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2014-04-01 00:17:00 | \n",
+ " 40.7267 | \n",
+ " -74.0345 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2014-04-01 00:21:00 | \n",
+ " 40.7316 | \n",
+ " -73.9873 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2014-04-01 00:28:00 | \n",
+ " 40.7588 | \n",
+ " -73.9776 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2014-04-01 00:33:00 | \n",
+ " 40.7594 | \n",
+ " -73.9722 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 564511 | \n",
+ " 2014-04-30 23:22:00 | \n",
+ " 40.7640 | \n",
+ " -73.9744 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564512 | \n",
+ " 2014-04-30 23:26:00 | \n",
+ " 40.7629 | \n",
+ " -73.9672 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564513 | \n",
+ " 2014-04-30 23:31:00 | \n",
+ " 40.7443 | \n",
+ " -73.9889 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564514 | \n",
+ " 2014-04-30 23:32:00 | \n",
+ " 40.6756 | \n",
+ " -73.9405 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564515 | \n",
+ " 2014-04-30 23:48:00 | \n",
+ " 40.6880 | \n",
+ " -73.9608 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
564516 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date/Time Lat Lon Base Daysofweek\n",
+ "0 2014-04-01 00:11:00 40.7690 -73.9549 B02512 Tuesday\n",
+ "1 2014-04-01 00:17:00 40.7267 -74.0345 B02512 Tuesday\n",
+ "2 2014-04-01 00:21:00 40.7316 -73.9873 B02512 Tuesday\n",
+ "3 2014-04-01 00:28:00 40.7588 -73.9776 B02512 Tuesday\n",
+ "4 2014-04-01 00:33:00 40.7594 -73.9722 B02512 Tuesday\n",
+ "... ... ... ... ... ...\n",
+ "564511 2014-04-30 23:22:00 40.7640 -73.9744 B02764 Wednesday\n",
+ "564512 2014-04-30 23:26:00 40.7629 -73.9672 B02764 Wednesday\n",
+ "564513 2014-04-30 23:31:00 40.7443 -73.9889 B02764 Wednesday\n",
+ "564514 2014-04-30 23:32:00 40.6756 -73.9405 B02764 Wednesday\n",
+ "564515 2014-04-30 23:48:00 40.6880 -73.9608 B02764 Wednesday\n",
+ "\n",
+ "[564516 rows x 5 columns]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "14"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['Date/Time'][0].week"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 2014-04-01 00:11:00\n",
+ "1 2014-04-01 00:17:00\n",
+ "2 2014-04-01 00:21:00\n",
+ "3 2014-04-01 00:28:00\n",
+ "4 2014-04-01 00:33:00\n",
+ " ... \n",
+ "564511 2014-04-30 23:22:00\n",
+ "564512 2014-04-30 23:26:00\n",
+ "564513 2014-04-30 23:31:00\n",
+ "564514 2014-04-30 23:32:00\n",
+ "564515 2014-04-30 23:48:00\n",
+ "Name: Date/Time, Length: 564516, dtype: datetime64[ns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['Date/Time']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Date/Time | \n",
+ " Lat | \n",
+ " Lon | \n",
+ " Base | \n",
+ " Daysofweek | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 564511 | \n",
+ " 2014-04-30 23:22:00 | \n",
+ " 40.7640 | \n",
+ " -73.9744 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564512 | \n",
+ " 2014-04-30 23:26:00 | \n",
+ " 40.7629 | \n",
+ " -73.9672 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564513 | \n",
+ " 2014-04-30 23:31:00 | \n",
+ " 40.7443 | \n",
+ " -73.9889 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564514 | \n",
+ " 2014-04-30 23:32:00 | \n",
+ " 40.6756 | \n",
+ " -73.9405 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ " | 564515 | \n",
+ " 2014-04-30 23:48:00 | \n",
+ " 40.6880 | \n",
+ " -73.9608 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date/Time Lat Lon Base Daysofweek\n",
+ "564511 2014-04-30 23:22:00 40.7640 -73.9744 B02764 Wednesday\n",
+ "564512 2014-04-30 23:26:00 40.7629 -73.9672 B02764 Wednesday\n",
+ "564513 2014-04-30 23:31:00 40.7443 -73.9889 B02764 Wednesday\n",
+ "564514 2014-04-30 23:32:00 40.6756 -73.9405 B02764 Wednesday\n",
+ "564515 2014-04-30 23:48:00 40.6880 -73.9608 B02764 Wednesday"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.tail()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_day(dt):\n",
+ " return dt.day\n",
+ "\n",
+ "data[\"DoM\"] = data['Date/Time'].map(get_day)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_hour(dt):\n",
+ " return dt.hour\n",
+ "\n",
+ "data['Hour'] = data['Date/Time'].map(get_hour)\n",
+ "\n",
+ "def get_week(dt):\n",
+ " return dt.weekday()\n",
+ "\n",
+ "data['Weekday'] = data['Date/Time'].map(get_week)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Date/Time | \n",
+ " Lat | \n",
+ " Lon | \n",
+ " Base | \n",
+ " Daysofweek | \n",
+ " DoM | \n",
+ " Hour | \n",
+ " Week | \n",
+ " Weekday | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2014-04-01 00:11:00 | \n",
+ " 40.7690 | \n",
+ " -73.9549 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 14 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2014-04-01 00:17:00 | \n",
+ " 40.7267 | \n",
+ " -74.0345 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 14 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2014-04-01 00:21:00 | \n",
+ " 40.7316 | \n",
+ " -73.9873 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 14 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2014-04-01 00:28:00 | \n",
+ " 40.7588 | \n",
+ " -73.9776 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 14 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2014-04-01 00:33:00 | \n",
+ " 40.7594 | \n",
+ " -73.9722 | \n",
+ " B02512 | \n",
+ " Tuesday | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 14 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 564511 | \n",
+ " 2014-04-30 23:22:00 | \n",
+ " 40.7640 | \n",
+ " -73.9744 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 18 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 564512 | \n",
+ " 2014-04-30 23:26:00 | \n",
+ " 40.7629 | \n",
+ " -73.9672 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 18 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 564513 | \n",
+ " 2014-04-30 23:31:00 | \n",
+ " 40.7443 | \n",
+ " -73.9889 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 18 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 564514 | \n",
+ " 2014-04-30 23:32:00 | \n",
+ " 40.6756 | \n",
+ " -73.9405 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 18 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 564515 | \n",
+ " 2014-04-30 23:48:00 | \n",
+ " 40.6880 | \n",
+ " -73.9608 | \n",
+ " B02764 | \n",
+ " Wednesday | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 18 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
564516 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date/Time Lat Lon Base Daysofweek DoM Hour \\\n",
+ "0 2014-04-01 00:11:00 40.7690 -73.9549 B02512 Tuesday 1 0 \n",
+ "1 2014-04-01 00:17:00 40.7267 -74.0345 B02512 Tuesday 1 0 \n",
+ "2 2014-04-01 00:21:00 40.7316 -73.9873 B02512 Tuesday 1 0 \n",
+ "3 2014-04-01 00:28:00 40.7588 -73.9776 B02512 Tuesday 1 0 \n",
+ "4 2014-04-01 00:33:00 40.7594 -73.9722 B02512 Tuesday 1 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "564511 2014-04-30 23:22:00 40.7640 -73.9744 B02764 Wednesday 30 23 \n",
+ "564512 2014-04-30 23:26:00 40.7629 -73.9672 B02764 Wednesday 30 23 \n",
+ "564513 2014-04-30 23:31:00 40.7443 -73.9889 B02764 Wednesday 30 23 \n",
+ "564514 2014-04-30 23:32:00 40.6756 -73.9405 B02764 Wednesday 30 23 \n",
+ "564515 2014-04-30 23:48:00 40.6880 -73.9608 B02764 Wednesday 30 23 \n",
+ "\n",
+ " Week Weekday \n",
+ "0 14 1 \n",
+ "1 14 1 \n",
+ "2 14 1 \n",
+ "3 14 1 \n",
+ "4 14 1 \n",
+ "... ... ... \n",
+ "564511 18 2 \n",
+ "564512 18 2 \n",
+ "564513 18 2 \n",
+ "564514 18 2 \n",
+ "564515 18 2 \n",
+ "\n",
+ "[564516 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Frequency of Uber - Apr - 2014')"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de7xVVb338c9XQMT7bWsIKF6wQp/EILKspPRJsnrEjiaWikUPZph6js9T2OVkF0o7qR2PaeHRA5o3HtOk0jweL8csEreGIl6OpCQIB1C8oCYF/p4/xtg5Wa69WHvPvfZm7f19v17ztef6zTnmHHNP2L81xphrLEUEZmZmnbVZT1fAzMyamxOJmZmV4kRiZmalOJGYmVkpTiRmZlaKE4mZmZXiRGJWkqS3SvqDpDWSTutE+eGSQlL/RtTPrNGcSKwmSYsl/VnSy4Vlt56u1ybmS8BdEbFNRFxYuTH/Dg+riJ0k6Z5uq2EdlDwp6ZEeOPcukq6RtEzSi5J+K+ndFft8StKfJL0i6eeSdixs+6Sk30l6VdJdNc4zKSftzzXwcvocJxKrx8cjYuvCsqy40e+k2QNY2NOVgNL34gPALsBekt7VzXXYGrgPGA3sCMwCfiVp63zM/YCfACcAuwKvAhcXyq8GfgicU6NeOwBnsYncq97EicQ6Jb+rmyrpCeCJHPuYpPmSXsjvDt9R2P9ASQ/k7p/rJF0r6Tt525venefj75PXB0r6gaSnJa2Q9GNJg/K2cZKWSjpT0kpJyyV9pnCcQZLOy+9kX5R0T479StIXK875kKQJ7Vzv/5K0MF/bXZLenuN3AB8ELsqttX1L/Fo/m9+RL5d0ZuHcm0maJumPkp6TNLvt3XihW2yypKeBO0qcfxJwE3BzXv+bfM3fkzQv/x5v6so6RMSTEXF+RCyPiPURMQPYHHhr3uXTwC8i4u6IeBn4OvAJSdvk8v8REbOBZVVPkHwPuBB4tqP1s9qcSKyMCcC7gZGS3glcDpwM7ER69zgnJ4HNgZ8DV5Lebf4/4O86cJ5zgX2BUcA+wBDgHwvb3wJsl+OTgR/ld58APyC9y31vPveXgNdJ73iPbzuApANy+ZsrT56TwzXAGUBL3ucXkjaPiA8BvwFOza21/+rAdVX6IDAC+DAwrdAddhrpd30IsBvwPPCjirKHAG8HDu/MiSVtCRwNXJWXifm+FZ0IfDbXYR3pj3KX1aGiPqNIiWRRDu0HPNi2PSL+CPyF9O+inuONBcYAPy5bN6siIrx4aXcBFgMvAy/k5ec5HsCHCvtdAny7ouzjpD8uHyC9U1Rh2++A7+T1k4B7KsoGKWkIeAXYu7DtPcBTeX0c8Gegf2H7SuAg0hulPwMHVLmugaTukBH59Q+Ai9v5HXwdmF14vRnwDDAuv74L+NxGfoeHVcT+ds3A8Hy9byts/z5wWV5/FDi0sG0w8Fegf6HsXiXv8/HAqnzMgfleH1XYfhdwTuH1SNIf8n5dVYfCsbcFFgBnFWK3A5+v2O9v96AQ+xxpvKoY6we0Au+p53556fjiFonVY0JEbJ+XYtfPksL6HsCZuevnBUkvAMNI7153A56J/L84+1Od524BtgTuLxz31zne5rmIWFd4/Sqpz31nYAvgj5UHjYi1wGzgeEmbAceRWkzV7Fasb0S8Trr2IXVewzpgQEVsACkZFBV/n3/K54X0u72xcP2PAutJYwXVym5A0i1640GJT7ez2yRSslyXfzc3UNG9VaV+A0i/466qA7nL8hfA7yPie4VNL5MSTNG2wJr2jlXwBeChiJhbx77WCX19kNTKKSaGJcD0iJheuZOkQ4AhklRIJrvzxh/4V0jJom3/txSKP0tqVewXEc90sH7PAq8Be1PoFimYRUoe9wCv1vhDswz4H4X6iZQk663P06R37UV78uZkOgx4LK/vzhv9/UuAz0bEbysPLKntuO1O4x0RH6lVOUlDgQ8BYyW1dTluCWwhaeeIaBtTGFYotjspET5biHe6DrkeA0ldoM+QukiLFgIHFPbdi9Ryqqcr8VDgEElH5Nc7AgdKGhURp9ZR3jbCLRLrKpcCn5f0biVbSfpoHgydS3pXfpqk/pI+AYwtlH0Q2E/SKElbAGe3bcjv/i8FLpC0C4CkIZI22g+fy14OnC9pN0n9JL0n/8EiJ47XgfNovzUCqeXyUUmHShoAnAmsJXXP1eM64AxJb8u/mzGksYZrK/b7uqQtlZ5Q+kwuB6lff7qkPQAktUg6ss5z1+ME0h/kt5LGoUaRxh6WklpqbY6XNDKPp3wLuD4i1ndFBfLv9XrSm4YT870rugr4uKT3S9oqn/+GiFiTy/fL/3b6A5tJ2iIfE1I34tsL19YKfBP4alfU3fAYiZfaC1X693M8gH0qYuNJj3C+ACwnDapvk7eNAf5A6oq4Li/fKZT9Kund7RJSf/3fjk/qnvou8CTwEqlr57S8bRywtL06A4NIj4U+A7wI3A0MKuz7Nero3weOAh7Jx/hPUgupbdtd1B4j2QyYRnq67aV8nMmF7cNzHaaQWiH/DXypovw/kMac1pBact+tKNu/Vv03cm2PAV+sEv8S0Fq4xu8B8/I1/ALYuQvrcEg+xqukbqy25f2FfT5Fat29Qnq6bMfCtpNy+eIys51z1bxfXjq+KP9izbqVpJmkBPC1Hq7HicCUiHhfT9ZjU6f0Ib+fRsS/9nRdbNPjri3rs3IXzReAGT1dF7Nm5kRifVIeY1kFrACu7uHqmDU1d22ZmVkpbpGYmVkpfe5zJDvvvHMMHz68p6thZtZU7r///mcjoqXatj6XSIYPH05ra2tPV8PMrKlIanc2CndtmZlZKU4kZmZWihOJmZmV4kRiZmalOJGYmVkpTiRmZlaKE4mZmZXiRGJmZqU4kZiZWSl97pPtZma90fBpv9roPovP+WhDzu0WiZmZleJEYmZmpTiRmJlZKQ1LJJK2kDRP0oOSFkr6Zo6fLekZSfPzckShzFmSFkl6PH+DXVt8tKQFeduFkpTjAyVdl+P3ShreqOsxM7PqGtkiWQt8KCIOAEYB4yUdlLddEBGj8nIzgKSRwERgP2A8cLGkfnn/S4ApwIi8jM/xycDzEbEPcAFwbgOvx8zMqmhYIonk5fxyQF5qfa/vkcC1EbE2Ip4CFgFjJQ0Gto2IuZG+F/gKYEKhzKy8fj1waFtrxczMukdDx0gk9ZM0H1gJ3BYR9+ZNp0p6SNLlknbIsSHAkkLxpTk2JK9XxjcoExHrgBeBnarUY4qkVkmtq1at6qKrMzMzaHAiiYj1ETEKGEpqXexP6qbam9TdtRw4L+9erSURNeK1ylTWY0ZEjImIMS0tVb8p0szMOqlbntqKiBeAu4DxEbEiJ5jXgUuBsXm3pcCwQrGhwLIcH1olvkEZSf2B7YDVDboMMzOropFPbbVI2j6vDwIOAx7LYx5tjgIezutzgIn5Saw9SYPq8yJiObBG0kF5/ONE4KZCmUl5/WjgjjyOYmZm3aSRU6QMBmblJ682A2ZHxC8lXSlpFKkLajFwMkBELJQ0G3gEWAdMjYj1+VinADOBQcAteQG4DLhS0iJSS2RiA6/HzMyqaFgiiYiHgAOrxE+oUWY6ML1KvBXYv0r8NeCYcjU1M7My/Ml2MzMrxYnEzMxKcSIxM7NSnEjMzKwUJxIzMyvFicTMzEpxIjEzs1KcSMzMrBQnEjMzK8WJxMzMSnEiMTOzUpxIzMysFCcSMzMrxYnEzMxKcSIxM7NSnEjMzKwUJxIzMyvFicTMzEpxIjEzs1IalkgkbSFpnqQHJS2U9M0c31HSbZKeyD93KJQ5S9IiSY9LOrwQHy1pQd52oSTl+EBJ1+X4vZKGN+p6zMysuka2SNYCH4qIA4BRwHhJBwHTgNsjYgRwe36NpJHARGA/YDxwsaR++ViXAFOAEXkZn+OTgecjYh/gAuDcBl6PmZlV0bBEEsnL+eWAvARwJDArx2cBE/L6kcC1EbE2Ip4CFgFjJQ0Gto2IuRERwBUVZdqOdT1waFtrxczMukdDx0gk9ZM0H1gJ3BYR9wK7RsRygPxzl7z7EGBJofjSHBuS1yvjG5SJiHXAi8BOVeoxRVKrpNZVq1Z11eWZmRkNTiQRsT4iRgFDSa2L/WvsXq0lETXitcpU1mNGRIyJiDEtLS0bq7aZmXVAtzy1FREvAHeRxjZW5O4q8s+VebelwLBCsaHAshwfWiW+QRlJ/YHtgNUNuQgzM6uqkU9ttUjaPq8PAg4DHgPmAJPybpOAm/L6HGBifhJrT9Kg+rzc/bVG0kF5/OPEijJtxzoauCOPo5iZWTfp38BjDwZm5SevNgNmR8QvJc0FZkuaDDwNHAMQEQslzQYeAdYBUyNifT7WKcBMYBBwS14ALgOulLSI1BKZ2MDrMTOzKhqWSCLiIeDAKvHngEPbKTMdmF4l3gq8aXwlIl4jJyIzM+sZ/mS7mZmV4kRiZmalOJGYmVkpTiRmZlaKE4mZmZXiRGJmZqU4kZiZWSlOJGZmVooTiZmZleJEYmZmpTiRmJlZKU4kZmZWihOJmZmV0shp5K0LDZ/2q5rbF5/z0W6qiZnZhtwiMTOzUpxIzMysFCcSMzMrxYnEzMxKcSIxM7NSnEjMzKyUhiUSScMk3SnpUUkLJZ2e42dLekbS/LwcUShzlqRFkh6XdHghPlrSgrztQknK8YGSrsvxeyUNb9T1mJlZdY1skawDzoyItwMHAVMljczbLoiIUXm5GSBvmwjsB4wHLpbUL+9/CTAFGJGX8Tk+GXg+IvYBLgDObeD1mJlZFQ37QGJELAeW5/U1kh4FhtQociRwbUSsBZ6StAgYK2kxsG1EzAWQdAUwAbgllzk7l78euEiSIiIacElm1sts7IO+4A/71qNbPtmeu5wOBO4FDgZOlXQi0EpqtTxPSjK/LxRbmmN/zeuVcfLPJQARsU7Si8BOwLMV559CatGw++67d+GVmVlf4dkl2tfwwXZJWwM/A86IiJdI3VR7A6NILZbz2natUjxqxGuV2TAQMSMixkTEmJaWlg5egZmZ1dLQRCJpACmJXBURNwBExIqIWB8RrwOXAmPz7kuBYYXiQ4FlOT60SnyDMpL6A9sBqxtzNWZmVk0jn9oScBnwaEScX4gPLux2FPBwXp8DTMxPYu1JGlSfl8da1kg6KB/zROCmQplJef1o4A6Pj5iZda9GjpEcDJwALJA0P8e+AhwnaRSpC2oxcDJARCyUNBt4hPTE19SIWJ/LnQLMBAaRBtlvyfHLgCvzwPxq0lNfZmbWjRr51NY9VB/DuLlGmenA9CrxVmD/KvHXgGNKVNPMzEryJ9vNzKwUJxIzMyvFicTMzErxV+2aWa/jDw92L7dIzMysFCcSMzMrZaNdW5JagX8Drs5zYpmZWTdphm66elokE4HdgPskXSvp8LbvAzEzM9toIomIRRHxVWBf4GrgcuBpSd+UtGOjK2hmZpu2usZIJL2DNEvvP5EmYTwaeAm4o3FVMzOzZlDPGMn9wAukea2m5S+eArhX0sGNrJyZmW366vkcyTER8WS1DRHxiS6uj5mZNZl6urY+J2n7theSdpD0nQbWyczMmkg9ieQjEfFC24v8CPARjauSmZk1k3oSST9JA9teSBoEDKyxv5mZ9SH1jJH8FLhd0r+Rvozqs8CshtbKzMyaxkYTSUR8X9IC4FDSF1V9OyJubXjNzMysKdQ1+29EFL/e1sw2Ac0wdYb1DRsdI5H0CUlPSHpR0kuS1kh6qTsqZ2Zmm756WiTfBz4eEY925MCShgFXAG8BXgdmRMQ/52lVrgOGA4uBT7ZNBinpLGAysB44ra0LTdJoYCYwiPSd76dHROSHAK4ARgPPAcdGxOKO1LOn+V1l3+D7bL1ZPYlkRUeTSLYOODMiHpC0DXC/pNuAk4DbI+IcSdOAacCXJY0kTRC5H2mSyP+QtG9ErAcuAaYAvyclkvGkrrbJwPMRsY+kicC5wLGdqKs1sY39kQb/oTZrpHoSSauk64CfA23ToxARN9QqFBHLgeV5fY2kR4EhwJHAuLzbLOAu4Ms5fm2eguUpSYuAsZIWA9tGxFwASVcAE0iJ5Ejg7Hys64GLJCkioo7rMrMm45bdpqmeRLIt8Crw4UIsgJqJpEjScOBA4F5g15xkiIjlknbJuw0htTjaLM2xv+b1ynhbmSX5WOskvQjsBDxbb91s0+U/GmbNoZ7Hfz9T5gSStibNGHxGRLxU46tMqm2IGvFaZSrrMIXUNcbuu+++sSqbmVkH1PPU1r6Sbpf0cH79Dklfq+fgkgaQkshVha6wFZIG5+2DgZU5vhQYVig+FFiW40OrxDcoI6k/sB2wurIeETEjIsZExJiWlpZ6qm5mZnWqp2vrUuD/Aj8BiIiHJF0N1Jy4MX+L4mXAoxFxfmHTHGAScE7+eVMhfrWk80mD7SOAeRGxPj9yfBCpa+xE4F8qjjWX9B0pd/T18ZFGdAe5i8nMaqknkWwZEfMquqTW1VHuYOAEYIGk+Tn2FVICmS1pMvA0cAxARCyUNBt4JB9/an5iC+AU3nj8t/jhyMuAK/PA/GrSU19mZtaN6kkkz0ramzz2IOlo8tNYtUTEPVQfw4A03Uq1MtOB6VXircD+VeKvkRORmZn1jHoSyVRgBvA2Sc8ATwHHN7RWZmbWNOp5autJ4DBJWwGbRcSaxlfLzMyaRT3f2f6PFa8BiIhvNahOZmbWROrp2nqlsL4F8DGgM1OmmJlZL1RP19Z5xdeSfkB67NbMzKy+7yOpsCWwV1dXxKw7+DMxZl2vnjGSBbwx7Ug/oAXw+IhZk3DytEarp0XyscL6OtK08vV8INHMzPqAehJJ5eO+2xY/5R4Rb5rbysw6x9+tYs2onkTyAGlixOdJn1TfnjS1CaQuL4+XVOHuBDPrKzY6+y/wa9JX7e4cETuRurpuiIg9I8JJxMysj6snkbwrIm5uexERtwCHNK5KZmbWTOqdtPFrwE9JXVnHA881tFZm1qe4K7i51ZNIjgO+AdxISiR355hZp/iPhlnvUs8n21cDp0vaOiJe7oY6mZlZE6nnq3bfK+kR0hdOIekASRc3vGZmZtYU6unaugA4nDy/VkQ8KOkDDa2VNSV3WZn1TfU8tUVELKkIra+6o5mZ9Tn1tEiWSHovEJI2B07D08ibmVlWT4vk86Sv2x0CLAVG5ddmZma1WySS+gE/jIhPd/TAki4nfQp+ZUTsn2NnA/8bWJV3+0rbhx0lnQVMJnWbnRYRt+b4aGAmMAi4GTg9IkLSQOAKYDTpcy3HRsTijtbTzKwn9KYxxZotkohYD7TkLq2OmgmMrxK/ICJG5aUtiYwEJgL75TIX5yQGcAkwBRiRl7ZjTgaej4h9SA8EnNuJOpqZWUn1jJEsBn4raQ6Fr92NiPNrFYqIuyUNr7MeRwLXRsRa4ClJi4CxkhYD20bEXABJVwATgFtymbNz+euBiyQpIqLy4GZm1jjttkgkXZlXjwV+mffdprB01qmSHpJ0uaQdcmwIUHwybGmOtY3LVMY3KJO/H+VFYKd2rmWKpFZJratWraq2i5mZdVKtFsloSXuQpoz/ly463yXAt0lTrXwbOA/4LGl6+kpRI85Gtm0YjJgBzAAYM2aMWyxmZl2oViL5MWkK+T2B1kJcdPJ7SCJixd8OIl1KaulAamkMK+w6FFiW40OrxItllkrqD2wH+Eu2zDqpNw3+9qS++HtsN5FExIXAhZIuiYhTuuJkkgZHxPL88ijg4bw+B7ha0vnAbqRB9XkRsV7SGkkHAfcCJ/JG62gOMAmYCxwN3NHo8ZG++A/EzGxj6pm0sVNJRNI1wDhgZ0lLSTMIj5M0itSiWQycnM+xUNJs0nxe64Cp+YkxgFN44/HfW/ICcBlwZR6YX0166svMzLpZPU9tdUpEVJtq/rIa+08HpleJtwL7V4m/BhxTpo5mZlZeXXNtmZmZtceJxMzMSnEiMTOzUho2RmKbto09gQZ+Cs3M6uMWiZmZleIWiZk1jD971Te4RWJmZqW4RWJWgt9xm7lFYmZmJTmRmJlZKU4kZmZWisdIzKrw2IdZ/dwiMTOzUpxIzMysFCcSMzMrxYnEzMxKcSIxM7NS/NSWmXWIZ462Sm6RmJlZKU4kZmZWSsMSiaTLJa2U9HAhtqOk2yQ9kX/uUNh2lqRFkh6XdHghPlrSgrztQknK8YGSrsvxeyUNb9S1mJlZ+xrZIpkJjK+ITQNuj4gRwO35NZJGAhOB/XKZiyX1y2UuAaYAI/LSdszJwPMRsQ9wAXBuw67EzMza1bBEEhF3A6srwkcCs/L6LGBCIX5tRKyNiKeARcBYSYOBbSNibkQEcEVFmbZjXQ8c2tZaMTOz7tPdYyS7RsRygPxzlxwfAiwp7Lc0x4bk9cr4BmUiYh3wIrBTtZNKmiKpVVLrqlWruuhSzMwMNp3B9motiagRr1XmzcGIGRExJiLGtLS0dLKKZmZWTXcnkhW5u4r8c2WOLwWGFfYbCizL8aFV4huUkdQf2I43d6WZmVmDdXcimQNMyuuTgJsK8Yn5Saw9SYPq83L31xpJB+XxjxMryrQd62jgjjyOYmZm3ahhn2yXdA0wDthZ0lLgG8A5wGxJk4GngWMAImKhpNnAI8A6YGpErM+HOoX0BNgg4Ja8AFwGXClpEaklMrFR12JmZu1rWCKJiOPa2XRoO/tPB6ZXibcC+1eJv0ZORGZm1nM2lcF2MzNrUk4kZmZWihOJmZmV4kRiZmalOJGYmVkpTiRmZlaKE4mZmZXiRGJmZqU4kZiZWSlOJGZmVooTiZmZleJEYmZmpTiRmJlZKU4kZmZWihOJmZmV4kRiZmalOJGYmVkpTiRmZlaKE4mZmZXSI4lE0mJJCyTNl9SaYztKuk3SE/nnDoX9z5K0SNLjkg4vxEfn4yySdKEk9cT1mJn1ZT3ZIvlgRIyKiDH59TTg9ogYAdyeXyNpJDAR2A8YD1wsqV8ucwkwBRiRl/HdWH8zM2PT6to6EpiV12cBEwrxayNibUQ8BSwCxkoaDGwbEXMjIoArCmXMzKyb9FQiCeDfJd0vaUqO7RoRywHyz11yfAiwpFB2aY4NyeuV8TeRNEVSq6TWVatWdeFlmJlZ/x4678ERsUzSLsBtkh6rsW+1cY+oEX9zMGIGMANgzJgxVfcxM7PO6ZEWSUQsyz9XAjcCY4EVubuK/HNl3n0pMKxQfCiwLMeHVombmVk36vZEImkrSdu0rQMfBh4G5gCT8m6TgJvy+hxgoqSBkvYkDarPy91fayQdlJ/WOrFQxszMuklPdG3tCtyYn9TtD1wdEb+WdB8wW9Jk4GngGICIWChpNvAIsA6YGhHr87FOAWYCg4Bb8mJmZt2o2xNJRDwJHFAl/hxwaDtlpgPTq8Rbgf27uo5mZla/TenxXzMza0JOJGZmVooTiZmZleJEYmZmpTiRmJlZKU4kZmZWihOJmZmV4kRiZmalOJGYmVkpTiRmZlaKE4mZmZXiRGJmZqU4kZiZWSlOJGZmVooTiZmZleJEYmZmpTiRmJlZKU4kZmZWihOJmZmV4kRiZmalNH0ikTRe0uOSFkma1tP1MTPra5o6kUjqB/wI+AgwEjhO0sierZWZWd/S1IkEGAssiognI+IvwLXAkT1cJzOzPkUR0dN16DRJRwPjI+Jz+fUJwLsj4tSK/aYAU/LLtwKPFzbvDDzbDdXtTr3tmnrb9YCvqVn4mt6wR0S0VNvQv1x9epyqxN6UGSNiBjCj6gGk1ogY09UV60m97Zp62/WAr6lZ+Jrq0+xdW0uBYYXXQ4FlPVQXM7M+qdkTyX3ACEl7StocmAjM6eE6mZn1KU3dtRUR6ySdCtwK9AMuj4iFHTxM1S6vJtfbrqm3XQ/4mpqFr6kOTT3YbmZmPa/Zu7bMzKyHOZGYmVkpfTaR9MapVSQtlrRA0nxJrT1dn86QdLmklZIeLsR2lHSbpCfyzx16so4d1c41nS3pmXyv5ks6oifr2BGShkm6U9KjkhZKOj3Hm/Y+1bimZr5PW0iaJ+nBfE3fzPEuv099cowkT63yX8D/JD1CfB9wXEQ80qMVK0nSYmBMRDTtB6gkfQB4GbgiIvbPse8DqyPinJz0d4iIL/dkPTuinWs6G3g5In7Qk3XrDEmDgcER8YCkbYD7gQnASTTpfapxTZ+kee+TgK0i4mVJA4B7gNOBT9DF96mvtkg8tcomKiLuBlZXhI8EZuX1WaT/4E2jnWtqWhGxPCIeyOtrgEeBITTxfapxTU0rkpfzywF5CRpwn/pqIhkCLCm8XkqT/6PJAvh3SffnaWF6i10jYjmk//DALj1cn65yqqSHctdX03QDFUkaDhwI3EsvuU8V1wRNfJ8k9ZM0H1gJ3BYRDblPfTWR1DW1ShM6OCLeSZoNeWruUrFN0yXA3sAoYDlwXs9Wp+MkbQ38DDgjIl7q6fp0hSrX1NT3KSLWR8Qo0qwfYyXt34jz9NVE0iunVomIZfnnSuBGUhdeb7Ai92G39WWv7OH6lBYRK/J/8teBS2mye5X73H8GXBURN+RwU9+natfU7PepTUS8ANwFjKcB96mvJpJeN7WKpK3yICGStgI+DDxcu1TTmANMyuuTgJt6sC5dou0/cnYUTXSv8iDuZcCjEXF+YVPT3qf2rqnJ71OLpO3z+iDgMOAxGnCf+uRTWwD5Mb4f8sbUKtN7uEqlSNqL1AqBNPXN1c14TZKuAcaRprpeAXwD+DkwG9gdeBo4JiKaZvC6nWsaR+ouCWAxcHJbv/WmTtL7gN8AC4DXc/grpDGFprxPNa7pOJr3Pr2DNJjej9RomB0R35K0E118n/psIjEzs67RV7u2zMysiziRmJlZKU4kZmZWihOJmZmV4kRiZmalOJFYryVpfZ6xdWGeAfUfJNX8Ny9puKRPdWEdTsszyl5VER9VnEk2zzL7f7rqvF1F0hmStiy8frnW/tY3OZFYb/bniBgVEfuRZno+gvQZjlqGA12WSIAvAEdExKcr4qNyfTZ1ZwBbbnQv69OcSKxPyNPGTCFNwKfc8viNpAfy8t686znA+3NL5u/zpHf/JOm+PHHfydWOn1s7D+fljBz7MbAXMEfS3xf23Rz4FnBsPs+xedNISakXXOMAAAK9SURBVHdJelLSaYX9j8/fKzFf0k/y1yBUnn+xpO9KmiupVdI7Jd0q6Y+SPp/3Ub6Wh5W+t+bYHB+Xz3u9pMckXZX3PQ3YDbhT0p2Fc03PLbzfS9q1k7fEepOI8OKlVy6k75GojD0P7Ep6l71Fjo0AWvP6OOCXhf2nAF/L6wOBVmDPimOOJn0ieitga2AhcGDethjYuUo9TgIuKrw+G/hdPsfOwHOkab/fDvwCGJD3uxg4scrxFgOn5PULgIeAbYAWYGWO/x1wG+mTzruSPtU8OF/zi6Q55zYD5gLvq1Z/0ie8P57Xv9/2u/HSt5f+HUs7Zk2vbebnAcBFkkYB64F929n/w8A7JB2dX29HSjxPFfZ5H3BjRLwCIOkG4P3AHzpYt19FxFpgraSVpD/2h5IS1X1pOigG0f4ke23zxS0Ato70vRprJL2W51x6H3BNRKwnTdz3n8C7gJeAeRGxNNd/PqmL754q5/gL8Mu8fj+py9D6OCcS6zPyfGTrSX+Iv0Ga9+oA0rvw19orBnwxIm6tdeguquLawvp60v9PAbMi4qwOlH+94livF47VkXNX89eIiDr2sz7EYyTWJ0hqAX5M6k4KUstieaTpwU8gdfcArCF1CbW5FTglTzGOpH3z7MpFdwMTJG2Ztx1FmgCwlsrztOd24GhJu+Tz7yhpjzrKVXM3aVymX/59fACY10X1tD7M7yasNxuUu2kGAOuAK4G2KcIvBn4m6RjgTuCVHH8IWCfpQWAm8M+kbp4H8lTjq6j4atJI3/M9kzf+KP9rRGysW+tOYFqu3/fa2ykiHpH0NdI3X24G/BWYCvxpI8ev5kbgPcCDpLGOL0XEf0t6W40yM4BbJC2PiA924pzWB3j2XzMzK8VdW2ZmVooTiZmZleJEYmZmpTiRmJlZKU4kZmZWihOJmZmV4kRiZmal/H8+8DGAFloRagAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "hist(data.DoM , bins = 30 , rwidth = 0.8)\n",
+ "xlabel('Date of the month')\n",
+ "ylabel('frequency')\n",
+ "title('Frequency of Uber - Apr - 2014')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deXwc1ZXvv1f7ZsuSLO+WF2wwtgFjhGO2CYGwhyEQmBeykWXGk5dkHpnJSyDJZJtM3jBJJpNhskyclXwmE5YAgRBIQljCGsDGK2DjFduysGVbkrWrq+q+P7qq1ZYlq7tVe53v56OPum8vdW7dW6dv3fu75yitNYIgCEL0KAraAEEQBKEwxIELgiBEFHHggiAIEUUcuCAIQkQRBy4IghBRSvw82OTJk/XcuXP9PKQgCELkWbt27SGtdePwcl8d+Ny5c1mzZo2fhxQEQYg8Sqk3RiqXKRRBEISIIg5cEAQhoogDFwRBiCjiwAVBECKKOHBBEISIMqYDV0pVKKVeVEptUEq9opT6il1er5R6VCm1zf5f5725giAIgkMuI/AB4CKt9RnAMuBypdRK4FbgMa31QuAx+7kgCILgE2PqwHU63my3/bTU/tPANcCFdvkdwJPALa5b6CL7O/q4e81epk6s4MYVTUGbkwhe2HmYZ7cfGvX1M2ZP4uJTp/pokT88sfUg695ozzxvnFDO+1bOQSkVoFWCG2x58ygPb2wd9fVTp0/kitOmZ563dQ3wyxf3cPUZM5g3udpVW3LayKOUKgbWAguA72qtX1BKTdVatwJorVuVUlNG+ewqYBVAU1OwTvPetfv49h+3AXDl0unUVpUGak8S+Prvt7L2jXZG8ltaw8xJlbF04F958BV2H+5FqXQ9AS5dMo2pEyuCNUwYN6uf2sl9L7eM2qdrK0uPceAPbdzPtx59nYVTaoJx4FprE1imlJoE3K+UWprrAbTWq4HVAM3NzYFmjxg0rcxjUxJZ+MKgYXHRoin85INnH/faZ361gae3jT46jzKDhsUNZ83iGzecwd0v7eUz927EtKTPxYFBw2J+YzWPf+rC4177p9+8yj1r9h73foC3nnLcTvhxk5cKRWvdQXqq5HLggFJqOoD9/6Dr1rmMIReQ7xiWprgoedMGhqUpKU5evZOAaWlK8ujTjt/x4jrIRYXSaI+8UUpVAm8HtgAPAjfZb7sJeMB161zGyBqBC/5gWlZenT0umAn94UoCKVNTXJT72Ne58yrJ4zO5kssUynTgDnsevAi4W2v9kFLqeeBupdRHgD3ADa5b5zIyAvefRI/APbhgheDJd1Di+B0vLoNcVCgbgTNHKD8MXOy+Sd4hc5D+Y1qa0uLkOTIZgceXfKfHTMuitFh5okDyNZxskBzuHuDnz48YkVFwiX3tvfzLw1sYMIamqg4c7U+MI9Na8+UHX6Glo5/eQSORU0dxwzAtPn//Zg73DGbKXtl/lJMac1eTbGntwivNRGIc+Lo9Hcc816JCcZ3ndxzmt5taWTClhjJ71H1SYw1vPXn01fc4NUN7b4o7nn+DaRMrWDxjIucumHzM6zGqamLY297HXWv2MnNSJbWVadnxtIkVXLp42qifGd7OVeUlnk3fJsaBG1Z6VPjus2dz50t7x3i3UAjOFNXPP7yCGZMqA7bGf5w+9vGLFvD+lXMCtkZwA9Nu01uvWMTVZ8wo+DsWTKlx06wMiZmcdH4BRdrlHfmeY0W82sL5ASsdPnUSr2omikyfznE6bKRpbsPMT3aYD4lx4F5KeYQ0ST/Hhumd3lcIBqdNS8axEG96uCcgMVdapiHk4vKMlK2zT6oDk7u8+JHvCHwkUlZ+uvF8SIwDd0aHxXJxeYbpQmePMs58qVcXq+A/Q21aeJ/2cjNbYhYxf/LsLiC5zsUrnt1+iM/dvwnD1HT1p4BkjkB/t/lNvvKbV4AR5sBtRPkUDfZ39PHBn75Iz4CZkcSOx2/sauthVl2VW+YdQ2IcuDM6nDIhHQ1OLiV3WL+3gzcO93LdmTNRSjFvchXlJcU5f17HpCVe3tPOwa4B3vuWJt4yvyFoc4RxsKOtm9cPdHPhKY00VJdTXV7M6bMn5fz54T/UjRPKOdwz4LaZQJIcuNa84/TpI64SC4XjzHt/84YzKErw3Y1haqpKi/natacFbYowTpx575svXsiZTeNPNGZYmrkN7oaRdUjMZJ0TQSy5LsYbTEujFAU57zj9mJqWNer6SoyqmQhMs3A11Uht7WVYhcQ4cCPPCGJCbhiWplTOKykJXhUbDBcWLo/9Pu/iASWmxxkJDWvqNRK0KY3p4WYNwV/cloN6eY0kZg68b9BMpDrCK7oHDCytJWgT6XWAvpQpP2QRZ8BIq066+w3AvRH4oCEywnGx5c2jHO1POxxh/Ny7dh+fumdD5vnkmrIArQmey779FDvbepg/RoQ66X7hpbM3xbm3PUbPoJkpqyjNXU11Ilo6+jxL4ZgIB97a0Q/ABQsbOdydlvPIxVQ4e470AvCPV50KwKJpEwv+rji0w57DvZy3oIFPvv3koE0RCuRwzwA9gybXnjmTJTMmMrmmnBm1hSWgHt6lJ1WVZvJiuk0iHLgzp9VUX5Vx4ELhOHN6f33B/KBNCRytNYalOWtOPWfPrQ/aHKFAnH0iF586hXecXljUwdGwLM3UiYX9GIxFIhYxj9kOGyftWkC4lSYtDk2RS/gALzKxCO6ScilW0ojRCPNMgpwPiXDgbgSkEYZIaqLikfAy47jgH5lYSR5IQdMp2ERGWDCmXGSuktRExSORiQEuCqdI42i/vVCqmR6OwBMxB77jYDeQ3DjV46Fv0GRTS+cx8R32d/QlfgSutebV1qMcPJpeU5FNYtHi1f1HM8HXALYe6ALcv0vXWosOfDwMGha3P74dgOpyd2RBSeLbf3ydHzy187jyOQ3eRFeLClsPdHHV7c9knk+siP2lFBu2H+ziytufHvG1iRWlrh7rzaNpBVzvoOHq9zrEvtcNGGld5/VnzaKhpjxTHpcoeF7T2ZeirqqU775n+THlTS458Ki2QmdvevT2+StP5YzZkzizKfdodUKwdPal2+7WKxZx+szaTHlVeQmnz6od7WM5ky2NdTYFnTq9cKntiYi9A3fmKJfM8OYExh3D0lSVlRyXYT3pOP3q9Fm1rJgn8sEo4WTnOn1mref92lnkrirz5u4/9hN3wxUoyZ65zR9vY51EtzXyiZcR3VrGEy9FDcMlo16qWyAHB66Umq2UekIp9ZpS6hWl1M12+ZeVUi1KqfX235WeWDhOhhLNxv63yhNSpkgGR8LrC1PwDj9zl3otYc5lCsUAPqW1flkpNQFYq5R61H7t37XW3/TEMpfwUh6UBLzMqB1lZG9BdBnafOX9j68bOTVPxJgOXGvdCrTaj7uUUq8BMz2xxgPW7+0A5ELLhT2He3l8y4FjynYd6pFRZhZvHO7hiS0Hea01LTsTPXy46U+ZPLC+hb6sIFWOZNCPtuuyFzFDoQNXSs0FzgReAM4DPqGU+gCwhvQovX2Ez6wCVgE0NTWN09z8+Y4tIZxeW+n7saPGfz6+jXvW7juu/JLFUwOwJpz8xx+3cd+6FgDKS4qYnKVsGos4BO6KGs/tOMQt9246rryspIjGCbm3XaEc6h4ECstYlQs5O3ClVA1wL/BJrfVRpdT3ga+SVoJ9Ffg34MPDP6e1Xg2sBmhubg6kC5+3oIFzThqWaFYupuPoNyzmNFTx64+dd0z5xEp3tbHZRM2p9aVM5jdWc+9Hz6WitJhKj9QFgjv0p9JTGPd89BwWNNZkyr1su2yJsrODfppHwaxycuBKqVLSzvsXWuv7ALTWB7Je/yHwkCcWjhPD0kyqTHa86lwxTIuy4iLqquV8jYZhacpLiuUcRQQn6XZdVVkgbZYyvQ3jkYsKRQE/Bl7TWn8rq3x61tuuBTa7b974GS6Dk8Bwo+N3jJMotkUhcS2iWM+44HesmuFHMT1WvOQyAj8PeD+wSSm13i77HHCjUmoZ6cmI3cDfemLhOJFcmLljeph8NS6kTEtUOREi6GiRhseKl1xUKM8w8l6Eh903x33S2ejlgssFiTI4Nl5GlhPcx0/J4IjHt6dwQqFCiRqv7j9Ka2e/Z7F4o4zWmv94bFsm3RzA1jePMrsu2UGqRuMHf9rBzrYeth3s5qQxcl+OhsTf8RbL0nzzD1s5bCs/ALa32ZFIA7pr2tHWA0BxgFMokeW+l9OSuLPm1AVsSfjo6E3x7T9uY0JFCdVl6W6gUMerdQQM0+JfHtlCTXkJNeUlrJwv5yiM7Gvv43tP7mBiRQlVZUOubdnsSdR6qKQ6Ec7Au7rMG1cbawduWJraylKuP2vWca8lfSyUsneI3XL5It63ck6AloS/JZx5zI+97SQ+duGCgK0RRsPp019951KuWRbcXsNsaaypNQ3VZcGpUKKMxPEYnVxyOQppZNt8NAh6vnskvA0GF3MHPlIcDyWx4YChIF9Brg9EpSVMc3yOQWSE/mB4rLnOiWGHNkxvF71j7cDT2aBjXcWCkVFl7khAtGiQaacQ9WnD0p4tYELMHbjXty9RxusoaXEiaC2xkBuZdgrRD63Xg8jYLmJ29ae4f10L8yYXJvmKG1prPnX3hoysqj+Vjs4WptFK2LAszd/duS4rKfb4zlXU4r6EnZaOPv7+rvWZvtw94G3kv0J4dX8nXpoT2xH4rkNp/eVJWQFskoyl4b51LXT1GzRUlzFzUiVXLJ3GcpFYjkrPoMFvN7aSMi0uWzKVc+ZLWrkwsbmlkxd3HaG8pIiG6jLm1Fdx1enTOW3m+PNaukV9dVkmB6cXxHYE7txOvf+ckSVySRsNOfOD1581i4+/LTxSuDC3g6NqeN/KOXzovHkBWyMMx2mff37naZwybULA1gyR3aUNS3uW0BhiPAIXmdyxyPnIH1noDTdRWJvwOvRCbB24E0ZyeOMmVdIVxs4e9rZwK++lSFe9wQyh6mR4W6dM7WlGq9g6cBlxHsuQllnOR67ICDzcDO1lCG/7mJblaSjb2DrwMI44g2RIYhXbJncdMwwbQ4RRCePOy+F4HeEztouYP3t2N0Ci41vvPdLL1d95hp4BI7NYWBbi0UqY+NpvX+WnTh8qcacPhXi9NjKs+vkanth6EPA/WUMh7GzrYbGHi5ixdeCW7bEWhWh12m/2HumlozfFO5fNYMakSkqLi7hk8bSgzYoEr+w/SuOEct59dhNvPbkxaHMEm80tnZzUWMNFi6YAMK22goY8Ekv7TV1VKb2DpmffH1sHbpias+fWjRrrIwmxmbOllGfNqQ/YmpEJaysYlqapvoqb374waFOELAxLs2z2JD5z+aKgTRmdrE5taZhdV+nZoWI7v2BKHBTXVBRJRNLLhZORAtSFmbS9okLJG8MaOXdhdJp+/KQ8Tuc0XsIsr3Nz8SnscskoEfYAdcPb2uucvOE9E+NEAlllj8CTfR4KwZRk2KEkate11/bGdg78cM8gjRPCu7jhJQOGyd4jvbR09AHhXqUPIx29g/QOmBTXynkLA05/BhiMWJKWlMfxwGPpwDt7U+xr70tsJMJP37ORBzfszzyv9CgfX1x52zefpL03xRmzJ7n6vTrMgV9CzGfv28R9L7dknldFpD87d8ADhuXZMaJxJvLkaH86+ldSk88e7hlg/uRq/v6Sk6m3Iw8KuWFZmvbeFFedNp1brwix0iFBHOoeZE5DFf/30lMoUooLTo5GVMjRwnm4SSwduCOfO5HjivNgyDA1jRPKufqMGUGbMiZhG5U6fWfxjIlMnVgRsDUCpNcjJtdEoz/DkETZGYHXVpZ6dqxYLmIaPvzyhRkjYlKrMGFIpqLQ4XVeSa/IxNIJUkaolJqtlHpCKfWaUuoVpdTNdnm9UupRpdQ2+39oMgOcKAhREiRdaQlc+H+bw9gWEsAqfERJ+51tpR8B9XK5yg3gU1rrU4GVwMeVUouBW4HHtNYLgcfs56HA9OGXL8yYlkWpOKCCkKiN4SMVkQHJcPyYCRhzDlxr3Qq02o+7lFKvATOBa4AL7bfdATwJ3OKJlXniLGIm7SLc39HHmjfaae9JMaNWFi4L4fmdhwGJ2hgGntt+iEM9gxzpGaChuixoc/LGj7u5vBYxlVJzgTOBF4CptnNHa92qlJoyymdWAasAmpqaxmNrzqzb0wFATUUs12hH5asPvcojm98E4C8kAFPe9AwYfOwXLwMw2QOHEa7l2nBz4Gg/7/nRC5nn50RQUdY7mE6y7CRb9oKcPZxSqga4F/ik1vqoynECU2u9GlgN0Nzc7Esfdm5Zls4IT3JTP+gZNFk0bQLfec9y5jRUBW1O5HCym//1+fO4fKlEbQwSJ4LfZ69YxMWnTqWpPnr92RFYTav1Ts2U032iUqqUtPP+hdb6Prv4gFJquv36dOCgNybmTy5zT3EcDZmWRU15CQum1EQmEFOY2sFZO5nXWE2uAxTBG5xreMakShZMqaHMpZjsfuA47pQP6ym5qFAU8GPgNa31t7JeehC4yX58E/CA++YVRlKVBIYZrTgRYSOp/SaMxKEt/IgGmssUynnA+4FNSqn1dtnngNuAu5VSHwH2ADd4Y2L+mJamSEHRSDLCEEfAGy+mpakoLQ7ajJwJW0t4dcHJaD5/oqoky25qZ0+BlxLIXFQozzD6tXaxu+a4Q9hDTnpFytJUR3jEEjRhD7+bJOI0Ag+NCiUqPLm1LREZdyC9Wv+LP79BytK0tPd5op5IAvvae/nxM7sA73S7IYsaEDoGDJMfPb2L7gGDA539QLR3xHb1p9UnEgslT1raezMLCHHnoY2t3P74dkqLFQrFkhneJVCNM/e93MIvXtjDhIqSxEaxDJoNezv5xu+3UlKkKFKKSVWlzI6g+sTByctreReMMJ4OvKhIcdM5c4I2wxec2/5NX74sUvPfYSNlWhSp9HkUgsHpy//zNytZMS+cOVzzwbnjmlQlwazywjTH3nobtih4hRL1rDthaYakrpuECSPifdnB6dJ+1CeWPTZJ0fgyMYdF6TAuopaqK44YMVtEzqhQxIHnRzoj/SgnLR59I8OJJJNhJ0zyOi9DloanluEmDiPwbJmyH3fHsXTgXmeCDhNy6+8OpmVRnJC7trDiOLyo7CIeCyOzEzPYjTyRYvvBLizt7e6noLlnzV5+u6kVgB1t3ZEesQTNoe4BvvjAZtbv6fDhRz8kE/4hoT9lcuu9G+noS0cPPXB0AIj2CDybN+xEzF4ODGLnwJ/ZdghIp8SKK3e+tJetb3ZxUmM19VVl/MVCiTxYKBv3dfDwpjdZMKWGKyWCo6/sOtTDr9fvZ05DFZMqSykrVlx4SiOz6uIRCrncjt9S56EKJXYO3JlHe8v86MuQRsOwNMvn1PHzD68I2pTI49zmfvt/LWPpzGRFrwwaZ8rk81eeyqVL4hf90REYVJR4J++N3TxDrttXwyJfKwQzRnP8Qcs5h2JuxON8RgkjZnPeDk6f9kNgEK8zRzxWssciqklew0gcYm5EFTPmCaT9EBjEz4GPsfIbh64SpSSvYcePkJ8hUkuGCj/iZftNdlv7sbcgdg7ctCyUiu+vOjgdI3ZNFwgyAg+OqIaMzRU/7pRjtYjZM2Bw++PbgzbDdf746gG++MBmTHtura1rgDNmTwrYqmjz3PZDfPpXG4cSYPtwRxPldRc3uOO53XzvyaHrc8CI9xTK5v2dngtHY+XA3zyaDkEZh0A42azf28H+zn7effbsTNkNzbMCtCj6bGrppKWjj+vPmsWM2gqmTfQub6GQ5sXdR+gdNLnqtOmZsprykthG0KyvKqPPzrPqFbFy4M4t2U3nzA3WEJcxLE1ZSRG3vev0oE2JDc7UydeuXUq5hzIvYQjT1MyorUxMPzYsi1OmTvD0GLGafHIWMON2SxYn2eBwgppVGJKbxuoSCDVGwgKGGZam1OOpuVj1Xj+ifwVBSpIVu44T+U5Oq38YlpUI9ZQzKBEVSp5kNOAn6CRhioCXKyeMrhhhgmwKwz6nfvSHOCfSzockhOzNrl1aheKti43VHHjKXtUujcFtsdaajt4UGugZNGIrtQqCrv4UPQNGIkaDQdPZm8qop/pTZiyuzVwZNC3KPL5uY+XAb398GwAVpdHvJN99Yjvf/MPrmeez6+MR4CdoXtp9hL/6wfNo7W2qq5FImorwzhf3cOt9m44pu2Dh5ICs8Z/tB7s5ZZq3i5ixcuBF9u3wshhopPe19zGhvIT/e9kpQLyjK/rJ/o4+tIa/u2gB58xvCNqcWNPS0YdS8OWrl2TKVibonE+uKcOyvP3ZjpUDN0zNirn1sZhuSJmaiZWl3HTu3KBNiRWO+uT6s2Yxp0Gyz3uJYWlKi4oS24ctDTMmeXvnHH1Pl4VhWTkvkoR9V5yZR10ijc/tkIRgZ2EhCYuWJyJlei//HdOBK6V+opQ6qJTanFX2ZaVUi1Jqvf13padW5kickhnHqS5hIm5pu8KMYSazDzuDQz+CzuXSi38GXD5C+b9rrZfZfw+7a1Zh5CK3i0p3iqt0MJsg5HVBjMAjqFx1hThvQBuVrMY2fAg6N+YcuNb6KaXUXE+tcIFBw2Ljvk7efurUoE0pmJ1t3bR2puO5HOwakIiDLtI7aLB+TwfbDnQB8dvsFQa2HejiYNdA5vm+9r5E9+EjPYOhjkb4CaXUB4A1wKe01u0jvUkptQpYBdDU1DSOw52YO1/aA0BNeTTjWliW5qrbnzkm+M3KGKeF85vvPrGd7z6xA4Cy4iIqSv3vJ2FfdxkPfYMmV97+dCbGt8NJjclcKNZaY1qaLjvapVcU6sC/D3yV9BLUV4F/Az480hu11quB1QDNzc2edeGjdmbrL2VJlqKEYWn6UiY3rpjNtWemIw0mtfN7wdE+gwnlJfz4g2fTOKE8EAceZ/pSJilT86Hz5nLF0qFog031VQFaFRzOVN2sOm/rX5AD11ofcB4rpX4IPOSaRQXinLDaSn83Z7iFs7g2p6E6duFww4BhaSrKiuXceoQTh+ikxho5xwxdz9Xl3iq1C5qgUkpNz3p6LbB5tPf6Rb4JRHXI9sXFNRDXWPjVColcUPORXJOJJwW/Mj2N+fOglPolcCEwWSm1D/gScKFSahnp62838Lce2pgTKR8Cx3iJKfpkT0laKFO/iWso50IxfTofuahQbhyh+Mce2DIuzBxDVYZV0pXE3Ix+tkWQsswktOhQfssk1HZ0nNpn7qg9Ph+x2Ur/wq4jQZtQMA+sb2FnWw/gbXb0pPLcjkO8fqA78NFh2Kbt3ODPOw+zuaWTQ92DgPRfB7/2G8TGgb9+oIv+lBW0GXnT1jXAzXeuB9Ij0ll1EnXQbT59z0ZaOvq4aNGUoE2JHZ/51Ub2HOkF0s5qpsexP6JC72BaDtzVb3h6nNg48CKluOmcOUGbkTcDRrqh/+maJdxw1mwqy0Te5jYDhskNZ81KTC5GP+lPmVy3fCZf+csllBQVSf+1sWzR//Rab5Nlx8aBW1pTHkFtrzN3WFNeIp3fIwxLU1VWHPgUShwx7XM7oSKa8l2v8CvnamwmrPJdpArLrrikR8fTPjSEaXofkyKppFPTybkdjl+qnNiceSOiwZ+chpaLwDtSCUmmGwSGmZCwx3ni176OWHgNy9JondsKeNhkhE5DJ/Ei8KvGQcelDlufc5OoDpy8wmlrJybMiRKsu0Es5sBbj6Yj+EVplGWYFrc9soWdh9LywdII2R4VTEtz2yOvkTI1pSFwMmGZthsvG/Z28PPn30CjGTTl7mYkugfS6hOvkzjHwoGv2Z3WgDdOKA/YktzZfbiXHz2zi/rqMk6eWsPCKd4mP00ie4708sOndzG5ppwz59QFbU5suPflfdy3bh8zJ1Uyu66K5U1ybofjDBgclZlXxMKBO/PIK+dFJ2GqM3Xyz+9cypWnTR/j3UIhmPY5/tLVi3nbKaIBd4uUqWmoLueZWy4K2pTQ4ogTJnocXC8Wc+CZOCIRupWT2BHek8TwBH4ggcHGxq/YRrFw4M6Fms88Z9DTkUO5GZN9IXjZDhmFj+S/dBXJ1zo2Qz5JdOBjEkUlx5D+OxZNEEpkBO4NScjXOl4M0x+fFAvvkY+WOohEuiPhNHCSLwSv5XVmaH7Ygz6+uximhOYdDce/pHyKzhiLRczvPZnOdRj2OfBdh3r4+7vWM2BY9A6mZUZyIXjDF369mae2tQHh+ZGMqozwwQ37+b59jQHsO9LLDAladUJ22/LgIo9HKbFw4N0DKYqLFNUhjyWycV8H6/d2cN6CBmbVVbK8qY4lMyYGbVYseXDDfiZWlnDtmTNZMrM2aHMizZNbD7LrUDcXLGwE0hEzLzylMWCrwk1ZSXo2oLHGW2lzLBy4QvGR8+eiQr7lzVm4/H/XnsacBklY7CWmpbl08TS+8I7FQZsSeUxLM21iBT/8QHPQpkQG51ovL5VFzDExrGjEY0h64Co/MUTq5hoy550/KZ/WuGLiwPNfFfcjCt5w/AoxGSW8aoag45/EifSPofTZfBAdeI44gayi0MFkBO4fEmTJPUzRfedNOsm68nxaN/xebwyMPOU6QU6TmyIdPAavOnc+0Sn9IORLM2MiP4a547S16dO0buQXMb/16OtAeHc0fv13WzIyR4fSknA4lrjRM2Bw4TefpK1rAIDSknD1iSgkNT7cPcBF//YnOvtSx5Q3SzCwvNjyZldmGsVLIu/Adx3qBuCdy2YGbMnIbH2zi8YJ5dy4ogmAWZMqqSmP/GkPJUd6BmnrGuCSxVM5bWYt71o+K2iTIkdrZz+dfSnecfp05jfWZMrPXzA5QKuiR0N1WWZ2wEsi70lMS7NkxkSmTPQ2eWihGJZmxqRK/uGSk4M2JfY4F8xVp03nnWeG8wc97DijxuuWz+SiRVMDtia6GJZmbkOV58eJ/L182OfnJG6Ef4Rn63x0kRg97uCXCmrMVlJK/UQpdVAptTmrrF4p9ahSapv9P7AJskJPlF+zkSnJGXhC3JwXTpkSvGq8mBIAzBX8SvacyxF+Blw+rOxW4DGt9ULgMft5IBimDnW4UBmB+4df2ts4E8XInmHEr2TPY86Ba62fUkrNHVZ8DXCh/fgO4EngFhftygmtNbsP9zBvcntScNYAABIvSURBVLi2pR/pGeSAnaeze8BgSnk45+eDxs3uvedwLzva0gvapSH7QQ+zK+xPmeyyAy8Bmccy6CgM56x1DxjhcOCjMFVr3QqgtW5VSgWSr+rJ19to7ewPnQO/6vanae3szzyf3xgu++LG5pZO3vGfz2SeV4dU5RPGaIRf+PVm7lm777jysJ7DqLD9YDeTPQ5kBT6oUJRSq4BVAE1NTa5+95HuQQBuvnihq987Xg73DHLp4qlctzythDhTkr56ypGedD/49GWnsHRmLWeJZjlnjvQM0lRfxeeuXJQpm1BRyqJpkmR7PNRVlTGpytt8mFC4Az+glJpuj76nAwdHe6PWejWwGqC5udnVMYgzXzer3nu5Tj4YpsXJUydw+VJJVuwHTj84b8Fkls2eFLA10SJlaeqqy6SvuoxhaabVeh8zvdDJwgeBm+zHNwEPuGNOfoQxZZZlaSwti0B+Yoj6pGAkQbE3+CVeyEVG+EvgeeAUpdQ+pdRHgNuAS5RS24BL7Oe+Mx7Jk2dR8LQkK84HN9rBzDMejjCEYYpKygv8CnGdiwrlxlFeuthlW/Imn1yYfmHKRgjfCeOdWFQwLe150oEk4tcPY6SXml/afQTILxemVxHwjvQM8tTrbfSlTECcSU64cIqeer2NP+88DIT3RzNMmaI6e1M8sfUgln3r09Y9INmhXMRp6sM9g77cEUbagT+y+U0AykMQ3e9HT+88Jupg4wTvJURJp61rgA/85EUgPWU1qdL7Vf+oc8fzuzMRPB2a59QHY0zMOWyr5Lwksg7cyajzofPmhmLjRu+gSU15Cb/9P+dTUlzEjFrZvOM1/fbdzq1XLOKvmmdTV10WsEXhp3fQpLRY8cd/eGumTDLMe8PJU72XYkbWgTtzzfVV4bhoTUtTVlIkt6M+4uQdnDaxgnpx3jlhWhalxdJP/aDMh5mB4IeuBZKJmhYS5YEhORh9R2Kf5I/0U/8IhYwwrIw/apq7OkLDtCiVCyNvxtMKzo+4SDZzR2SD/hGKcLJhxZEQhkV5YFo6NHcDSSFsfSAKpEfgcr78QGSEJ2DbwS4g/9GXm6dUa80PntrJ4e4BNuzrCJUePQqocbTGA+tbeHxLOoJD2EeUjnVBBLOyLM33/7SDjt60IuLlN9rljsVDsiWjxT6IKyLrwH//SlpCuGBKzRjv9I597X3c9sgWyoqLKClWXLpYUlD5xT/95lU6+1JMriljjg+pq6LKzkM9fOP3WykrKcr80P3FwsaArUoGvQOG58eIrAO3NNSUl3DuScElW3VUEN+44XSuCWlS5bgyaFq8/5w5fOnqJUGbEmqcPnr7u5dJwCqf8UOeGdl7fr9yzo1lA4gKIggk01FuyDpBcIgK5QSkzOCjqEkMjuCQxbjccELtSh/1H1GhnADT0uOKNeBqFDxxJIVTYDuYlpbFuByQSI3B4ccO8ch6Hr+yPo9lA4RnM1FS0FqHYgotChgyzRcYoQgnG0YOdQ/wq7X7mFWX/yKBG4HhvvzgK2w/2M3R/hQgt6eFkm9bWJbmlns3sr+zD4jOeXfqqV3ePDYSv3xxD7/d2Jp53tGXlg8GPdhJIjIHPgqbWjoBWDx9ou/HNi3Nz57bzc62bkqLi7hg4WQWTfPfjiRypHeQe9buY8+RXlbMq+fcBcEpkMLKr9buY8O+DvpSJn0pk/KSYt56ciMnTw1ObptYfBhfRHIEbtor6393kf/JjJ1FofeunMPH37bA9+MnGWc+96NvPYn3vmVOwNaEE8PSLG+q444PrwjalMRT50OgvUiOwIOc1zMl/kZgZGKfyHTAqKSjDUrfDAMyhTIKQa6sp0RXGxiGvSlFFuRGxzBlcTcsiIxwFJxpjCBH4FFZQIsThkjixiQM6iwhjR/tEMmWdnaXjedWulA9QJA/HnEkH2WG6O7HRuSV4UFyYo7Cfev2AYWdoEIj4KVMi+u+9xx723sBmQN3g3zO4K/XtfCV37wCRG8EnpEReqQi/N//vZYXd6UTfLf3DnJm0yRvDiSMSbY0tsiHZNaRdOCOE57uY97Jrn6DTS2dnD23jqUza3nbKVN8O7YA6/d20DNg8jcXzGPlvIagzQkVf955mCkTKjh7Xh0A71o+K2CLBJAR+KgYlsWKufXHxN7145gA1yybyftWioTNbwzLYkJFCZ+/anHQpoQOw9Kcu6BBIjOGDD/UUpGcTBxvHJRCcObdZfEyGGRud3QkTVo4Cf0IXCm1G+gCTMDQWje7YdRYGJamotTfDiuhY4NFnNTomBKZMZREJRbK27TWh1z4npwJ4mIeSqArF0oQGJamRM79iBiyeSeUSE7MUTjSM8jUieNbwMxVEdA7aNDdb3DwaD8gI3C3GasdtNYc6h6ke8CQETjp89HWPZDRwWrS2amkX4aPKIzANfAHpZQGfqC1Xu2CTSfkkU2ttHT0cdrM2oI+n8+6p2FanHfb47T3pjJlFaXFBR1XOJ5c2uJHT+/iaw+/BsCpAQQvcwNHNeWGivD7f9rB13+39bhy6ZfhIFum7IfIYrwO/Dyt9X6l1BTgUaXUFq31U9lvUEqtAlYBNDU1jfNwsL8zPRL+xEXeB5LqNyzae1NcsXQa5y+cTEVJMRcslAh4frK/s4/ykiK+ePViTp8p+ubWjn6qyor5/FWnZsqKleLypdMCtEoIinE5cK31fvv/QaXU/cAK4Klh71kNrAZobm4e9yDEtOV88yZXj/erxj6WrTw5e269RL8LCNPSVJUVy/m3MSyL6vISOR8hZ+rEcl+OU/CqkFKqWik1wXkMXApsdsuw0fAzEmEmn6AsEAWG5L48FlHjRAO/wj2MZwQ+FbjfnucpAf5Ha/07V6w6AaaPemyJvRE8pim5L7MJYg+EkD9+tVHBDlxrvRM4w0VbciLl4wg8JZEHAydlWaKwyEKiDUYDv/pspGSEg4bF09vagPGv8I4WBW/P4V52HuoGoK1rABCJlpeM1AoDhslLu9oxLIvWjv7Y/IDqPKJZbT/YzT47cFo2b3b2S3+MAMU+hfmIlAP/zYb9rNvTQVVZ4ZKpsU7rTT99kV2Heo4pm1RVWvDxhNEZLTLk3Wv28YVfDy2nnDE74uqTAq7l6//rOTqy5KvZNM+pG6dBglc4fruzb+S2c5tIOfAuOwv8rz56rqfHuGzJVP72rScBUF5SFEjy5CTjtPNdq1ZSWlLEnPqqgC3yn65+g3ctn8V7Vx4vvZ3X4L0CSxgfi2f44zMi5cAdBcqs+kpPjzFtYgXLm2SUExTOQnXz3PpEThdorTEtzay6SumHEaXeh4TGELFohIYPi4qmKbK1oHEWjxPouwFJ2xcH/Bp4RMpT+RER0BCZVuCYlkVJkfI13nuYyOx1kH4YWfzyIZFy4G7kwhwL05KNEkFjJDz2t4zAo4/ICIdhWpq7XtoDQJELJydb0fXcjkNs2NsJpHXHcuH4R7a0buO+Dp7dfph1b3TEsg1GExE+v+Mw6/d2ZJ73p0wAmcqLMCIjHMar+49mAlmNh5HO6z/ev5mdWdLBObLK7wvD2+K2R7bw3I7DACydGR/lz1iX8j/+ehM72o6VrhYpEqm+iTrtPYNAWkXkB5Fx4ANGelTy0w+d7cF3W1x75kz+5brTAAnNGRQDhsXK+fX87EMrEpU4Y8CwuGbZDP71XadnypSC8hLph1FjwEjHT1paYLjrfImMA3cWdso9uLANy6K8pEgcd8AYlqa6vCRx7WBaWvpfTPA7AF5khjmZhR0PHLgkzA0HpmVRmsB2kHRx8cHvAHiR6TVehpE1RHkSCgwzmT+khikL53HB8DFaKkTIgTuJHLw4MbJ5JxwkNVRq0mWTccKPvSrZRGYO/KfP7gbcOzHtPYPc8quN9KVMelOmxJwOCE06SNmjrx6gtbOfRTGOO+MoJn/27C5e3jMkG+wdNGUEHhPae9MqFHHgw1j7RjsAs8ctrUqf2DVvtHPXmr3MqK1gTkMVZ8+tH+f3CvnidPGfPruLV1uPMr22kvMXNARqkxcM31H6nSe2M5CymDwhnXZrTkMVK+bFr95JxFGh+LWJODIOHOCvz59HbaU7oV2dOfUff/DsyGY7jwuGpTlnfgM//dCKoE3xBcPSXLd8Jl+5ZmnQpggu4/iVKRMqfDleZCZ+3V6p93JOXcgPI2FrELLmEl+cOXC/pmQj04vcjlHirBbL4lHwJC3+TMqyErlYmwT8TLoOEXHgTnxkN0+K4bNeUxidlGUlKvKe7DuIL0N39qIDz+BFHPChjUFyIQWNaelEbeAxElbfJOH3nX0kFjH/44/bAHfjI9+/riX9nXIhBYrW0NLex1kJyPN4853rqCwtRmt3ImoK4aNxQjlb3uzybQ48Eg58Vl0lV58xg0tOnTru72qeW8d1y2fSnzKZOrGCxppyFywUCuGypdPYeagHS2uuXz4raHM844xZtVx/1ix6B9MR6k6ZNoHLl04L2CrBC7509RJ++eIe5jfW+HI8lR2P2Wuam5v1mjVrfDueIAhCHFBKrdVaNw8vj8QcuCAIgnA84sAFQRAiyrgcuFLqcqXUVqXUdqXUrW4ZJQiCIIxNwQ5cKVUMfBe4AlgM3KiUWuyWYYIgCMKJGc8IfAWwXWu9U2s9CNwJXOOOWYIgCMJYjMeBzwT2Zj3fZ5cdg1JqlVJqjVJqTVtb2zgOJwiCIGQzHgc+klL9OE2i1nq11rpZa93c2Ng4jsMJgiAI2YzHge8DZmc9nwXsH585giAIQq4UvJFHKVUCvA5cDLQALwHv0Vq/coLPtAFvFHRAmAwcKvCzYUbqFS2kXtEiLvWao7U+bgqj4K30WmtDKfUJ4PdAMfCTEzlv+zMFz6EopdaMtBMp6ki9ooXUK1rEtV4O44qForV+GHjYJVsEQRCEPJCdmIIgCBElSg58ddAGeITUK1pIvaJFXOsF+ByNUBAEQXCPKI3ABUEQhCzEgQuCIESUSDjwMEY9VEr9RCl1UCm1OausXin1qFJqm/2/Luu1z9r2b1VKXZZVfpZSapP92u1KKWWXlyul7rLLX1BKzc36zE32MbYppW5yuV6zlVJPKKVeU0q9opS6OQ51U0pVKKVeVEptsOv1lTjUy/7uYqXUOqXUQzGq027bnvVKqTVxqZfraK1D/UdaY74DmA+UARuAxSGw6y+A5cDmrLKvA7faj28F/tV+vNi2uxyYZ9en2H7tReAc0qEJHgGusMs/BvyX/fjdwF3243pgp/2/zn5c52K9pgPL7ccTSG/WWhz1utk21NiPS4EXgJVRr5f9/f8A/A/wUIz64W5g8rCyyNfL7b/ADcihIc8Bfp/1/LPAZ4O2y7ZlLsc68K3AdPvxdGDrSDaT3vx0jv2eLVnlNwI/yH6P/biE9G4ylf0e+7UfADd6WMcHgEviVDegCngZeEvU60U6hMVjwEUMOfBI18n+vt0c78AjXy+3/6IwhZJT1MOQMFVr3Qpg/59il49Wh5n24+Hlx3xGa20AnUDDCb7LdezbyjNJj1YjXzd7qmE9cBB4VGsdh3p9G/gMYGWVRb1OkA6M9wel1Fql1Cq7LA71cpUoZKXPKephyBmtDieqWyGfcQ2lVA1wL/BJrfVRe+pwxLeOYk/o6qa1NoFlSqlJwP1KqaUneHvo66WUegdwUGu9Vil1YS4fGcWO0NQpi/O01vuVUlOAR5VSW07w3ijVy1WiMAKPUtTDA0qp6QD2/4N2+Wh12Gc/Hl5+zGdUOnBYLXDkBN/lGkqpUtLO+xda6/vs4ljUDUBr3QE8CVxOtOt1HvCXSqndpBOqXKSU+u+I1wkArfV++/9B4H7SCWQiXy/XCXoOJ4e5sBLSCwnzGFrEXBK0XbZtczl2DvwbHLvI8nX78RKOXWTZydAiy0ukF9OcRZYr7fKPc+wiy93243pgF+kFljr7cb2LdVLAz4FvDyuPdN2ARmCS/bgSeBp4R9TrlVW/CxmaA490nYBqYELW4+dI/9hGul5e/AVuQI4NeiVpNcQO4PNB22Pb9EugFUiR/tX+COk5tMeAbfb/+qz3f962fyv2Srhd3gxstl/7DkO7YyuAe4DtpFfS52d95sN2+XbgQy7X63zSt4wbgfX235VRrxtwOrDOrtdm4It2eaTrlfX9FzLkwCNdJ9KKsw323yvY13zU6+XFn2ylFwRBiChRmAMXBEEQRkAcuCAIQkQRBy4IghBRxIELgiBEFHHggiAIEUUcuCAIQkQRBy4IghBR/j8GfY42F6ZRxQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot(data.DoM)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(1, 14546)\n",
+ "(2, 17474)\n",
+ "(3, 20701)\n",
+ "(4, 26714)\n",
+ "(5, 19521)\n",
+ "(6, 13445)\n",
+ "(7, 19550)\n",
+ "(8, 16188)\n",
+ "(9, 16843)\n",
+ "(10, 20041)\n",
+ "(11, 20420)\n",
+ "(12, 18170)\n",
+ "(13, 12112)\n",
+ "(14, 12674)\n",
+ "(15, 20641)\n",
+ "(16, 17717)\n",
+ "(17, 20973)\n",
+ "(18, 18074)\n",
+ "(19, 14602)\n",
+ "(20, 11017)\n",
+ "(21, 13162)\n",
+ "(22, 16975)\n",
+ "(23, 20346)\n",
+ "(24, 23352)\n",
+ "(25, 25095)\n",
+ "(26, 24925)\n",
+ "(27, 14677)\n",
+ "(28, 15475)\n",
+ "(29, 22835)\n",
+ "(30, 36251)\n"
+ ]
+ }
+ ],
+ "source": [
+ "for k , row in data.groupby('DoM'):\n",
+ " print ((k,len(row)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DoM\n",
+ "1 14546\n",
+ "2 17474\n",
+ "3 20701\n",
+ "4 26714\n",
+ "5 19521\n",
+ "6 13445\n",
+ "7 19550\n",
+ "8 16188\n",
+ "9 16843\n",
+ "10 20041\n",
+ "11 20420\n",
+ "12 18170\n",
+ "13 12112\n",
+ "14 12674\n",
+ "15 20641\n",
+ "16 17717\n",
+ "17 20973\n",
+ "18 18074\n",
+ "19 14602\n",
+ "20 11017\n",
+ "21 13162\n",
+ "22 16975\n",
+ "23 20346\n",
+ "24 23352\n",
+ "25 25095\n",
+ "26 24925\n",
+ "27 14677\n",
+ "28 15475\n",
+ "29 22835\n",
+ "30 36251\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "def count(row):\n",
+ " return(len(row))\n",
+ "\n",
+ "by_date = data.groupby('DoM').apply(count)\n",
+ "by_date"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXydZZn4/8+VPSd70jTN2jRtKU0pbdJayi6CgigUsGBBAX/iVB38jo7+Ztx+M+p3vsxXZ1RmnBkZUVRAtspiKwMigsjWPem+L9nXNtvJnnNy//44z0nTNMs5ydlzvV+v8+rpfc7z5Hk4NNe5l+u6xRiDUkopFRXsC1BKKRUaNCAopZQCNCAopZSyaEBQSikFaEBQSilliQn2BUzXnDlzTHFxcbAvQymlwsru3bvPGGOyx3stbANCcXExu3btCvZlKKVUWBGR6ole0yEjpZRSgAYEpZRSFg0ISimlAA0ISimlLBoQlFJKARoQlFJKWTQgKKWUAjQgKKVU2BhwOPn+q0fYU9vhl/NrQFBKqTDR0jXAf//lJMea7H45vwYEpZQKEy32fgDmpsb75fwaEJRSKky0dA0AMDclwS/n14CglFJhornL1UPI0R6CUkrNbs32AWKihAxbnF/OrwFBKaXCREvXAHNT4omKEr+cXwOCUkqFiRZ7P9mp/pk/AA8CgogkiMgOEdkrIgdF5HtW+3dFpF5E9liPm0cd800ROSEiR0XkxlHtq0Rkv/XaT0RErPZ4EXnOat8uIsW+v1WllApvLV0D5KT4Z/4APOshDAAfMsasAFYCN4nIWuu1h40xK63HKwAiUgpsAJYBNwE/FZFo6/2PABuBxdbjJqv9AaDdGLMIeBj4wcxvTSmlIkuzvZ+cYPYQjEu39ddY62EmOWQd8KwxZsAYcxo4AawRkVwg1Riz1RhjgCeA20Yd87j1/HngenfvQSmllCtLuaN3iLlB7iEgItEisgdoAV43xmy3XvqSiOwTkV+KSIbVlg/Ujjq8zmrLt56PbT/vGGOMA+gEssa5jo0isktEdrW2tnp0g0opFQncOQhB7SEAGGOcxpiVQAGub/uX4Br+WYhrGKkR+JH19vG+2ZtJ2ic7Zux1PGqMWW2MWZ2dPe4e0UopFZFa7K6AkO2nHATwcpWRMaYDeAu4yRjTbAWKYeDnwBrrbXVA4ajDCoAGq71gnPbzjhGRGCANaPPqTpRSKoK1uJPS/JSlDJ6tMsoWkXTreSJwA3DEmhNwux04YD3fAmywVg4twDV5vMMY0wjYRWStNT9wH7B51DH3W8/XA29a8wxKKaU4l6XsrzpGADEevCcXeNxaKRQFbDLGvCwiT4rISlxDO1XA5wGMMQdFZBNwCHAADxpjnNa5vgj8GkgEXrUeAI8BT4rICVw9gw0+uDellIoYLVaWcqafspTBg4BgjNkHlI3Tfu8kxzwEPDRO+y7gknHa+4E7p7oWpZSarZq7Bsj2Y5YyaKayUkqFhRZ7P3P9uMIINCAopVRY8HeWMmhAUEqpsODqIWhAUEqpWW3A4aS9d8ivS05BA4JSSoW8kZ3StIeglFKzmztLWSeVlVJqlnNnKfuzsB1oQFBKqZDn7iH4s7AdaEBQSqmQ19zV7/csZdCAoJRSIa/F7v8sZdCAoJRSIa+5y/9ZyqABQSmlQl5L14DfJ5RBA4JSSoW8Fns/OX7OQQANCEopFdLcWcpz/ZylDBoQlFIqpLWOLDnVHoJSSs1qze6yFdpDUEqp2a3V7v+tM900ICilVAjTHoJSSinAtcIoOkrISvJvljJoQFBKqZDWbOUg+DtLGTQgKKVUSGvu6g9IUhpoQFBKqZDWah8ISNkK0ICglFIhTXsISimlzu2lrD0EpZSa3dxZytpDUEqpWS5QO6W5aUBQSqkQ5d5LOVt7CEopNbu5s5S1h6CUUrNcILOUQQOCUkqFrOauAbKTA5OlDB4EBBFJEJEdIrJXRA6KyPes9kwReV1Ejlt/Zow65psickJEjorIjaPaV4nIfuu1n4iIWO3xIvKc1b5dRIp9f6tKKRVeWuwDAdkHwc2THsIA8CFjzApgJXCTiKwFvgG8YYxZDLxh/R0RKQU2AMuAm4Cfiki0da5HgI3AYutxk9X+ANBujFkEPAz8wAf3ppRSYa2lq5/sAFQ5dZsyIBiXbuuvsdbDAOuAx632x4HbrOfrgGeNMQPGmNPACWCNiOQCqcaYrcYYAzwx5hj3uZ4Hrnf3HpRSarYKxR4CIhItInuAFuB1Y8x2IMcY0whg/TnXens+UDvq8DqrLd96Prb9vGOMMQ6gE8ga5zo2isguEdnV2trq2R0qpVQYGnQM09YzGJB9ENw8CgjGGKcxZiVQgOvb/iWTvH28b/ZmkvbJjhl7HY8aY1YbY1ZnZ2dPddlKKRW2WrsDt5eym1erjIwxHcBbuMb+m61hIKw/W6y31QGFow4rABqs9oJx2s87RkRigDSgzZtrU0qpSNJsJaUFKgcBPFtllC0i6dbzROAG4AiwBbjfetv9wGbr+RZgg7VyaAGuyeMd1rCSXUTWWvMD9405xn2u9cCb1jyDUkrNSoHOUgaI8eA9ucDj1kqhKGCTMeZlEdkKbBKRB4Aa4E4AY8xBEdkEHAIcwIPGGKd1ri8CvwYSgVetB8BjwJMicgJXz2CDL25OKaXCVaDrGIEHAcEYsw8oG6f9LHD9BMc8BDw0Tvsu4IL5B2NMP1ZAUUop5RoyCmSWMmimslJKhaSWAGcpgwYEpZQKSc32AeYGcIURaEBQSqmQ1NLVH9AcBNCAoJRSIalFewhKKaXcWco52kNQSqnZLRhZyqABQSmlQo47S1mHjJRSapZrsbbO1EllpZSa5Vrs2kNQSimFq4fgylLWgKCUUrNac1c/c5LjiA5gljJoQFBKqZDTbB8IaFE7Nw0ISikVYlxZyoEdLgINCEopFXJcWcraQ1BKqVktWFnKoAFBKaVCijtLOdBLTkEDglJKhZSWkb2UNSAopdSs1hykLGXQgKCUUiGlNUhZyqABIaCMMXz7pf28c7w12JeilApRzV0DRAkBz1IGiAn4T5zFGjr7eWp7DT0DDq5enB3sy1FKhaDmrn6yU+IDnqUM2kMIqIrqdgAONXYF+UqUUqGqxT4QlPkD0IAQUBU1roBwsrWH/iFnkK9GKRWKmrv6g7LCCDQgBFRFTQfRUYJz2HC8uTvYl6OUCkGtQcpSBg0IAdM/5ORQQycfKc0B4FBjZ5CvSCkVagYdw5ztGQxKHSPQgBAwB+o7GXIa1q3MJykumkMNOo+glDrfmZG9lLWHENHc8wer5mewNDeVw432IF+RUirUjOylrD2EyFZR3UFhZiLZKfGU5qVyqLGL4WET7MtSSoUQd5ay9hAimDGGipp2yosyAFiam0r3gIO69r4gX5lSKpSMZClrDyFy1Xf00WIfGAkIpbmpgOYjKKXON5KlnByiAUFECkXkzyJyWEQOisiXrfbviki9iOyxHjePOuabInJCRI6KyI2j2leJyH7rtZ+IiFjt8SLynNW+XUSKfX+rwVNR0wEwEhCWzEshSjQgKKXO12IPXpYyeNZDcABfM8YsBdYCD4pIqfXaw8aYldbjFQDrtQ3AMuAm4KciEm29/xFgI7DYetxktT8AtBtjFgEPAz+Y+a2FjorqdhJio7g4NwWAhNhoSrKTdaWRUgHQ2TeEMeExX9fcFbwsZfCglpExphFotJ7bReQwkD/JIeuAZ40xA8BpETkBrBGRKiDVGLMVQESeAG4DXrWO+a51/PPAf4qImHD5FKdQWdPOpQXpxEafi7+luanstkpZKKV8zxjDVzft5aXKemxx0RRkJFKQYaPQ/Wem++82UhNjsAYsgqrFPkB+eggHhNGsoZwyYDtwJfAlEbkP2IWrF9GOK1hsG3VYndU2ZD0f2471Zy2AMcYhIp1AFnBmzM/fiKuHQVFRkTeXHjT9Q04ONnTxuatLzmsvzUtly94GOnuHSLPFBunqlIpcv3qvipcq67lzVQEpCbHUtfdS297HztNt2Acc5703JT6Goiwb//eO5VxakB6kK3ZtjrOyMHg/3+OAICLJwAvAV4wxXSLyCPBPgLH+/BHwWWC8MGsmaWeK1841GPMo8CjA6tWrw6L3sL++E8ewobzo/A956aiJ5csXZgXj0pSKWLur2/jnVw7z4dIc/mX9pRd8++/sHaK2vZe69j7qrD8f31rFG4dbghYQhpyuLOVg1TECDwOCiMTiCgZPGWNeBDDGNI96/efAy9Zf64DCUYcXAA1We8E47aOPqRORGCANaPP2ZkKRu8Jp+fyM89rdK40Oa0BQyqfOdg/w4FOV5Gck8sM7V4w7FJRmiyXNlsYl+WkjbX882ERte28gL/U8rfbg7ZTm5skqIwEeAw4bY348qj131NtuBw5Yz7cAG6yVQwtwTR7vsOYi7CKy1jrnfcDmUcfcbz1fD7wZKfMHFTXtzM+yMWfMMrLslHiyU+J1pZFSPuQcNnz52T209Q7y00+Vk5bo+XBsYaaN2rbgBYTmIO6l7OZJD+FK4F5gv4jssdq+BdwtIitxDe1UAZ8HMMYcFJFNwCFcK5QeNMa4az1/Efg1kIhrMvlVq/0x4ElrAroN1yqlsOdKSOvgqkVzxn19aW6qrjRSyof+/U/HePfEGX7wieUsy0ub+oBRCjNtvHv8zNRv9JOWEOgheLLK6F3GH+N/ZZJjHgIeGqd9F3DJOO39wJ1TXUu4qWvvo9U+cMH8gVtpbiqPnTzFoGOYuBjNEVRqJv58tIWfvHmCO1cV8MkPeL/opDDDRlNXP/1DThJio6c+wMdaQqCHoL+F/Mhd0K6sKGPc10vzUhlyGk626t4ISs1EXXsvf/vcHpbmpvJPt13wndMjRVmJgKuyQDC02IObpQwaEPyqsqYDW1w0F89LGff1UitRTYeNlJq+AYeTB5+qwOk0PPKp8ml/uy/MsAFQE6R5hOaufuYkBy9LGTQg+FVFTTuXFqQREz3+f+YFc5JJiI3SiWWlZuD/vHyYvXWd/PCuFRTPSZr2eYoyXQGhLkgBocU+ELQqp24aEPzEtUNa10j9ovFERwlL5qVyWAOCUtOyeU89T26rZuM1Jdy4bN6MzpWdEk98TFQQewgDQaty6qYBwU/21bkT0iYOCOCaWD7U2BU2tVaUChXHmu1844X9rCnO5O9vXDLj84mItfQ0SHMIXf1B20vZTQOCn5ybUJ4867E0N4WO3iEaO/sDcVlKRYTuAQdf+M1ukuJj+M97yiYclvVWYUZiUHoI7ixl7SFEqIrqdoqzbFOuGCjNO5exrJSamjGGb7ywj6ozPfzH3WU+/VZdlGkLSrayO0tZ5xAi0Ngd0iazZF4qIrrSSClP7a5u5+V9jfztDRf5vOxLYaYNe7+Dzt4hn553KueS0rSHEHFq2/o40z1I2fypA0JyfAzzM2260kgpD/3indOk22IvqCDsC4WZwVl6eq5shfYQIo57/mCiDOWxSvN0pZFSnqg+28Nrh5r49GXzSYzzfTaxOxch0MNGLSNDRtpDiDgVNe3Y4qJZkjN+QtpYpbmpVJ3tpXtMjXal1Pl+9V4VMVHCfZfP98v5CzNd2cqB7iG0dPUHPUsZNCD4RUVNOysK0j1e+eDeG+GI9hKUmlBn7xCbdtVy64p8vy3PTEmIJcMWG/Cqp3XtfcxNSQhqljJoQPC53kEHhxvtlM/3fJMNXWmk1NSe2VlD76CTB65a4NefU5hpC3gP4XBjF0smKHETSBoQfGxfXSdODxLSRpuXmkCGLVYnlpWawJBzmF+/V8WVi7JGvkD5S2Gmjbr2wCWnDTqGOdnaPTJSEEwaEHxsqgqn4xER3RtBqUm8sr+Rpq5+PneV71cWjVWYYaOuvRfncGCqB5xs7WbIaViaqz2EiFNR3cGCOUlkJsV5dVxpbipHmuw4nMN+ujKlwpMxhp+/c4qF2Ulce1G2339eUaaNIacZWQrqb+6hYu0hRBhjDJU17VOWqxhPaV4qA45hqs72+OHKlApfO063caC+iweuKiEqAJOugV5pdKTJTlx0FCUzqNTqKxoQfKimrZezPYOs8iAhbSz3t4ODOmyk1Hl+8e5pMmyx3FGeH5Cf5y6DHaiVRocbu1ick+yzekwzEfwriCDnEtK8DwgLs5OJi47icKPd15elVNg6faaHPx1u5t618wO2rWVeeiJREsiAYA+J4SLQgOBTFdUdJMfHcJGHCWmjxcVEsTgnWVcaKTXKr947TWxUFJ/2UyLaeGKjo8hNS6Q2ACuNWu0DnOke0IAQiSpq2llRmDbt5BJdaaTUOR29g/x2Vx3rVuYxNyWwNX4KMwNTBntkQjkEchBAA4LP9A46ONJkn9ZwkVtpbipnugdoseveCEo9vaOGviEnD1zt30S08RRl2gIyZHSkKXRWGIEGBJ/ZW+t9QtpY5zKWdR5BzW6DjmEef7+KqxfP4eJ5gf9lWZhho8U+QP+Q068/53Cj3ZWY6uUydX/RgOAjnu6QNpml1v/4OmykZruX9zXQ3DXg9zIVEynKcq00qvNz1dPDjV1cHAIJaW4aEHyksqadkuwk0m3Tj/Rptljy0xN1YlnNasYYfvHOaRbPTQ5IItp4CtxlsP24v3Iolaxw04DgA64d0jpmNFzkpnsjzG6vHWziy89WMhygsgmhaOupsxxq7OKBqxYgEpzqn4FITjvR4ipZcXGITCiDBgSfqD7bS1vPoE8CwtLcVE61dtM36N+xSxV6jDH88LWjbN7TwJ8ONwf7coLmsXdOk5UUx21lgUlEG092cjwJsVF+nVh2TyiXag8hsuyuthLSvCh5PZHS3FSGDRxt1onlUDfgcPp0Rdj2020cb+kmOkr42dunfHbecHKytZs3jrRw7+WBS0Qbj4hQmOHfMtiHG7uIi4liQQiUrHDTgOADW/Y2kJMaz+K5M+/6LdO9EcLGz/5yiuv+9S3Odg/45Hy/2VZNakIMf3fjEnZXt7Ozqs0n5w0nv3z3NHExUXx6beAS0SZSlGnza3LakSY7F4VIyQq30LmSMFV9toe/HGvl7jVFPtntqCAjkZT4mFm70sjeP8RrB5vYvKc+2Jcypb21HfQMOnlia/WMz9Vi7+e1g02sX1XIfZfPJ8MWy8/+ctIHVxk+2noGeaGijjvK8pkT5K0kwbUvQm1bL8b4Zz7ncGPXyMrCUBEz1RtEpBB4ApgHDAOPGmP+XUQygeeAYqAKuMsY024d803gAcAJ/I0x5jWrfRXwayAReAX4sjHGiEi89TNWAWeBTxpjqnx2l370m23VxEQJd68p8sn5RvZGmCU9BGMMhxvt/OVYK28dbWF3dTsOa0I1KymeqxbPCfIVTuxYi2tY74mtVXzh2oUz2vR9085ahpyGT60twhYXw/1XFPNvfzrO8WY7i6dRCiUcPbOjhv6hYT4bpKWmYxVm2ugecNDRO+TzPIEWez9nuge5OITmD8CzHoID+JoxZimwFnhQREqBbwBvGGMWA29Yf8d6bQOwDLgJ+KmIuP+lPAJsBBZbj5us9geAdmPMIuBh4Ac+uDe/6x9ysmlXHTcum0eOD/d4Lc1L5UhjV8SuNOnsHeLlfQ383W/3ctk/v8HNP3mHH/zhCF39Dj53dQlPf+4yijJtfGfLAQYdobk/RO+gg9q2Pq5ePIf23iGe31077XM5hw3P7KjlykVZLMxOBuC+y4tJiI3i0VkylzA8bHh6ew1XLMyaVi0wfyjM8N9KoyNW8mkobIoz2pQ9BGNMI9BoPbeLyGEgH1gHfNB62+PAW8DXrfZnjTEDwGkROQGsEZEqINUYsxVARJ4AbgNetY75rnWu54H/FBEx/uqr+cjv9zbQ2Tfk8/HOpbkp9Aw6qWnrpTiEJpxm6pkdNTy/u47KmnaGDaQmxHD1Rdlcaz1GB9Xv3FLKA4/v4tfvn2bjNQuDeNXjO9HSDcCnLivC3u/g5++c5p7L5k9r2PDPR1qo7+jj//vY0pG2zKQ4Prm6kKd31PDVj1xEblqiz649FL1z4gz1HX188+aLg30pI9zJabXtvawonPmCkdHO1TAKvx7CCBEpBsqA7UCOFSzcQWOu9bZ8YPTXpTqrLd96Prb9vGOMMQ6gE8jy5tqC4Tfbqlk8N5m1JZk+PW9pbhpARA0bHW7s4psv7qdnwMGXrlvEC1+8nIp/+DD/dU85d60uvKCHdf3SHK6/eC7//qfjAdu5yhvHml0BYXFOCl+4toSatl7+cKBpWud6cls1c1PiuaE057z2z11dwrCBX71XNdPLDXnPbK8hKymOj5TOC/aljCi0ktP80UM43NgVUiUr3DwOCCKSDLwAfMUYM9lvqvG+IplJ2ic7Zuw1bBSRXSKyq7W1dapL9qu9tR3srevk3svn+zx5ZnFOMtFRElErjZ7YWk18TBTPblzLVz+yhFXzM6dcXfGPt5Qy5DT88yuHA3SVnjve7Nrlan6mjQ+XzqM4y8ajb5/0egKy5mwvbx93LUqIHfPfozDTxseW5/L09ho6+4Z8efkhpaWrnz8dbuYTqwqIiwmddS5J8TFkJcX5JVv5SJM95IaLwMOAICKxuILBU8aYF63mZhHJtV7PBVqs9jqgcNThBUCD1V4wTvt5x4hIDJAGXLDmzhjzqDFmtTFmdXZ2cFLa3Z7cVo0tLprb/ZA8kxAbzcLspIhZadTZN8TvKutZtzLPq9Ie87OS+Py1JWze08D2U2f9eIXeO9pspyQ7iZjoKKKjhM9dXcLeuk62n/ZuqehTO6qJkokXJWy8poTuAQdPb6/xxWWHpN/ursMxbNjwgcKp3xxgBX6oejrgcHKiJbRKVrhNGRDE9fX3MeCwMebHo17aAtxvPb8f2DyqfYOIxIvIAlyTxzusYSW7iKy1znnfmGPc51oPvBnK8wftPYP8fm8Dt5flk5IQ65efUeqHlUaHGrr40R+P+m0Z3USe311H35CT+y4v9vrYv/7gIvLTE/nOloM4nKEzwXy8ufu8yc/1qwrISorzaqlo/5CT3+6q48NLc5iXNv6ihEvy07h68Rx++d5pv1feDIbhYcNzO2tZW5JJiTWhHkpcuQi+DQgnW3pwDJuQW2EEnvUQrgTuBT4kInusx83A94EPi8hx4MPW3zHGHAQ2AYeAPwAPGmPc/yd/EfgFcAI4iWtCGVwBJ8uagP4q1oqlUPXb3bUMOIa514+7OC3LS6Oxs59Wu2+SngCe3FbFf7x5gh1efoudieFhw2+2VVNelM4l+WleH58YF80/fHwpR5rsPLlt5uv9faF7wEF9Rx8X5Zz7BZYQG839VxTz56OtHPMwy/zVA4209QxOuSjhC9cupNU+wO8qQz83w1vvnzxLTVuvz5Zt+1phRiL17X04fbjizz0UXBqOQ0bGmHeNMWKMudQYs9J6vGKMOWuMud4Ys9j6s23UMQ8ZYxYaY5YYY14d1b7LGHOJ9dqX3L0AY0y/MeZOY8wiY8waY0zIrrVz/YKrYU1xpl/rtLvLaO+p7fDZOStrXOd6Zkfghh/eOXGG02d6ptU7cLtx2TyuXjyHH//xmE8D5HQdt37hj80PuHftfBJjoz1eKvqbbTUsmJPEFQsnXz9xxcIsluen8ejbpyJuKfIzO2pIt8Vy47LQmUwerTDThmPY0Njpu3kEd8mK4qzQW0EYOjM4YeLt463UtPX6fY/XS/LTiImSkX0WZqp7wMHRZjuJsdG8cqCJ9p5Bn5x3Kk9urSIrKY6PLp/+P3gR4bu3LqPf4eQHfzjiu4ubpuPWCqOx6+UzkuK4a3UBm/fU09Q5+cqoQw1d7K5u51OXFRE1xVJVEeHz15Zw6kwPfzwUOUXvznQP8MdDTXyivCCodYsmU5Tp+5VGR5rsLMlJCamSFW6hd0Uh7jfbqpmTHM9Nfv5GkxAbzbK8VCp9FBD21XZgDHz5hsUMOoZ5MQDDD7VtvbxxpIW71xQRHzOzf/ALs5N54KoSnt9dN1JMMFiONduJj4ka+WUx2ueuLsE5bPjVe6cnPcdvtrtWXa1fVTDp+9xuWjaPokwb//0X71cyhaoXdtcx5DTcvSb0JpPd3EtP63y00siVmd8VkiuMQAOCV879gisMyPK4sqIM9tV1+mQytdIaerr7A0WsLEznmR01fv/F8tT2GgS45zLfjA//rw8tYl5qAv+4+YBPx3S9daylm0Vzk8dNQivMtHGztVS0q3/8paL2fteqq1tWeL7qKiY6ir+6poQ9tR3srApuQPQFYwzP7HANvS7yQVFIf8lNTyA6Snw2sdzaPcDZnsGgbAvqCQ0IXnh6h+sXXKAmwMqK0ukddPqkFHZFdTsLs5NIs8Vyz5oiTrR0s8uP37T7h5w8t7OGD5fmkJfumyzbpPgYvv2xpRxs6AroPMhYx5vtk5ZX+Pw1C7EPOHhmgqWiv6usp3fQyb1eZrjfOY2VTKFq66mzVJ3tZUMI9w4AYqOjyE1L8NmQ0eGRkhUaEMLagMPJcztruWGp737BTcW94Y57Mni6jDFU1nZQZp3v4ytySY6PmfAXli+8vK+R9t6hGU0mj+fjl+ZyeUkW//raUdoCNA8yWlf/EI2d/SzOmXiJ5PKCNC4vyeJX71VdUIvJGMOT26pZnp/mdTkE90qmN460cLQpvPfLeGZHLakJMdy8PDfYlzKlIh/mIoyUrNAho/D2yn7XEkF/LjUdqyAjkTnJcTOeWK5pc+3o5l65ZIuL4bayPF7e30hHr39+qT65tYqF2VOvoPGWiPC9dcvoHnDwr68d9em5PTEyoTzFMMfnry2hqaufLXsbzmvfWdXOseZuPr12er3M+y73biVTKGrrGeS1A03cEcKTyaO5NsrxzRzCkcYuctMSZrT3uj9pQPDQk1urKZmTxJULA1eOWUQoK8pgzwx7CO4exugtPu9eU8SgY5iX/DC5vMcq63Hf5cV+2RP3opwUPnNFMc/urGFfne+W5XrCveR0qoqc116UzcXzUi4oZ/GbbdWkJMRw64rpZbin2+LYsKaQzXvqfboUMpBerKhj0DkcsrkHYxVl2TjTPeCTbW0PN9pDdrgINCB45EB9JxU1HXxq7fwplwj6WllROqfO9MxomWhlTTu2uOjzfokty0tjRUGaXyaXn9haRVJcNOUh85EAABuASURBVHeU+29P3K/csJispHj+YfPBgK7NP9bcTWJsNAUZkw8bigh/dXUJx5q7eeuoq+5Wq32AVw80sn5VwYz2TnjgqgUYXHsPhxtjDE/vqKG8KJ0lIbS5/GTcn/VMJ5YHHE5OtnZzcQjftwYEDzy1vZqE2CjWl3u2RNCX3N/qZ5KgVlnbwYqC9AtWxdy9pohjzd0+y3UA13DAy/saub3cf2U9AFISYvnWzRezt7bjgmEZfzreYmfR3GSPvhjcsiKP3LQEfva2axJ40y5rE5zLZjbsWJBh49YVeTyzo4bO3vAqerfjdBunWnvCpncA53IRZjqPcKKlG8ew0R5COHMVZmtg3Yp80mz++wU3kUsL0oieQYJa/5CTQw1dI/MHo92yIo+kuGie3j79zV3Gem5nLYOOYZ9PJo/n9rJ8clLj+fPRlqnf7CPHmu2TTiiPFhcTxWevXMC2U21U1LSPbACzaO7Ma/ZsvKaEnkEnz+4Mr6J3z+yoISUhho9fmhfsS/FYoY+S00J9hRFoQJjSC1ZhtkBOJo9mi4vh4nkp015ptL++E8ewGVlhNFpSfAzryvJ5eV+DT75pOq26RWtLMgOy65WIUF6UMeNVWJ7q7BuiuWvAq3vbsKaQlPgY/uaZSuo7+ny2mdLS3FTWFGfy3M7asElU6+gd5JUDTdxelj+jIbNAy0qKIzE2esZlsI80dhEfE0Vx1oUJjaFCA8IkjHH9giubZmE2XykrSmdPbce0krHcmc7j9RAA7llTxIBjmN/5YFP7N62dvwLRO3ArK0qnpq2XM93+r3F0bkLZ82/4KQmx3LO2iLr2PuamxPPhMZvgzMRdHyjk1Jkev+aT+NKLFfUMOobZ8IHwGS4C1xePokzbzHsITV0smReaJSvcQvfKQsD7J89y6kyP1wlEvlZelEH3gGNk20ZvVNZ0UJRpY05y/LivX5KfxvJ830wuP7G1ipxU3/7Sm4p7jqUiAL8UR3ZJ8zKz9rNXLiAxNpp7186/YBOcmbh5+TyS42N4bqfvhvz8xZ2ZvKIwndK80B0ymUhhZiJ1M5hUdpWssIf0hDJoQJjUE1uryEyKC3ryjHu4ZzrzCJU1HRP2DtzuXlPEkSb7SHmL6TjV2s07x8/wqct8+0tvKpfkpxEbLTO6dk8da7Zji4sm38vExJzUBN79+nX89XWLfHo9trgYblmRy//sa8Q+QZmMULG7up3jLd3cE+KZyRMptHoI0/3S1GofoK1nMKTnD0ADwoRq23p5/VAzd60uDHryTHGWjQxbrNeF7ho7+2jq6qdsiozYW1fmYYuLnlHm8pPbqomNloCXIkiIjaY0NzUgPYTjLXYWe7jCaKys5Phxax/N1F2rC+kbcvI/+xp9fm5femZHLcnx4TWZPFphho3eQee0s+MPjWQoa0AIS7945xTRUcJnrigO9qWMJKh5O3nqfv94E8qjJcfHsG5lHr/f1zBhQbbJ9A46eH53HTddksvclPF3/vInXxYBnMyx5u4L9kAItpWF6VyUk8xzu0J32Kizd4iX9zVw68o8kuJjgn050zLTMthHrFIjS0O0qJ2bBoRxtPcMsmlXHbeuyJ9wa8NAKytM53hLt1ebrVdUtxMXE+XRt5K71xTRPzTM5mlkLv+usgF7v4P7grQSq3x+Bn1DzpF/dP7Q0TtIq33AqwnlQBAR7lpdSGVNx8ikd6j53Z56BhzD3BNGuQdjuZee1rZPb6XR4cYu8tISgrJ03RsaEMbx5LZq+oacbLymJNiXMqJ8vutb/l4vxsoraztYnp/mUanu5flpLMtL5ant3k0uG2N4YmsVS3NTWT1/8p6Iv7iHxHy1d8R4RiaUQ6yHAK58jNhoCcnJZfdk8vL8tKCu1JupwkwrW3m6PYRGe0juoTyWBoQx+oecPP5+FdctyQ6p1PpLC9IQ8XxiedAxzP76TsqnmFB2E5GRyeW9dZ0eX9ebR1o40mTnvsvn+6VukScKMhLJTon3az7CUQ9rGAVDVnI8NyzN4cXK+guqqwbbwYYujjTZ+eQHwnMy2c0WF8Oc5LhpBQR3yYpQrXA6mgaEMV6oqONszyAbr1kY7Es5T0pCLEtyPE9QO9zYxaBjeMr5g9HWrcwjMdazyeXKmnY+++udPPD4LnLTEli3MniThSJCWWG6T0twjHW82U5yfAx5ITKEONZdHyikrWeQN4+E1habW/Y2EBstfCwMylxPpTDTNq16RsebQ79khZsGhFGcw4ZfvHOaSwvSWFuSGezLuUBZUTqVNe0eFXObKiFtPCkJsdy6Io8texsmXMa443Qb9z62ndt/+j4VNe187cMX8drfXoMtLriTheXzM6g628tZPyWoHWt21TAKVi9oKtcszmZeakJIDRsNDxu27Gng2ouyyUgKzXLP3nCVwfY+ILjntkJ1l7TRNCCM8vqhZk6f6WHjNSUh+Q+/rCiDrn4Hp870TPneytoO5qUmkJvm3Zr5uy8rom/IyeY95wrGGWN4/8QZPvmzrdz1s60cbuziGx+9mHe//iH+1/WLSfVjETtP+aII4GSON3eH3ITyaNFRwvpVBfzlWCtNnf3BvhwAdlS10dTVz60r/Vf1NpCKMm00dPR7vZrtcGMXCbFRLJiT5Kcr8x0NCBZjDD97+ySFmYnctGxesC9nXO75AE+GRipq2r3qHbitKEhjaW4qT1uTy28dbWH9f2/lnl9s5/SZHv7h46W88/cf4gvXLiQ5hJYQLs9PI2YGRQAnc9baBzcU5w9Gu2t1IcMGnt8dGr2EzXsasMVFc8PSucG+FJ8ozEzEOWxo9DLgHmnqYklOil/yUHxNA4JlV3U7lTUdfO6qkpCtNVIyJ5nUhJgp5xFa7QPUtvVNKyCICPesKeRQYxc3/tvbfOZXO2ns6OOf1i3j7b+/jgeuWhCShckS46JZmpvql4ll9wqjUA8IRVk2Li/JYtOuuoDuETGeQccwr+xv5COlOUEfTvSVwgzvy2CfK1kR+sNFoAFhxM/+cooMWyx3rg78ngeeiooSVhZlTLm80j1sUu7FhPJo68rySUuMpX9omO/fsZy3/u467r28OOgZ21MpK0pn7zSLAE7meEvorjAa65MfKKSmrZdtp88G9TrePtZKZ98Q6yJkuAimVwa7ZaRkRej/vwMaEADXxhV/OtzMvZcXh/y3mfKidI422+kecEz4nsqadmKiZNrrvlMTYnnn69fx5teuZcOaIo/yGEJBeVEGPYNOn29Af6zZTkpCDDmp4xcIDCU3XTKPlIQYfrurLqjXsXlvAxm2WK5aHLgtZ/0tNy2B6CjxaqXRYatkRTjkIIAGBMBVpiI+Jor7g5Rp642yogyMmTxBrbKmg9K81Bl9o09NiA3ZobOJuHtElbW+nUc41tzNRTkpIbnQYKyE2GjWrczjlf2NXmW1+1LPgIPXDzXxsUtzA1ro0N9ioqPIT0+kxot9EUY2xdEho/DQYu/nxYp61q8qIGuCEtGhZGXB5Fm5zmHD3rqOKQvaRaLCzESykuKoqPbdPIIxhuPN9pBeYTTWJ1e79rgI5Naio71+qJn+oWFuXRE5w0VuhZmJXs0hHGnqIj89MeRLVrjN+oDw+PtVDA0P87mrQ6dMxWTSbLEsmptMxQSTp0eb7PQOOr1KSIsUI0UAfdhDONM9SHvvkNd7IATTJfmpLM1NZVOQchI276knLy0haKVM/Kko0+ZVQDjc2BXyeyCMNqsDQs+Agye3VnNj6bywWCPsVlboSlAbr+aQ+5fhdFYYRYLy+emcau2ho3d6ZYrHOh7CJSsmIiJ8cnUB++s7OdTQFdCffbZ7gLePn+GWlXnTKhMe6goybJztGaRnkjk8t/11nZxs7QmLDGW3WR0Qnt1ZS1e/g43XhkfvwK18fgbtvUNUn73wm0plTQdZSXEj5Xpnm7JCax7BR8tPj01j28xQsG5lPnHRUWwKcFnsVw404Rw2rIvA4SI4VwZ7sonl9p5BvvXSfm79r3fJsMVxy4rw2QNiyoAgIr8UkRYROTCq7bsiUi8ie6zHzaNe+6aInBCRoyJy46j2VSKy33rtJ2LN0IlIvIg8Z7VvF5Fi397i+Iacw/zy3dOsKc6c9vLMYCmbJEGt0kpIC4cJUH9YUZhGlPiu8umxlm7SEmPJTgn9+aXRMpLi+MiyHKv0tDNgP3fLnnoWz00Om2WW3hopgz3OxLJz2PDU9mqu+9FbPLezlv/nigW8+f9eG1JFMqfiSQ/h18BN47Q/bIxZaT1eARCRUmADsMw65qci4l7q8giwEVhsPdznfABoN8YsAh4GfjDNe/HKK/sbqe/oC6kS155aPDeF5PgLE9Q6e4c42dozK+cP3GxxMVw8L3XCORZvuSeUwzHAfvIDhXT0DvHHg4EpeFfX3svOqnbWrcwLy/9enphoo5yKmnZu+6/3+PZLB1iSk8L//M1V/OMtpSFR1sUbUwYEY8zbQJuH51sHPGuMGTDGnAZOAGtEJBdINcZsNa6B7yeA20Yd87j1/HngevHz/03GGH72l1MszE7iQxeHX1p9dJSwojDtgh7Cnjprh7RZuMJotPL56ezxQYKaMSYkd0nz1JUL55CfnhiwYaPf73Vt4xmJq4vcMmyxJMVFj0wsn+ke4O9+u5c7fvo+LfZ+fnJ3Gc9uXBs2mcljzWQO4Usiss8aUnJ/Jc0HRv/fV2e15VvPx7afd4wxxgF0Alnj/UAR2Sgiu0RkV2tr67Qv/L0TZznU2MXGa0rCduKrvCiDI012egfPTW5VVLcjApfO9oBQlEH3gIMTLd0zOk+rfYDOviEumhte8wduUVHCnasLePfEGeqmUbbZW1v2NlBWlE5RVuTOX4kIhZk2qs728Ov3TnPdD9/ipcp6Pn9NCW987YPcuiK8e0fTDQiPAAuBlUAj8COrfbz/EmaS9smOubDRmEeNMauNMauzs7O9u+JRfvb2SbJT4rmtLHy/yZQVpeMcNuwbtZlNZW0HS3JSQqroXDC4h8xmWuguXGoYTWb9KlcpFn9nLh9rtnO4sYt1YTSBOl2FmTbeOtrKd39/iBUF6fzhK9fwzZuXRsS/u2kFBGNMszHGaYwZBn4OrLFeqgNGb41UADRY7QXjtJ93jIjEAGl4PkTltUMNXbxz/AyfuaKY+JjQrs0zmbGraYaHDXtq2mf1/IFbcZaNDFvsjCeW3SuMwnXICFzLJK9aNIfnd/u34N2WPQ1ECXzs0sgPCFcvnsPC7CQe+VQ5Tz6whkVh2oMcz7QCgjUn4HY74F6BtAXYYK0cWoBr8niHMaYRsIvIWmt+4D5g86hj7reerwfeNN5s6uult461kBQXzacvC/0yFZPJSIpjwZykkW/Bp8700NXvmLX5B6O5E9RmOrF8vMVOhi2WOcnhvbnLnasLqe/oY9sp/xS8M8aweW89Vy6aE3arsabjvsuLeeNrH+Sjy3PDenhoPFP2cUTkGeCDwBwRqQO+A3xQRFbiGtqpAj4PYIw5KCKbgEOAA3jQGONe8/ZFXCuWEoFXrQfAY8CTInICV89ggy9ubCJ//cFFrF9VEDap5JMpK0rn7WNnMMaMfBv2dA/lSFdelM6bR1ro7B2a9mftnlAO93/0HynNISUhhud313HFIt8Xm6us7aC2rY8vX3+Rz8+tAmvKgGCMuXuc5scmef9DwEPjtO8CLhmnvR+4c6rr8KW5KaG5L663yooyeLGinrr2PiprO0hJiKFkTuR0X2diZAe1ug6uvcj7+SbXCiN7UPeK9pWE2Gg+fmkev6us53/f5vD5WPeWPQ3ExURx47Icn55XBd6szlQOd+7lpRU17VRUt7OyMD1sV0352qWF6USJa+XVdDR19WPvd4T1hPJo61cV0Dfk5JX9jT49r8M5zMv7Grhh6VxSwmzNvbqQBoQwdvG8FBJjo3n3+BmONdt1QnmU5PgYLspJoXKaeyy7VxiFU1G7yZQXpbNgThLP7/btaqP3T57lTPdgROcezCYaEMJYTHQUlxaksWVvA8NG5w/GKp/v2l1uOqtrjodpDaOJiAjrVxWw43QbNePUwJquzXsaSEmI4YNLpr8MXIUODQhhrnx+BgOOYQBWzvKEtLHKCtOx9zs42ep9gtqxZjtzkuPCYo8MT91elo8IvFDhm15C/5CT1w428dFL5oX89qrKMxoQwpx7HqEkO4l0W3gvj/S18vnTr3x6rLk7YoaL3PLSE7ly4RxeqPBNTsKbR1roHnBE1L7Js50GhDDnnjdwJ6qpcxZkJZGWGOt1xrIxhhMt3REzXDTa+lUF1LX3saNq5rmfm/fUk50Sz9qScSvNqDCkASHMZafE8+2bl/LZq4qDfSkhJypKKCtK9zogNHT20z3gCOsM5YncuGweyfExM55c7uwb4s9HWrnl0jyidWVbxNCAEAH+6poSluWlBfsyQlJ5UQbHW7rp6vd8w/ljYbhLmqcS46L52PJcXtnf6NGuXxN5dX8jg87hiMjTUOdoQFARrawoHWNgrxfLTyNthdFY61cX0Dvo5A8HmqZ1fPeAg39/4zgXz0vh0gL9IhJJNCCoiLaiMB0R7yaWjzV3k50SH7GT9KvnZzA/yzbtYaOHXz9GY2c/D92+POzLeqjzaUBQES01IZbFc5O9mkdw75IWqUSET5QXsPXU2ZGNXjx1oL6TX713mnsuK2LVfF3IEGk0IKiIV16UQWVNx5RLLQccTl6sqONosz3ilpyOdUe5a6noS5X1Hh/jHDZ866X9ZCbF8/UbL/bXpakg0oCgIl55UQadfUOcPtsz7uv1HX38yx+OcMX/fZOvbtpLXnoid68pCvBVBlZBho0rFmbx/O46PK02/+TWKvbVdfKPt5RGRLVgdaHw3+JHqSm494ioqG5nYbZrKMgYw3snzvLE1ir+dNi1Cf31S3O4//JirlyUNSvGxj9RXsDXfruXnVXtrFmQOel7Gzv7+OEfj3HNRdnccmnupO9V4UsDgop4C7OTSU2IobK2gxsvmceLu+t4Yls1p1p7yEyK4wvXLuSey4ooyIjcvYDH89Hl8/jHzQd4YXfdlAHhe1sOMeQc5v+su2RWBMvZSgOCinhRUcLKogxe3tvA7yrr6R10srIwnR/ftYKbl+fO2jo8trgYPro8l//Z38h3bi3FFjf+r4PXDzXzh4NN/P1NSyjKml1Bc7bROQQ1K1y3JJt+xzA3L89ly5eu5HcPXskd5QWzNhi4rV9VQPeAg9cOjp+T0DPg4DubD7AkJ4W/urokwFenAk17CGpW+MwVxdx3ebGWWRhjTXEmhZmJvLC7ntvLCi54/eHXj9HQ2c8L95QRG63fHyOdfsJqVhARDQbjiIoS7igr4L2TZ6jv6DvvtQP1nfzq/Sor52DyOQYVGTQgKDXLfaK8AGPgpVH7JDiHDd9+aT8ZtjjNOZhFNCAoNcsVZdm4bEEmL1TUj+Qk/GZbNXs152DW0YCglOITqwo4faaHipp2mjr7+dfXjmrOwSykAUEpxc3Lc0mMjeb53XV87/cHNedgltJVRkopkuNj+OjyeTy/u44hp9Gcg1lKewhKKQDWlxcw5DSaczCLaQ9BKQXA2pIsvnDtQtatzNOcg1lKA4JSCnDlJHzjo7rEdDbTrwFKKaUADQhKKaUsGhCUUkoBHgQEEfmliLSIyIFRbZki8rqIHLf+zBj12jdF5ISIHBWRG0e1rxKR/dZrPxFrgbOIxIvIc1b7dhEp9u0tKqWU8oQnPYRfAzeNafsG8IYxZjHwhvV3RKQU2AAss475qYi46ws/AmwEFlsP9zkfANqNMYuAh4EfTPdmlFJKTd+UAcEY8zbQNqZ5HfC49fxx4LZR7c8aYwaMMaeBE8AaEckFUo0xW42rWMoTY45xn+t54HrR9EillAq46c4h5BhjGgGsP+da7flA7aj31Vlt+dbzse3nHWOMcQCdQNZ4P1RENorILhHZ1draOs1LV0opNR5fTyqP983eTNI+2TEXNhrzqDFmtTFmdXZ29jQvUSml1Himm5jWLCK5xphGazioxWqvAwpHva8AaLDaC8ZpH31MnYjEAGlcOER1gd27d58RkeoxzXOAM97eTAiLtPuByLunSLsfiLx7irT7gZnd0/yJXphuQNgC3A983/pz86j2p0Xkx0AersnjHcYYp4jYRWQtsB24D/iPMefaCqwH3jTuouyTMMZc0EUQkV3GmNXTvKeQE2n3A5F3T5F2PxB59xRp9wP+u6cpA4KIPAN8EJgjInXAd3AFgk0i8gBQA9wJYIw5KCKbgEOAA3jQGOO0TvVFXCuWEoFXrQfAY8CTInICV89gg0/uTCmllFemDAjGmLsneOn6Cd7/EPDQOO27gEvGae/HCihKKaWCJ9IylR8N9gX4WKTdD0TePUXa/UDk3VOk3Q/46Z7Eg+F6pZRSs0Ck9RCUUkpNkwYEpZRSQIQEBBG5ySqmd0JEvhHs6/EFEamyigHuEZFdwb6e6fC2MGKom+B+visi9dbntEdEbg7mNXpDRApF5M8iclhEDorIl632cP6MJrqnsPycRCRBRHaIyF7rfr5ntfvlMwr7OQSreN4x4MO4ktx2AncbYw4F9cJmSESqgNXGmLBNqBGRa4Bu4AljzCVW278AbcaY71vBO8MY8/VgXqenJrif7wLdxpgfBvPapsNKKs01xlSISAqwG1eNsc8Qvp/RRPd0F2H4OVl13ZKMMd0iEgu8C3wZuAM/fEaR0ENYA5wwxpwyxgwCz+IqmKeCzMvCiCFvgvsJW8aYRmNMhfXcDhzGVVssnD+jie4pLBmXbuuvsdbD4KfPKBICwkQF9cKdAf4oIrtFZGOwL8aHJiqMGM6+JCL7rCGlsBleGc3ah6QMVyWBiPiMxtwThOnnJCLRIrIHV4mg140xfvuMIiEgeFwcL8xcaYwpBz4KPGgNV6jQ8wiwEFgJNAI/Cu7leE9EkoEXgK8YY7qCfT2+MM49he3nZIxxGmNW4qoBt0ZELkjw9ZVICAgTFdQLa8aYBuvPFuAlXENjkaDZGud1j/e2TPH+kGaMabb+wQ4DPyfMPidrXPoF4CljzItWc1h/RuPdU7h/TgDGmA7gLVybi/nlM4qEgLATWCwiC0QkDlctpC1BvqYZEZEka0IMEUkCPgIcmPyosOEuZgjnF0YMS+5/lJbbCaPPyZqwfAw4bIz58aiXwvYzmuiewvVzEpFsEUm3nicCNwBH8NNnFParjACsJWT/BkQDv7TqKYUtESnB1SsAV72pp8PxnkYXRgSacRVG/B2wCSjCKoxojAmLidoJ7ueDuIYhDFAFfN49thvqROQq4B1gPzBsNX8L15h7uH5GE93T3YTh5yQil+KaNI7G9QV+kzHmf4tIFn74jCIiICillJq5SBgyUkop5QMaEJRSSgEaEJRSSlk0ICillAI0ICillLJoQFBKKQVoQFBKKWX5/wHq4d41uOMmbAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot(by_date)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Hour Week\n",
+ "0 14 3030\n",
+ " 15 2665\n",
+ " 16 2316\n",
+ " 17 3343\n",
+ " 18 556\n",
+ " ... \n",
+ "23 14 4753\n",
+ " 15 4273\n",
+ " 16 4195\n",
+ " 17 5772\n",
+ " 18 1656\n",
+ "Length: 120, dtype: int64"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ " data.groupby('Hour Week'.split()).apply(count)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | Weekday | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | Hour | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 518 | \n",
+ " 765 | \n",
+ " 899 | \n",
+ " 792 | \n",
+ " 1367 | \n",
+ " 3027 | \n",
+ " 4542 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 261 | \n",
+ " 367 | \n",
+ " 507 | \n",
+ " 459 | \n",
+ " 760 | \n",
+ " 2479 | \n",
+ " 2936 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 238 | \n",
+ " 304 | \n",
+ " 371 | \n",
+ " 342 | \n",
+ " 513 | \n",
+ " 1577 | \n",
+ " 1590 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 571 | \n",
+ " 516 | \n",
+ " 585 | \n",
+ " 567 | \n",
+ " 736 | \n",
+ " 1013 | \n",
+ " 1052 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1021 | \n",
+ " 887 | \n",
+ " 1003 | \n",
+ " 861 | \n",
+ " 932 | \n",
+ " 706 | \n",
+ " 685 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 1619 | \n",
+ " 1734 | \n",
+ " 1990 | \n",
+ " 1454 | \n",
+ " 1382 | \n",
+ " 704 | \n",
+ " 593 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 2974 | \n",
+ " 3766 | \n",
+ " 4230 | \n",
+ " 3179 | \n",
+ " 2836 | \n",
+ " 844 | \n",
+ " 669 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 3888 | \n",
+ " 5304 | \n",
+ " 5647 | \n",
+ " 4159 | \n",
+ " 3943 | \n",
+ " 1110 | \n",
+ " 873 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 3138 | \n",
+ " 4594 | \n",
+ " 5242 | \n",
+ " 3616 | \n",
+ " 3648 | \n",
+ " 1372 | \n",
+ " 1233 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 2211 | \n",
+ " 2962 | \n",
+ " 3846 | \n",
+ " 2654 | \n",
+ " 2732 | \n",
+ " 1764 | \n",
+ " 1770 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 1953 | \n",
+ " 2900 | \n",
+ " 3844 | \n",
+ " 2370 | \n",
+ " 2599 | \n",
+ " 2086 | \n",
+ " 2113 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 1929 | \n",
+ " 2949 | \n",
+ " 3889 | \n",
+ " 2516 | \n",
+ " 2816 | \n",
+ " 2315 | \n",
+ " 2360 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 1945 | \n",
+ " 2819 | \n",
+ " 3988 | \n",
+ " 2657 | \n",
+ " 2978 | \n",
+ " 2560 | \n",
+ " 2478 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 2294 | \n",
+ " 3556 | \n",
+ " 4469 | \n",
+ " 3301 | \n",
+ " 3535 | \n",
+ " 2685 | \n",
+ " 2763 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 3117 | \n",
+ " 4489 | \n",
+ " 5438 | \n",
+ " 4083 | \n",
+ " 4087 | \n",
+ " 3042 | \n",
+ " 2934 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 3818 | \n",
+ " 6042 | \n",
+ " 7071 | \n",
+ " 5182 | \n",
+ " 5354 | \n",
+ " 4457 | \n",
+ " 3400 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 4962 | \n",
+ " 7521 | \n",
+ " 8213 | \n",
+ " 6149 | \n",
+ " 6259 | \n",
+ " 5410 | \n",
+ " 3489 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 5574 | \n",
+ " 8297 | \n",
+ " 9151 | \n",
+ " 6951 | \n",
+ " 6790 | \n",
+ " 5558 | \n",
+ " 3154 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 4725 | \n",
+ " 7089 | \n",
+ " 8334 | \n",
+ " 6637 | \n",
+ " 7258 | \n",
+ " 6165 | \n",
+ " 2795 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 4386 | \n",
+ " 6459 | \n",
+ " 7794 | \n",
+ " 5929 | \n",
+ " 6247 | \n",
+ " 5529 | \n",
+ " 2579 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 3573 | \n",
+ " 6310 | \n",
+ " 7783 | \n",
+ " 6345 | \n",
+ " 5165 | \n",
+ " 4792 | \n",
+ " 2276 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 3079 | \n",
+ " 5993 | \n",
+ " 6921 | \n",
+ " 6585 | \n",
+ " 6265 | \n",
+ " 5811 | \n",
+ " 2310 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 1976 | \n",
+ " 3614 | \n",
+ " 4845 | \n",
+ " 5370 | \n",
+ " 6708 | \n",
+ " 6493 | \n",
+ " 1639 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 1091 | \n",
+ " 1948 | \n",
+ " 2571 | \n",
+ " 2909 | \n",
+ " 5393 | \n",
+ " 5719 | \n",
+ " 1018 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Weekday 0 1 2 3 4 5 6\n",
+ "Hour \n",
+ "0 518 765 899 792 1367 3027 4542\n",
+ "1 261 367 507 459 760 2479 2936\n",
+ "2 238 304 371 342 513 1577 1590\n",
+ "3 571 516 585 567 736 1013 1052\n",
+ "4 1021 887 1003 861 932 706 685\n",
+ "5 1619 1734 1990 1454 1382 704 593\n",
+ "6 2974 3766 4230 3179 2836 844 669\n",
+ "7 3888 5304 5647 4159 3943 1110 873\n",
+ "8 3138 4594 5242 3616 3648 1372 1233\n",
+ "9 2211 2962 3846 2654 2732 1764 1770\n",
+ "10 1953 2900 3844 2370 2599 2086 2113\n",
+ "11 1929 2949 3889 2516 2816 2315 2360\n",
+ "12 1945 2819 3988 2657 2978 2560 2478\n",
+ "13 2294 3556 4469 3301 3535 2685 2763\n",
+ "14 3117 4489 5438 4083 4087 3042 2934\n",
+ "15 3818 6042 7071 5182 5354 4457 3400\n",
+ "16 4962 7521 8213 6149 6259 5410 3489\n",
+ "17 5574 8297 9151 6951 6790 5558 3154\n",
+ "18 4725 7089 8334 6637 7258 6165 2795\n",
+ "19 4386 6459 7794 5929 6247 5529 2579\n",
+ "20 3573 6310 7783 6345 5165 4792 2276\n",
+ "21 3079 5993 6921 6585 6265 5811 2310\n",
+ "22 1976 3614 4845 5370 6708 6493 1639\n",
+ "23 1091 1948 2571 2909 5393 5719 1018"
+ ]
+ },
+ "execution_count": 53,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "by_cross = data.groupby('Hour Weekday'.split()).apply(count).unstack()\n",
+ "by_cross"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEHCAYAAABRF9YCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de7xV5X3n8c+XO4KIoBAEjWgwVk1jA6VGW2tiWkljxGZiStoUmjJhxrFqZtp6aV6dTl55kWqnzcXM6KtEozi5ENQYyUUTSqKpRkU0GkW0ElE8cou3iJognPObP9ZzdOW49z77wF5nLRbfd17rddZ+9lp7/UDyO89+1rOenyICMzOrhyFlB2BmZp3jpG5mViNO6mZmNeKkbmZWI07qZmY14qRuZlYjw8oOoJlxY46o5FzL/YaPLDuEhoYNGVp2CA3t6ukuO4SmpoyaUHYIDb1v1JvLDqGh9/7q1bJDaOqkLddrTz9j5zOPt51zhh90RMvrSTof+Bgg4IsR8TlJE4CvA4cDTwAfiojn0/EXAwuBbuC8iPheap8JXAOMBr4LnB/9zEN3T93MrIMkHUeW0GcDbwdOlzQDuAhYFREzgFXpNZKOAeYBxwJzgMsl9fbSrgAWATPSNqe/6xfWU5d0NDAXmAoEsAlYERHrirqmmdlu69y3yt8A7oqIVwAk3Qb8MVk+PCUdsxS4FbgwtS+LiB3ABknrgdmSngDGRcSd6XOuBc4Ebm518UJ66pIuBJaRffVYDdyT9r8m6aIirmlmtke6d7W/tfYQcLKkiZL2A/4IOBSYHBGbAdLPSen4qcBTufO7UtvUtN+3vaWieuoLgWMjYme+UdJngLXAJQVd18xst0T0tH2spEVkwyK9lkTEkuxzYp2kS4GVwEvAA0Cr3wSNxuejRXtLRSX1HuAQ4Mk+7VPSew3l/6JGjpjIiGHjCgrPzKyPnvaTekrgS1q8fxVwFYCkT5P1srdKmhIRmyVNAbalw7vIevK9ppENV3el/b7tLRWV1D8OrJL0GK9/rTgMeAvwV81Oyv9FVXX2i5nV1AB66v2RNCkitkk6DPgA8E5gOrCAbKRiAXBTOnwF8NU0knEI2Q3R1RHRLWm7pBOAu4H5wBf6u3YhST0ibpF0FNnd36lkXyO6gHsiorpz3Mxs39XZ6bc3SJoI7ATOiYjnJV0CLJe0ENgInAUQEWslLQceJhumOSeXJ8/m9SmNN9PPTVIocPZLZANUdxX1+WZmHdXBnnpE/F6DtmeBU5scvxhY3KB9DXDcQK5d2YePXtm5o+wQGtrRvbP/g0owfEg1/1NG//d1SpP9f6x6No2aUnYIDa0YNbzsEJo6qQOfEf3PatkrVDMTmJkNtgHcKK0yJ3UzM+jo8EuZnNTNzKDTN0pL46RuZgbuqZuZ1YpvlJqZ1YhvlJqZ1Uddnot0UjczA4+p76t6KvoVbWfLReDK00+RllK9TDUfcFu3s5oPRdW+EEJF/789UE7qZmbgnrqZWa1UdAmQgSqsRqmkoyWdKmlsn/Z+a+yZmQ26np72tworqpzdeWRrBZ8LPCRpbu7tTxdxTTOzPRI97W8VVtTwy8eAmRHxkqTDgeslHR4Rn6dxiSbg1ysfaegBDBkypqDwzMz6qHgPvF1FJfWhEfESQEQ8IekUssT+Zlok9Xzlo2EjplZ32oSZ1U9NknpRY+pbJB3f+yIl+NOBg4C3FXRNM7PdFt072976I+m/S1or6SFJX5M0StIESSslPZZ+Hpg7/mJJ6yU9Kum0XPtMSQ+m9y6T1LRT3KuopD4f2JJviIhdETEfOLmga5qZ7b4OjalLmgqcB8yKiOOAocA84CJgVUTMAFal10g6Jr1/LDAHuFzS0PRxV5ANSc9IW78TTYqqUdrV4r072vmMMSNGdS6gDuqu6Fe0oUMKm8hUW6OGVrOSz9YdL5QdQkNqPnJaD539//YwYLSkncB+wCbgYuCU9P5S4FbgQmAusCwidgAbJK0HZkt6AhgXEXcCSLoWOJN+6pQ6E5iZwYB66pIWSVqT2xa99jERTwP/TFZcejPwi4j4PjA5IjanYzYDk9IpU4GncpF0pbapab9ve0t++MjMDAbUU89P6ugrjZXPBaYDLwDXSfpIi49r9BUoWrS35KRuZgadnH/+HmBDRPwcQNI3gBOBrZKmRMRmSVOAben4LuDQ3PnTyIZrutJ+3/aWPPxiZgawa1f7W2sbgRMk7Zdmq5xKth7aCmBBOmYB2QOapPZ5kkZKmk52Q3R1GqLZLumE9Dnzc+c05Z66mRl0rKceEXdLuh64D9gF/IRsqGYssFzSQrLEf1Y6fq2k5cDD6fhz4vXF3c8GrgFGk90gbXmTFEBVXRr1gLFHVjIwz36pj6rOfhkzfHTZITRU5dkvP3vmvj0O7pcr/rntnDP6jL+p7F+Ge+pmZlD5NV3a5aRuZga1WSagskl94qhxZYfQ0Ks91VxzefhrD6BVy6s91azIBDBU1Ryy2r7zlbJDaKiqQ7Ud4566mVmN9D+rZa/gpG5mBlCTbyKD9v0zrVtgZlZNNal8VEhPXdKKvk3AuySNB4iIM4q4rpnZbqt4sm5XUcMv08gm0l/J62sYzAL+pdVJ+cpHE8dMY9yogwoKz8ysj5rcKC1q+GUWcC/wCbIVym4FfhkRt0XEbc1OioglETErImY5oZvZoOrubn+rsKLWU+8BPivpuvRza1HXMjPrCA+/9C8VyzhL0vuAF4u8lpnZHnFSb19EfAf4zkDOmTLywP4PKsHwij6wMnbIyLJDaGjLzur+Lu+u6Bhq1y+fKTuEhqq67lHHVPTfw0B5SMTMDIieesxTd1I3MwMPv5iZ1UrFZ7W0q5oDxGZmg61DT5RKequk+3Pbi5I+LmmCpJWSHks/D8ydc7Gk9ZIelXRarn2mpAfTe5elCkgtOambmUHHknpEPBoRx0fE8cBM4BXgRuAiYFVEzABWpddIOgaYBxwLzAEul15bdvUKsgcyZ6RtTn9/DCd1MzPIFvRqd2vfqcDPIuJJYC6wNLUvBc5M+3OBZRGxIyI2AOuB2ak49biIuDOydY+vzZ3TlMfUzcygqBul84Cvpf3JqZg0EbFZ0qTUPhW4K3dOV2rbmfb7trfknrqZGUBPtL1JWiRpTW5b1PfjJI0AzgCu6+fKjcbJo0V7S5XtqZ88/E1lh9DQW3dW8/fgpB1VXeB/f+4dVc2qTM+rmrMdvr7jhbJDaKj2lY8GMPslIpYAS/o57L3AfRGxNb3eKmlK6qVPAbal9i7g0Nx504BNqX1ag/aWqpmhrDaqmtDN+oqenra3Nn2Y14deAFYAC9L+AuCmXPs8SSMlTSe7Ibo6DdVsl3RCmvUyP3dOU5XtqZuZDaoOPlEqaT/gD4D/kmu+BFguaSGwETgLICLWSlpOtlz5LuCciOj92nA2cA0wGrg5bS0VVSTjd4B1EfGipNFkU3fekYL+dET8oojrmpnttg6u/RIRrwAT+7Q9SzYbptHxi4HFDdrXAMcN5NpFDb98iWxuJsDngQOAS1Pb1QVd08xs9w3gRmmVFTX8MiQieu/czYqId6T92yXd3+ykfOWjORN+m+P3f0tB4ZmZ9bGrmjfOB6qonvpDkj6a9h+QNAtA0lFkcy8bylc+ckI3s0EVPe1vFVZUUv/PwO9L+hlwDHCnpMeBL6b3zMyqxcMvzaUboX8haX/giHSdrtx8TTOzShnAVMVKK7qc3Xbggd0597hXqzmF/nfftKXsEBoafWDTUa1SzQLuXntI2WE09IqqOYf+28NGlx1CQ20sELh3q3gPvF2ep26FqmpCN3sDJ3UzsxqpSZEMJ3UzM1yj1MysXpzUzcxqxLNfzMxqxD11M7MacVI3M6uP6PbwS6F+NryavzWP3DKu7BAamty9vewQGjpu8jN8/9nJZYexVxkTI8sOoaHhQ6r5sFbH1KSnXs3HNq02nNBtbxE90fbWH0njJV0v6RFJ6yS9U9IESSslPZZ+Hpg7/mJJ6yU9Kum0XPtMSQ+m9y5TG4/1OqmbmUGnF/T6PHBLRBwNvB1YR1YsaFVEzABWpddIOgaYBxwLzAEul15bw+IKsuXIZ6RtTn8XLiSpSxohab6k96TXfyrp/0g6R9LwIq5pZrZHegawtSBpHHAycBVARLwaES8Ac4Gl6bClwJlpfy6wLCJ2RMQGYD0wOxWnHhcRd0ZW9fva3DlNFTWmfnX67P0kLQDGAt8gK+U0m9eLr5qZVULs6tiN0iOAnwNXS3o7cC9wPjA5FZMmIjZLmpSOnwrclTu/K7XtTPt921sqKqm/LSJ+U9Iw4GngkIjolvRlWqzamK989P4Js5k11oUyzGyQDCCn53NVsiQilqT9YWQ1mc+NiLslfZ401NLs4xq0RYv2looaUx8iaQSwP7AfWY1SgJFA0+GXfOUjJ3QzG0wDuVGaz1VpW5L7qC6y+hF3p9fXkyX5rWlIhfRzW+74Q3PnTwM2pfZpDdpbKiqpXwU8AtwPfAK4TtIXgXuAZQVd08xs93VoTD0itgBPSXprajoVeBhYwetDzwuAm9L+CmCepJGSppPdEF2dhmq2SzohzXqZnzunqaIqH31W0tfT/iZJ1wLvAb4YEauLuKaZ2Z7o8CqN5wJfSSMWjwMfJetEL5e0ENgInAUQEWslLSdL/LuAcyKidx3gs4FrgNHAzWlrqbCHjyJiU27/BbKvIG17kJc6HlMn/HLEmLJDaOjYn+9XdggNjQF+POLVssNoaFjDIcvyjaea/y2HVPTvq2M6+EBpRNxPVvirr1ObHL8YWNygfQ1w3ECuXdknSq0eqprQzfqKXWVH0BlO6mZmQNRj6RcndTMzoKPDL2VyUjczwz11M7NacVI3M6uR6K7H7B4ndTMz3FM3M6uV6HFPvVAvx86yQ2ioW/WojjJYTnx1BN8b/krZYTS0n6pZyWf8kFFlh7BPck/drA1VTehmfUW4p25mVhvuqZuZ1UiPZ7+YmdVHXW6UFlWj9ABJl6RK2s+mbV1qG9/ivEWS1khas/GljUWEZmbWUPSo7a3KiiqSsRx4HjglIiZGxETgXantumYn5auJHDb2sIJCMzN7o4j2tyorKqkfHhGXpgogQFYNJCIuBZytzaxy3FNv7UlJF0ia3NsgabKkC4GnCrqmmdlui1DbW38kPSHpQUn3S1qT2iZIWinpsfTzwNzxF0taL+lRSafl2memz1kv6bJU1q6lfpO6pCGSHur3T/Hr/gSYCNwm6TlJzwG3AhNIJZzMzKqku1ttb216V0QcHxG9FZAuAlZFxAxgVXqNpGOAecCxwBzgcum1J+OuABaR1S2dkd5vqd/ZLxHRI+kBSYdFRFt3LyPieeDCtP0aSR8Frm7jM9q51KCr6hevqsY1UkV9GdxzY6jmE6WjVc1JaXUvZzcIDx/NBU5J+0vJOroXpvZlEbED2CBpPTBb0hPAuIi4EyDVej6TfuqUtvuvZwqwVtJq4OXexog4o83z8z5JG0ndzGwwdXisPIDvSwrgXyNiCTA5IjYDRMRmSZPSsVOBu3LndqW2nWm/b3tL7Sb1T7Z5HACSftrsLWByk/fMzEozkMEBSYvIhkV6LUmJu9dJEbEpJe6Vkh5p9XGNwmnR3lJbST0ibmvnuJzJwGlkUxjzBPx4gJ9lZla4gfTUUwJf0uL9TennNkk3ArOBrZKmpF76FGBbOrwLODR3+jRgU2qf1qC9pbYGPCVtl/Ri2n4lqVvSiy1O+TYwNiKe7LM9QTaOZGZWKd09Q9reWpE0RtL+vfvAHwIPASuABemwBcBNaX8FME/SSEnTyW6Irk5DNdslnZBmvczPndNUuz31/fsEfSbZb55mxy9s8d6ftnNNM7PB1MG5GZOBG9Psw2HAVyPiFkn3AMslLQQ2kmYCRsRaScuBh4FdwDkR0Z0+62zgGmA02Q3SljdJey84YBHxTUkX7c65ZmZV1NOh2S8R8Tjw9gbtzwKnNjlnMbC4Qfsa4LiBXL+tpC7pA7mXQ4BZtDFgb2a2t9jX1lN/f25/F/AE2dxKM7NaqOijMQPW7pj6R4sOpK82noYtxc6KfkEZUdF/kSMKW4liz42saGxjKvrwUXdF/+13SqeGX8rW7uyXaZJulLRN0lZJN0ia1v+ZZmZ7h07Nfilbu9FdTTbt5hCyJ5q+hZ8KNbMaiQFsVdZuUj84Iq6OiF1puwY4uMC4zMwGVU+o7a3K2k3qz0j6iKShafsI8GyRgZmZDaZOLr1bpnaT+l8CHwK2AJuBD6a2hiSNk/SPkv6fpD/t897lLc5zOTszK0XPALYqayupR8TGiDgjIg6OiEkRcWZEPNnilKvJ1nm5gezx1xskjUzvndDiOi5nZ2alCNT2VmUt505J+gIt7gtExHlN3joyIv5T2v+mpE8AP5C0O0v1mpkVblfFh1Xa1d+E2DW5/U8C/9Dm546UNCQieiB7BFZSF/AjYOzAwzQzK1bVe+DtapnUI2Jp776kj+df9+NbwLuBf8t/lqStwBfa+YDxr43WVMtbuqv5YMjk2FF2CA0dFtX87wgwtqKDo9uHVnMe9NCaJL1mKvrPYcAGkqHanp4ZERc0ab9F0qcHcE0zs0FRl556GV2CAVVRMjMbDHWZ/dLfjdLtvN5D3y9XGENARMS4Jue5nJ2Z7VW6a9JT729Mff9W77fgcnZmtlfpbN1pkDSUbLLJ0xFxuqQJwNeBw8lWuv1QRDyfjr0YWAh0A+dFxPdS+0xeL5LxXeD8iNar9xU1/OJydma2V+lBbW9tOh9Yl3t9EbAqImYAq9JrJB0DzAOOBeYAl6dfCABXkBW4npG2Of1dtJCkHhELI+L2Ju+5nJ2ZVU4nF/RKq9i+D7gy1zwX6J1BuBQ4M9e+LCJ2RMQGYD0wOxWnHhcRd6be+bW5c5qq5vw8M7NB1uEboJ8DLgDyQ9iTUzFpImKzpEmpfSpwV+64rtS2M+33bW+pmhNizcwGWY/U9pZfpypti3o/R9LpwLaIuLfNSzcaz4kW7S1Vtqd+FPuVHUJDb9v5q7JDaOiI6c+VHUJDz214U9kh7HW2DB3a/0ElqGrVr07pHsCxEbEEWNLk7ZOAMyT9ETAKGCfpy8BWSVNSL30KsC0d3wUcmjt/GrAptU9r0N6Se+pmZmSzX9rdWomIiyNiWkQcTnYD9AcR8RGyQkML0mELgJvS/gqyhQ9HSppOdkN0dRqq2S7pBGX1Pefnzmmqsj11M7PBNIBZLbvrEmC5pIXARuAsgIhYK2k58DCwCzgnInq/OJzN61Mab05bS07qZmYUU6YuIm4lTeOOiGeBU5sctxhY3KB9DXDcQK45aEld0qSI2Nb/kWZmg6/TDx+VpZAxdUkT+mwTgdWSDkxPVTU777U7yve+tL6I0MzMGton1n7ZA88AfSsjTQXuI/uWc0Sjk/J3lP/Xm/+s3rfazaxSumvSUy8qqV8AvAf424h4EEDShoiYXtD1zMz2SNV74O0qJKlHxD9LWgZ8VtJTZBWT3PM2s8pyUu9HRHQBZ0l6P7ASBvY00RG7qvld6G3verbsEBoa8TtHlR1CQ7951YayQ2hq2MiBPG4yeCZ0Nb3tVKp7RlS3ilUn1KREafEPH0XEt4B3kQ3HIOmjRV/TzGyg6nKjdFCeKI2IX0bEQ+mlKx+ZWeV0D2CrskKGX1z5yMz2NnWZp17UmLorH5nZXqXqwyrtKiqp91Y+ur/vG5JuLeiaZma7zUm9hYhY2OI9Vz4ys8qpy5xrL+hlZobH1M3MaqXqs1raVdmkPmtU33us1TDy9N8tO4SGdPjRZYfQ0MSfVHdhNo2oZoWhI4ZW8wG3BzYdUnYIheqpyQBMZZO6mdlgqsuNUpezMzMju1Ha7taKpFGSVkt6QNJaSZ9M7RMkrZT0WPp5YO6ciyWtl/SopNNy7TMlPZjeuyyVtWvJSd3MjI4uE7ADeHdEvB04Hpgj6QTgImBVRMwAVqXXSDqGrJbpscAc4HJJvWODVwCLyOqWzkjvtzRoST0VyjAzq6Rdira3ViLzUno5PG0BzAWWpvalwJlpfy6wLCJ2RMQGYD0wW9IUYFxE3BkRAVybO6epoiofXSLpoLQ/S9LjwN2SnpT0+y3Oe63y0fIXNxYRmplZQwMZfsnnqrQtyn+WpKGS7ge2ASsj4m5gckRsBkg/J6XDpwJP5U7vSm1T037f9paKulH6voi4KO3/b+BPIuIeSUcBXwVmNTopX/no4SPfV49b0Wa2VxjIjdJ8rmryfjdwvKTxwI2SWhWPbjROHi3aWypq+GW4pN5fGKMj4h6AiPgPoN6LMpvZXqmHaHtrV0S8ANxKNha+NQ2pkH5uS4d1AYfmTpsGbErt0xq0t1RUUv+/wHclvRu4RdLnJJ2c7gK/YT0YM7OydXD2y8Gph46k0WS1JB4BVgAL0mELgJvS/gpgnqSRkqaT3RBdnYZotks6Ic16mZ87p6mi1n75gqQHgbOBo9J1jgK+CXyqnc+YeOjLRYS2x3Rkq29R5Rn6lt8uO4SGhh/zb2WH0FTseLXsEBoa9ujTZYfQ0PND6j0i2sF56lOApWkGyxBgeUR8W9KdwHJJC4GNwFkAEbFW0nLgYWAXcE4avoEsh14DjAZuTltLRZazu5Xsa8evSZWPri7qumZmu6O7Q0+URsRPgd9q0P4scGqTcxYDixu0rwEG1JMsY566Kx+ZWeXUpZydKx+ZmQHhtV9acuUjM9urVL0H3i5XPjIzw6s0tuTKR2a2t6lHSvfSu2ZmAOyqSVp3UjczwzdKC/fU+vFlh9DQ/nf9oOwQGhtSzVWUe154sewQmhry5mn9H1SC0UduLTuEhp7fWJeCb435RqmZWY24p25mViPuqZuZ1Uh3uKduZlYbdZmnXlTlo1mSfijpy5IOTUVWfyHpHklvWOgmd95r1US+8fITRYRmZtZQDOB/VVbUlInLgX8CvkO2LMC/RsQBZIVWL292UkQsiYhZETHrA2MOLyg0M7M3qsuCXoVVPoqImyPia2R1WK8n21kFjCrommZmu62IykdlKCqp/0rSH0o6CwhJZwKkotP1nuxqZnulTg2/pCHnH0paJ2mtpPNT+4Q0FP1Y+nlg7pyLJa2X9Kik03LtMyU9mN67LFVAaqmoG6X/lWz4pYdstcazJV0DPA18rJ0PeHHniIJC2zPdT/RbIrAUOuLJskNoaOd/PFt2CE0NfWZ72SE09Mpj1ez3vFLz/lgHZ7/sAv46Iu6TtD9wr6SVwF8AqyLiEkkXkQ1HXyjpGGAecCxwCPBvko5K1Y+uABYBdwHfJat12rL6USE99Yh4ICJOi4j3RsQjEXF+RIyPiGOBtxZxTTOzPdGp4ZeI2BwR96X97cA6YCowF1iaDlsKnJn25wLLImJHRGwA1gOzU3HqcRFxZ0QEcG3unKZc+cjMjGJulEo6nKy03d3A5FRMmvRzUjpsKvBU7rSu1DY17fdtb8mVj8zMGNgyAZIWkQ2L9FoSEUv6HDMWuAH4eES82GI4vNEb0aK9JVc+MjNjYA8fpQS+pNn7koaTJfSvRMQ3UvNWSVMiYnMaWtmW2ruAQ3OnTwM2pfZpDdpbKmr4pbfy0ZN9tieAWwu6ppnZbouItrdW0gyVq4B1EfGZ3FsrgAVpfwFwU659nqSRkqYDM4DVaYhmu6QT0mfOz53TlCsfmZkB3Z2bf34S8OfAg5J6S3r+HXAJsFzSQmAjcBZARKyVtBx4mGzmzDlp5gvA2cA1wGiyWS8tZ76A134xMwM6t/ZLRNxO4/FwgFObnLMYWNygfQ1w3ECu76RuZgb9DqvsLSqb1B8ZUc2Hj377VxWt5BPVXJFi2OTRZYfQ1LYfVfPv7MUXx5UdQkMvamfZIRSq6o//t6uySd3MbDBVffXFdjmpm5nhIhlmZrVSl+GXoopkHCDpEkmPSHo2betS2/girmlmtie89G5ry8meJj0lIiZGxETgXantumYn5Ssf3f7SYwWFZmb2Rp16+KhsRSX1wyPi0ojY0tsQEVsi4lLgsGYn5Ssf/e7YGQWFZmb2Ru6pt/akpAskvbZ4l6TJki7k11cjMzOrBNcobe1PgInAbZKel/Qc2ZovE4APFXRNM7Pd1h09bW9VVtTaL89LuhpYCdwVES/1vidpDnBLf5+xZWg1fxt2P7+j7BAaGvLw2rJDaEj7V/fho4NPernsEBoav+mFskNoSD+dUHYIhar6WHm7ipr9ch7ZamJ/BTwkaW7u7U8XcU0zsz1RlzH1ouapfwyYGREvpcof10s6PCI+T/OFbszMSlP1sfJ2FZXUh/YOuUTEE5JOIUvsb8ZJ3cwqqMfDLy1tkXR874uU4E8HDgLeVtA1zcx2m2e/tDYf2JJviIhdETEfOLmga5qZ7bZOzn6R9CVJ2yQ9lGubIGmlpMfSzwNz710sab2kRyWdlmufKenB9N5lalHotFchST0iuvIPHvV5744irmlmtid6Itre2nANMKdP20XAqoiYAaxKr5F0DDAPODadc7mkoemcK8gKXM9IW9/PfIOieupmZnuVTg6/RMSPgOf6NM8Flqb9pcCZufZlEbEjIjYA64HZqTj1uIi4M7L5ltfmzmnKqzSamTEoN0onp2LSRMRmSZNS+1TgrtxxXaltZ9rv295SZZP6mp7nyw6hoWU/7vfvtBQn3t23U1AdBx78StkhNDRhzsSyQ2hoyJiRZYfQ0FP3VbTqV4cM5AaopEVkwyK9lkTEkt28dKNx8mjR3lJlk7rVQ1UTullf3dHd9rEpgQ80iW+VNCX10qcA21J7F3Bo7rhpwKbUPq1Be0seUzczY1CW3l0BLEj7C8ieuu9tnydppKTpZDdEV6ehmu2STkizXubnzmnKPXUzMzpb+UjS14BTgIMkdQH/AFwCLJe0ENgInAUQEWslLQceBnYB50S89rXhbLKZNKOBm9PWUiFJXdI44GKyrws3R8RXc+9dHhH/rYjrmpntrk4u6BURH27y1qlNjl8MLG7QvgY4biDXLmr45WqyQf4byL5W3CCp9+7PCc1Oylc+2vjSxoJCMzN7ow7PUy9NUUn9yIi4KCK+GRFnAPcBP5DUcrpBvvLRYWObFkgyM+u4uiwTUNSY+khJQyKy52kjYnEaV/oRMLaga5qZ7baqF43kjScAAAaoSURBVL9oV1E99W8B7843RMRS4K+BVwu6ppnZbqtL4emiKh9dIOloSacCd+eW4b0lFdDo12O/3FpEaHtsRUUL+fyEMWWH0NjPR3FARSdZnff9av4bGzW+/fnSg+npHfV++KjqY+XtKqry0blk8ynP5Y2Vj95wh9fqq6oJ3awv99RbW4QrH5nZXqTqZera5cpHZma48HR/XPnIzPYqnSySUaaieurzyR53fU1E7ALmS/rXgq5pZrbb6nKjtKjZL10t3nPlIzOrnLoMv3hqgpkZA1tPvcqc1M3McE/dzKxW6jKmrrr8dmpF0qI9KDVVqKrG5rgGpqpxQXVjq2pce7t9pfLRov4PKU1VY3NcA1PVuKC6sVU1rr3avpLUzcz2CU7qZmY1sq8k9SqP21U1Nsc1MFWNC6obW1Xj2qvtEzdKzcz2FftKT93MbJ9Q+6QuaY6kRyWtl3RR2fH0kvQlSdskPVR2LL0kHSrph5LWSVor6fyyY+olaZSk1ZIeSLF9suyY8iQNlfQTSd8uO5Zekp6Q9KCk+yWtKTueXpLGS7pe0iPp39o7y46pTmo9/CJpKPAfwB8AXcA9wIcj4uFSAwMknQy8BFwbEceVHQ+ApCnAlIi4T9L+wL3AmRX5+xIwJq3RPxy4HTg/Iu4qOTQAJP0PYBYwLiJOLzseyJI6MCsinik7ljxJS4F/j4grJY0A9ouIF8qOqy7q3lOfDayPiMcj4lVgGTC3n3MGRUT8CHiu7DjyImJzRNyX9rcD64Cp5UaVicxL6eXwtFWiRyJpGvA+4MqyY6k6SeOAk4GrACLiVSf0zqp7Up8KPJV73UVFklTVpYpVvwXcXW4kr0tDHPcD24CVEVGV2D4HXABUbaHtAL4v6V5JVXnQ5wjg58DVabjqSkkVLbC7d6p7Um9UZakSvbsqkzQWuAH4eERUptpwRHRHxPHANGC2pNKHrSSdDmyLiHvLjqWBkyLiHcB7gXPSkF/ZhgHvAK6IiN8CXgYqc6+rDuqe1LuAQ3OvpwGbSoplr5DGq28AvhIR3yg7nkbS1/VbgTklhwJwEnBGGr9eBrxb0pfLDSkTEZvSz23AjWTDkWXrArpy37KuJ0vy1iF1T+r3ADMkTU83ZOYBK0qOqbLSzcirgHUR8Zmy48mTdLCk8Wl/NPAe4JFyo4KIuDgipkXE4WT/vn4QER8pOSwkjUk3u0nDG38IlD7TKiK2AE9JemtqOhUo/UZ8ndR66d2I2CXpr4DvAUOBL0XE2pLDAkDS14BTgIMkdQH/EBFXlRsVJwF/DjyYxq4B/i4ivltiTL2mAEvTjKYhwPKIqMz0wQqaDNyY/Z5mGPDViLil3JBecy7wldTRehz4aMnx1EqtpzSame1r6j78Yma2T3FSNzOrESd1M7MacVI3M6sRJ3UzsxpxUrdCSPqspI/nXn9P0pW51/+SFsEayGdeI+mD/RxzSpVWSjQbbE7qVpQfAycCSBoCHAQcm3v/ROCOEuIyqzUndSvKHaSkTpbMHwK2SzpQ0kjgNwAk3ZYWnPpeWvoXSUdKuiW1/7uko/t+uKRPpZ77kLRm/iOSbgc+kDtmtqQfp4Wjftz7FGP6zONzx90h6TeL+oswG0xO6laItO7ILkmHkSX3O8lWfHwn2brj64DPAh+MiJnAl4DF6fQlwLmp/W+Ay/OfLemfgElkTyKOAL4IvB/4PeBNuUMfAU5OC0f9T+DTqf1K4C/SZx0FjIyIn3bqz25WplovE2Cl6+2tnwh8hmzZ4xOBXwBPk61HsjI9yj4U2JxWiDwRuC61A4zMfebfA3dHxCKA1IvfEBGPpddfBnqXmT2AbGmBGWSrcw5P7dcBfy/pb4G/BK7p6J/arERO6lak3nH1t5ENvzwF/DXwIvADYGpE/Fops1RE4YW0xG4j9wAzJU2IiN4iI83WuvgU8MOI+OO0PvytABHxiqSVZAVTPkT2zcGsFjz8YkW6AzgdeC6thf4cMJ5sCObrwMG99SklDZd0bFq/fYOks1K7JL0995m3AJcA30mrED4CTJd0ZHr/w7ljDyD7RgBpuCXnSuAy4J7cLwezvZ6TuhXpQbJZL3f1aftFWuP7g8Clkh4A7uf1G6t/BixM7WvpU4IwIq4jG0dfQVYIZRFZkr8deDJ36D8B/yjpDrLhnfxn3Ev2jeHqDvw5zSrDqzTaPknSIWTDMUdHRNXK0JntNvfUbZ8jaT7ZTJxPOKFb3binbmZWI+6pm5nViJO6mVmNOKmbmdWIk7qZWY04qZuZ1YiTuplZjfx/fIHgK2tuOjYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import seaborn\n",
+ "seaborn.heatmap(by_cross)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Div | \n",
+ " Date | \n",
+ " HomeTeam | \n",
+ " AwayTeam | \n",
+ " FTHG | \n",
+ " FTAG | \n",
+ " FTR | \n",
+ " HTHG | \n",
+ " HTAG | \n",
+ " HTR | \n",
+ " ... | \n",
+ " BbAv<2.5 | \n",
+ " BbAH | \n",
+ " BbAHh | \n",
+ " BbMxAHH | \n",
+ " BbAvAHH | \n",
+ " BbMxAHA | \n",
+ " BbAvAHA | \n",
+ " PSCH | \n",
+ " PSCD | \n",
+ " PSCA | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " SP1 | \n",
+ " 17/08/2018 | \n",
+ " Betis | \n",
+ " Levante | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " A | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " A | \n",
+ " ... | \n",
+ " 2.06 | \n",
+ " 20 | \n",
+ " -0.75 | \n",
+ " 1.89 | \n",
+ " 1.85 | \n",
+ " 2.07 | \n",
+ " 2.00 | \n",
+ " 1.59 | \n",
+ " 4.42 | \n",
+ " 5.89 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " SP1 | \n",
+ " 17/08/2018 | \n",
+ " Girona | \n",
+ " Valladolid | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " D | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " D | \n",
+ " ... | \n",
+ " 1.71 | \n",
+ " 20 | \n",
+ " -0.75 | \n",
+ " 2.06 | \n",
+ " 2.01 | \n",
+ " 1.90 | \n",
+ " 1.85 | \n",
+ " 1.76 | \n",
+ " 3.57 | \n",
+ " 5.62 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " SP1 | \n",
+ " 18/08/2018 | \n",
+ " Barcelona | \n",
+ " Alaves | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " H | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " D | \n",
+ " ... | \n",
+ " 3.18 | \n",
+ " 19 | \n",
+ " -2.50 | \n",
+ " 1.95 | \n",
+ " 1.91 | \n",
+ " 2.00 | \n",
+ " 1.95 | \n",
+ " 1.10 | \n",
+ " 11.85 | \n",
+ " 32.17 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " SP1 | \n",
+ " 18/08/2018 | \n",
+ " Celta | \n",
+ " Espanol | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " D | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " A | \n",
+ " ... | \n",
+ " 1.76 | \n",
+ " 18 | \n",
+ " -0.75 | \n",
+ " 2.26 | \n",
+ " 2.18 | \n",
+ " 1.74 | \n",
+ " 1.71 | \n",
+ " 2.18 | \n",
+ " 3.26 | \n",
+ " 3.85 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " SP1 | \n",
+ " 18/08/2018 | \n",
+ " Villarreal | \n",
+ " Sociedad | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " A | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " D | \n",
+ " ... | \n",
+ " 1.81 | \n",
+ " 18 | \n",
+ " -0.25 | \n",
+ " 1.76 | \n",
+ " 1.74 | \n",
+ " 2.23 | \n",
+ " 2.14 | \n",
+ " 2.32 | \n",
+ " 3.21 | \n",
+ " 3.53 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 375 | \n",
+ " SP1 | \n",
+ " 18/05/2019 | \n",
+ " Levante | \n",
+ " Ath Madrid | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " D | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " H | \n",
+ " ... | \n",
+ " 2.23 | \n",
+ " 18 | \n",
+ " 0.50 | \n",
+ " 1.91 | \n",
+ " 1.87 | \n",
+ " 2.04 | \n",
+ " 1.99 | \n",
+ " 4.34 | \n",
+ " 4.10 | \n",
+ " 1.81 | \n",
+ "
\n",
+ " \n",
+ " | 376 | \n",
+ " SP1 | \n",
+ " 18/05/2019 | \n",
+ " Sevilla | \n",
+ " Ath Bilbao | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " H | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " H | \n",
+ " ... | \n",
+ " 2.08 | \n",
+ " 19 | \n",
+ " -1.00 | \n",
+ " 2.70 | \n",
+ " 2.60 | \n",
+ " 1.60 | \n",
+ " 1.53 | \n",
+ " 2.17 | \n",
+ " 3.08 | \n",
+ " 4.15 | \n",
+ "
\n",
+ " \n",
+ " | 377 | \n",
+ " SP1 | \n",
+ " 18/05/2019 | \n",
+ " Valladolid | \n",
+ " Valencia | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " A | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " A | \n",
+ " ... | \n",
+ " 2.25 | \n",
+ " 20 | \n",
+ " 1.50 | \n",
+ " 1.78 | \n",
+ " 1.74 | \n",
+ " 2.20 | \n",
+ " 2.13 | \n",
+ " 8.01 | \n",
+ " 5.13 | \n",
+ " 1.40 | \n",
+ "
\n",
+ " \n",
+ " | 378 | \n",
+ " SP1 | \n",
+ " 19/05/2019 | \n",
+ " Eibar | \n",
+ " Barcelona | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " D | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " D | \n",
+ " ... | \n",
+ " 2.65 | \n",
+ " 19 | \n",
+ " 0.50 | \n",
+ " 2.03 | \n",
+ " 1.98 | \n",
+ " 1.92 | \n",
+ " 1.88 | \n",
+ " 4.96 | \n",
+ " 4.55 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 379 | \n",
+ " SP1 | \n",
+ " 19/05/2019 | \n",
+ " Real Madrid | \n",
+ " Betis | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " A | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " D | \n",
+ " ... | \n",
+ " 3.42 | \n",
+ " 23 | \n",
+ " -1.00 | \n",
+ " 1.94 | \n",
+ " 1.91 | \n",
+ " 2.01 | \n",
+ " 1.98 | \n",
+ " 1.33 | \n",
+ " 6.38 | \n",
+ " 8.09 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
380 rows × 61 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Div Date HomeTeam AwayTeam FTHG FTAG FTR HTHG HTAG HTR \\\n",
+ "0 SP1 17/08/2018 Betis Levante 0 3 A 0 1 A \n",
+ "1 SP1 17/08/2018 Girona Valladolid 0 0 D 0 0 D \n",
+ "2 SP1 18/08/2018 Barcelona Alaves 3 0 H 0 0 D \n",
+ "3 SP1 18/08/2018 Celta Espanol 1 1 D 0 1 A \n",
+ "4 SP1 18/08/2018 Villarreal Sociedad 1 2 A 1 1 D \n",
+ ".. ... ... ... ... ... ... .. ... ... .. \n",
+ "375 SP1 18/05/2019 Levante Ath Madrid 2 2 D 2 0 H \n",
+ "376 SP1 18/05/2019 Sevilla Ath Bilbao 2 0 H 1 0 H \n",
+ "377 SP1 18/05/2019 Valladolid Valencia 0 2 A 0 1 A \n",
+ "378 SP1 19/05/2019 Eibar Barcelona 2 2 D 2 2 D \n",
+ "379 SP1 19/05/2019 Real Madrid Betis 0 2 A 0 0 D \n",
+ "\n",
+ " ... BbAv<2.5 BbAH BbAHh BbMxAHH BbAvAHH BbMxAHA BbAvAHA PSCH \\\n",
+ "0 ... 2.06 20 -0.75 1.89 1.85 2.07 2.00 1.59 \n",
+ "1 ... 1.71 20 -0.75 2.06 2.01 1.90 1.85 1.76 \n",
+ "2 ... 3.18 19 -2.50 1.95 1.91 2.00 1.95 1.10 \n",
+ "3 ... 1.76 18 -0.75 2.26 2.18 1.74 1.71 2.18 \n",
+ "4 ... 1.81 18 -0.25 1.76 1.74 2.23 2.14 2.32 \n",
+ ".. ... ... ... ... ... ... ... ... ... \n",
+ "375 ... 2.23 18 0.50 1.91 1.87 2.04 1.99 4.34 \n",
+ "376 ... 2.08 19 -1.00 2.70 2.60 1.60 1.53 2.17 \n",
+ "377 ... 2.25 20 1.50 1.78 1.74 2.20 2.13 8.01 \n",
+ "378 ... 2.65 19 0.50 2.03 1.98 1.92 1.88 4.96 \n",
+ "379 ... 3.42 23 -1.00 1.94 1.91 2.01 1.98 1.33 \n",
+ "\n",
+ " PSCD PSCA \n",
+ "0 4.42 5.89 \n",
+ "1 3.57 5.62 \n",
+ "2 11.85 32.17 \n",
+ "3 3.26 3.85 \n",
+ "4 3.21 3.53 \n",
+ ".. ... ... \n",
+ "375 4.10 1.81 \n",
+ "376 3.08 4.15 \n",
+ "377 5.13 1.40 \n",
+ "378 4.55 1.65 \n",
+ "379 6.38 8.09 \n",
+ "\n",
+ "[380 rows x 61 columns]"
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "season = pd.read_csv('season-1819_csv.csv')\n",
+ "season"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Div', 'Date', 'HomeTeam', 'AwayTeam', 'FTHG', 'FTAG', 'FTR', 'HTHG',\n",
+ " 'HTAG', 'HTR', 'HS', 'AS', 'HST', 'AST', 'HF', 'AF', 'HC', 'AC', 'HY',\n",
+ " 'AY', 'HR', 'AR', 'B365H', 'B365D', 'B365A', 'BWH', 'BWD', 'BWA', 'IWH',\n",
+ " 'IWD', 'IWA', 'PSH', 'PSD', 'PSA', 'WHH', 'WHD', 'WHA', 'VCH', 'VCD',\n",
+ " 'VCA', 'Bb1X2', 'BbMxH', 'BbAvH', 'BbMxD', 'BbAvD', 'BbMxA', 'BbAvA',\n",
+ " 'BbOU', 'BbMx>2.5', 'BbAv>2.5', 'BbMx<2.5', 'BbAv<2.5', 'BbAH', 'BbAHh',\n",
+ " 'BbMxAHH', 'BbAvAHH', 'BbMxAHA', 'BbAvAHA', 'PSCH', 'PSCD', 'PSCA'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "season.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}