Title | Date | Abstract | Comment | CodeRepository |
---|---|---|---|---|
Learning Appearance and Motion Cues for Panoptic Tracking | 2025-03-12 | ShowPanoptic tracking enables pixel-level scene interpretation of videos by integrating instance tracking in panoptic segmentation. This provides robots with a spatio-temporal understanding of the environment, an essential attribute for their operation in dynamic environments. In this paper, we propose a novel approach for panoptic tracking that simultaneously captures general semantic information and instance-specific appearance and motion features. Unlike existing methods that overlook dynamic scene attributes, our approach leverages both appearance and motion cues through dedicated network heads. These interconnected heads employ multi-scale deformable convolutions that reason about scene motion offsets with semantic context and motion-enhanced appearance features to learn tracking embeddings. Furthermore, we introduce a novel two-step fusion module that integrates the outputs from both heads by first matching instances from the current time step with propagated instances from previous time steps and subsequently refines associations using motion-enhanced appearance embeddings, improving robustness in challenging scenarios. Extensive evaluations of our proposed \netname model on two benchmark datasets demonstrate that it achieves state-of-the-art performance in panoptic tracking accuracy, surpassing prior methods in maintaining object identities over time. To facilitate future research, we make the code available at http://panoptictracking.cs.uni-freiburg.de |
None | |
DiffEGG: Diffusion-Driven Edge Generation as a Pixel-Annotation-Free Alternative for Instance Annotation | 2025-03-11 | ShowAchieving precise panoptic segmentation relies on pixel-wise instance annotations, but obtaining such datasets is costly. Unsupervised instance segmentation (UIS) eliminates annotation requirements but struggles with adjacent instance merging and single-instance fragmentation, largely due to the limitations of DINO-based backbones which lack strong instance separation cues. Weakly-supervised panoptic segmentation (WPS) reduces annotation costs using sparse labels (e.g., points, boxes), yet these annotations remain expensive and introduce human bias and boundary errors. To address these challenges, we propose DiffEGG (Diffusion-Driven EdGe Generation), a fully annotation-free method that extracts instance-aware features from pretrained diffusion models to generate precise instance edge maps. Unlike DINO-based UIS methods, diffusion models inherently capture fine-grained, instance-aware features, enabling more precise boundary delineation. For WPS, DiffEGG eliminates annotation costs and human bias by operating without any form of manual supervision, addressing the key limitations of prior best methods. Additionally, we introduce RIP, a post-processing technique that fuses DiffEGG's edge maps with segmentation masks in a task-agnostic manner. RIP allows DiffEGG to be seamlessly integrated into various segmentation frameworks. When applied to UIS, DiffEGG and RIP achieve an average |
Code Link | |
MGNiceNet: Unified Monocular Geometric Scene Understanding | 2025-03-10 | ShowMonocular geometric scene understanding combines panoptic segmentation and self-supervised depth estimation, focusing on real-time application in autonomous vehicles. We introduce MGNiceNet, a unified approach that uses a linked kernel formulation for panoptic segmentation and self-supervised depth estimation. MGNiceNet is based on the state-of-the-art real-time panoptic segmentation method RT-K-Net and extends the architecture to cover both panoptic segmentation and self-supervised monocular depth estimation. To this end, we introduce a tightly coupled self-supervised depth estimation predictor that explicitly uses information from the panoptic path for depth prediction. Furthermore, we introduce a panoptic-guided motion masking method to improve depth estimation without relying on video panoptic segmentation annotations. We evaluate our method on two popular autonomous driving datasets, Cityscapes and KITTI. Our model shows state-of-the-art results compared to other real-time methods and closes the gap to computationally more demanding methods. Source code and trained models are available at https://github.com/markusschoen/MGNiceNet. |
Code Link | |
A Simple and Generalist Approach for Panoptic Segmentation | 2025-03-07 | ShowPanoptic segmentation is an important computer vision task, where the current state-of-the-art solutions require specialized components to perform well. We propose a simple generalist framework based on a deep encoder - shallow decoder architecture with per-pixel prediction. Essentially fine-tuning a massively pretrained image model with minimal additional components. Naively this method does not yield good results. We show that this is due to imbalance during training and propose a novel method for reducing it - centroid regression in the space of spectral positional embeddings. Our method achieves panoptic quality (PQ) of 55.1 on the challenging MS-COCO dataset, state-of-the-art performance among generalist methods. |
None | |
MM-OR: A Large Multimodal Operating Room Dataset for Semantic Understanding of High-Intensity Surgical Environments | 2025-03-04 | ShowOperating rooms (ORs) are complex, high-stakes environments requiring precise understanding of interactions among medical staff, tools, and equipment for enhancing surgical assistance, situational awareness, and patient safety. Current datasets fall short in scale, realism and do not capture the multimodal nature of OR scenes, limiting progress in OR modeling. To this end, we introduce MM-OR, a realistic and large-scale multimodal spatiotemporal OR dataset, and the first dataset to enable multimodal scene graph generation. MM-OR captures comprehensive OR scenes containing RGB-D data, detail views, audio, speech transcripts, robotic logs, and tracking data and is annotated with panoptic segmentations, semantic scene graphs, and downstream task labels. Further, we propose MM2SG, the first multimodal large vision-language model for scene graph generation, and through extensive experiments, demonstrate its ability to effectively leverage multimodal inputs. Together, MM-OR and MM2SG establish a new benchmark for holistic OR understanding, and open the path towards multimodal scene analysis in complex, high-stakes environments. Our code, and data is available at https://github.com/egeozsoy/MM-OR. |
Code Link | |
Label-Efficient LiDAR Panoptic Segmentation | 2025-03-04 | ShowA main bottleneck of learning-based robotic scene understanding methods is the heavy reliance on extensive annotated training data, which often limits their generalization ability. In LiDAR panoptic segmentation, this challenge becomes even more pronounced due to the need to simultaneously address both semantic and instance segmentation from complex, high-dimensional point cloud data. In this work, we address the challenge of LiDAR panoptic segmentation with very few labeled samples by leveraging recent advances in label-efficient vision panoptic segmentation. To this end, we propose a novel method, Limited-Label LiDAR Panoptic Segmentation (L3PS), which requires only a minimal amount of labeled data. Our approach first utilizes a label-efficient 2D network to generate panoptic pseudo-labels from a small set of annotated images, which are subsequently projected onto point clouds. We then introduce a novel 3D refinement module that capitalizes on the geometric properties of point clouds. By incorporating clustering techniques, sequential scan accumulation, and ground point separation, this module significantly enhances the accuracy of the pseudo-labels, improving segmentation quality by up to +10.6 PQ and +7.9 mIoU. We demonstrate that these refined pseudo-labels can be used to effectively train off-the-shelf LiDAR segmentation networks. Through extensive experiments, we show that L3PS not only outperforms existing methods but also substantially reduces the annotation burden. We release the code of our work at https://l3ps.cs.uni-freiburg.de. |
None | |
Improving vision-language alignment with graph spiking hybrid Networks | 2025-03-02 | ShowTo bridge the semantic gap between vision and language (VL), it is necessary to develop a good alignment strategy, which includes handling semantic diversity, abstract representation of visual information, and generalization ability of models. Recent works use detector-based bounding boxes or patches with regular partitions to represent visual semantics. While current paradigms have made strides, they are still insufficient for fully capturing the nuanced contextual relations among various objects. This paper proposes a comprehensive visual semantic representation module, necessitating the utilization of panoptic segmentation to generate coherent fine-grained semantic features. Furthermore, we propose a novel Graph Spiking Hybrid Network (GSHN) that integrates the complementary advantages of Spiking Neural Networks (SNNs) and Graph Attention Networks (GATs) to encode visual semantic information. Intriguingly, the model not only encodes the discrete and continuous latent variables of instances but also adeptly captures both local and global contextual features, thereby significantly enhancing the richness and diversity of semantic representations. Leveraging the spatiotemporal properties inherent in SNNs, we employ contrastive learning (CL) to enhance the similarity-based representation of embeddings. This strategy alleviates the computational overhead of the model and enriches meaningful visual representations by constructing positive and negative sample pairs. We design an innovative pre-training method, Spiked Text Learning (STL), which uses text features to improve the encoding ability of discrete semantics. Experiments show that the proposed GSHN exhibits promising results on multiple VL downstream tasks. |
None | |
RMP-SAM: Towards Real-Time Multi-Purpose Segment Anything | 2025-02-28 | ShowRecent segmentation methods, which adopt large-scale data training and transformer architecture, aim to create one foundation model that can perform multiple tasks. However, most of these methods rely on heavy encoder and decoder frameworks, hindering their performance in real-time scenarios. To explore real-time segmentation, recent advancements primarily focus on semantic segmentation within specific environments, such as autonomous driving. However, they often overlook the generalization ability of these models across diverse scenarios. Therefore, to fill this gap, this work explores a novel real-time segmentation setting called real-time multi-purpose segmentation. It contains three fundamental sub-tasks: interactive segmentation, panoptic segmentation, and video instance segmentation. Unlike previous methods, which use a specific design for each task, we aim to use only a single end-to-end model to accomplish all these tasks in real-time. To meet real-time requirements and balance multi-task learning, we present a novel dynamic convolution-based method, Real-Time Multi-Purpose SAM (RMP-SAM). It contains an efficient encoder and an efficient decoupled adapter to perform prompt-driven decoding. Moreover, we further explore different training strategies and one new adapter design to boost co-training performance further. We benchmark several strong baselines by extending existing works to support our multi-purpose segmentation. Extensive experiments demonstrate that RMP-SAM is effective and generalizes well on proposed benchmarks and other specific semantic tasks. Our implementation of RMP-SAM achieves the optimal balance between accuracy and speed for these tasks.Our code and model are available at https://github.com/xushilin1/RAP-SAM/. |
ICLR-...ICLR-2025 (oral). Project Page: https://xushilin1.github.io/rap_sam/ |
Code Link |
Pointmap Association and Piecewise-Plane Constraint for Consistent and Compact 3D Gaussian Segmentation Field | 2025-02-22 | ShowAchieving a consistent and compact 3D segmentation field is crucial for maintaining semantic coherence across views and accurately representing scene structures. Previous 3D scene segmentation methods rely on video segmentation models to address inconsistencies across views, but the absence of spatial information often leads to object misassociation when object temporarily disappear and reappear. Furthermore, in the process of 3D scene reconstruction, segmentation and optimization are often treated as separate tasks. As a result, optimization typically lacks awareness of semantic category information, which can result in floaters with ambiguous segmentation. To address these challenges, we introduce CCGS, a method designed to achieve both view consistent 2D segmentation and a compact 3D Gaussian segmentation field. CCGS incorporates pointmap association and a piecewise-plane constraint. First, we establish pixel correspondence between adjacent images by minimizing the Euclidean distance between their pointmaps. We then redefine object mask overlap accordingly. The Hungarian algorithm is employed to optimize mask association by minimizing the total matching cost, while allowing for partial matches. To further enhance compactness, the piecewise-plane constraint restricts point displacement within local planes during optimization, thereby preserving structural integrity. Experimental results on ScanNet and Replica datasets demonstrate that CCGS outperforms existing methods in both 2D panoptic segmentation and 3D Gaussian segmentation. |
None | |
Panoptic Diffusion Models: co-generation of images and segmentation maps | 2025-02-22 | ShowRecently, diffusion models have demonstrated impressive capabilities in text-guided and image-conditioned image generation. However, existing diffusion models cannot simultaneously generate an image and a panoptic segmentation of objects and stuff from the prompt. Incorporating an inherent understanding of shapes and scene layouts can improve the creativity and realism of diffusion models. To address this limitation, we present Panoptic Diffusion Model (PDM), the first model designed to generate both images and panoptic segmentation maps concurrently. PDM bridges the gap between image and text by constructing segmentation layouts that provide detailed, built-in guidance throughout the generation process. This ensures the inclusion of categories mentioned in text prompts and enriches the diversity of segments within the background. We demonstrate the effectiveness of PDM across two architectures: a unified diffusion transformer and a two-stream transformer with a pretrained backbone. We propose a Multi-Scale Patching mechanism to generate high-resolution segmentation maps. Additionally, when ground-truth maps are available, PDM can function as a text-guided image-to-image generation model. Finally, we propose a novel metric for evaluating the quality of generated maps and show that PDM achieves state-of-the-art results in image generation with implicit scene control. |
None | |
COCONut-PanCap: Joint Panoptic Segmentation and Grounded Captions for Fine-Grained Understanding and Generation | 2025-02-04 | ShowThis paper introduces the COCONut-PanCap dataset, created to enhance panoptic segmentation and grounded image captioning. Building upon the COCO dataset with advanced COCONut panoptic masks, this dataset aims to overcome limitations in existing image-text datasets that often lack detailed, scene-comprehensive descriptions. The COCONut-PanCap dataset incorporates fine-grained, region-level captions grounded in panoptic segmentation masks, ensuring consistency and improving the detail of generated captions. Through human-edited, densely annotated descriptions, COCONut-PanCap supports improved training of vision-language models (VLMs) for image understanding and generative models for text-to-image tasks. Experimental results demonstrate that COCONut-PanCap significantly boosts performance across understanding and generation tasks, offering complementary benefits to large-scale datasets. This dataset sets a new benchmark for evaluating models on joint panoptic segmentation and grounded captioning tasks, addressing the need for high-quality, detailed image-text annotations in multi-modal learning. |
proje...project website: https://xdeng7.github.io/coconut.github.io/coconut_pancap.html |
Code Link |
Pix2Cap-COCO: Advancing Visual Comprehension via Pixel-Level Captioning | 2025-01-23 | ShowWe present Pix2Cap-COCO, the first panoptic pixel-level caption dataset designed to advance fine-grained visual understanding. To achieve this, we carefully design an automated annotation pipeline that prompts GPT-4V to generate pixel-aligned, instance-specific captions for individual objects within images, enabling models to learn more granular relationships between objects and their contexts. This approach results in 167,254 detailed captions, with an average of 22.94 words per caption. Building on Pix2Cap-COCO, we introduce a novel task, panoptic segmentation-captioning, which challenges models to recognize instances in an image and provide detailed descriptions for each simultaneously. To benchmark this task, we design a robust baseline based on X-Decoder. The experimental results demonstrate that Pix2Cap-COCO is a particularly challenging dataset, as it requires models to excel in both fine-grained visual understanding and detailed language generation. Furthermore, we leverage Pix2Cap-COCO for Supervised Fine-Tuning (SFT) on large multimodal models (LMMs) to enhance their performance. For example, training with Pix2Cap-COCO significantly improves the performance of GPT4RoI, yielding gains in CIDEr +1.4%, ROUGE +0.4%, and SPICE +0.5% on Visual Genome dataset, and strengthens its region understanding ability on the ViP-BENCH, with an overall improvement of +5.1%, including notable increases in recognition accuracy +11.2% and language generation quality +22.2%. |
None | |
COCO-OLAC: A Benchmark for Occluded Panoptic Segmentation and Image Understanding | 2025-01-12 | ShowTo help address the occlusion problem in panoptic segmentation and image understanding, this paper proposes a new large-scale dataset named COCO-OLAC (COCO Occlusion Labels for All Computer Vision Tasks), which is derived from the COCO dataset by manually labelling images into three perceived occlusion levels. Using COCO-OLAC, we systematically assess and quantify the impact of occlusion on panoptic segmentation on samples having different levels of occlusion. Comparative experiments with SOTA panoptic models demonstrate that the presence of occlusion significantly affects performance, with higher occlusion levels resulting in notably poorer performance. Additionally, we propose a straightforward yet effective method as an initial attempt to leverage the occlusion annotation using contrastive learning to render a model that learns a more robust representation capturing different severities of occlusion. Experimental results demonstrate that the proposed approach boosts the performance of the baseline model and achieves SOTA performance on the proposed COCO-OLAC dataset. |
None | |
Test-Time Training on Video Streams | 2025-01-04 | ShowPrior work has established Test-Time Training (TTT) as a general framework to further improve a trained model at test time. Before making a prediction on each test instance, the model is first trained on the same instance using a self-supervised task such as reconstruction. We extend TTT to the streaming setting, where multiple test instances - video frames in our case - arrive in temporal order. Our extension is online TTT: The current model is initialized from the previous model, then trained on the current frame and a small window of frames immediately before. Online TTT significantly outperforms the fixed-model baseline for four tasks, on three real-world datasets. The improvements are more than 2.2x and 1.5x for instance and panoptic segmentation. Surprisingly, online TTT also outperforms its offline variant that accesses strictly more information, training on all frames from the entire test video regardless of temporal order. This finding challenges those in prior work using synthetic videos. We formalize a notion of locality as the advantage of online over offline TTT, and analyze its role with ablations and a theory based on bias-variance trade-off. |
Proje...Project website with videos, dataset and code: https://test-time-training.github.io/video |
Code Link |
DreamMask: Boosting Open-vocabulary Panoptic Segmentation with Synthetic Data | 2025-01-03 | ShowOpen-vocabulary panoptic segmentation has received significant attention due to its applicability in the real world. Despite claims of robust generalization, we find that the advancements of previous works are attributed mainly on trained categories, exposing a lack of generalization to novel classes. In this paper, we explore boosting existing models from a data-centric perspective. We propose DreamMask, which systematically explores how to generate training data in the open-vocabulary setting, and how to train the model with both real and synthetic data. For the first part, we propose an automatic data generation pipeline with off-the-shelf models. We propose crucial designs for vocabulary expansion, layout arrangement, data filtering, etc. Equipped with these techniques, our generated data could significantly outperform the manually collected web data. To train the model with generated data, a synthetic-real alignment loss is designed to bridge the representation gap, bringing noticeable improvements across multiple benchmarks. In general, DreamMask significantly simplifies the collection of large-scale training data, serving as a plug-and-play enhancement for existing methods. For instance, when trained on COCO and tested on ADE20K, the model equipped with DreamMask outperforms the previous state-of-the-art by a substantial margin of 2.1% mIoU. |
Proje...Project url: https://yuanpengtu.github.io/Dreammask-Page/ |
Code Link |
Exploiting Boundary Loss for the Hierarchical Panoptic Segmentation of Plants and Leaves | 2024-12-31 | ShowPrecision agriculture leverages data and machine learning so that farmers can monitor their crops and target interventions precisely. This enables the precision application of herbicide only to weeds, or the precision application of fertilizer only to undernourished crops, rather than to the entire field. The approach promises to maximize yields while minimizing resource use and harm to the surrounding environment. To this end, we propose a hierarchical panoptic segmentation method that simultaneously determines leaf count (as an identifier of plant growth)and locates weeds within an image. In particular, our approach aims to improve the segmentation of smaller instances like the leaves and weeds by incorporating focal loss and boundary loss. Not only does this result in competitive performance, achieving a PQ+ of 81.89 on the standard training set, but we also demonstrate we can improve leaf-counting accuracy with our method. The code is available at https://github.com/madeleinedarbyshire/HierarchicalMask2Former. |
Prese...Presented at the 9th Workshop for Computer Vision in Plant Phenotyping and Agriculture (CVPPA) 2024 at the European Conference of Computer Vision (ECCV) 2024. arXiv admin note: text overlap with arXiv:2310.06582 |
Code Link |
LiDAR-Camera Fusion for Video Panoptic Segmentation without Video Training | 2024-12-30 | ShowPanoptic segmentation, which combines instance and semantic segmentation, has gained a lot of attention in autonomous vehicles, due to its comprehensive representation of the scene. This task can be applied for cameras and LiDAR sensors, but there has been a limited focus on combining both sensors to enhance image panoptic segmentation (PS). Although previous research has acknowledged the benefit of 3D data on camera-based scene perception, no specific study has explored the influence of 3D data on image and video panoptic segmentation (VPS).This work seeks to introduce a feature fusion module that enhances PS and VPS by fusing LiDAR and image data for autonomous vehicles. We also illustrate that, in addition to this fusion, our proposed model, which utilizes two simple modifications, can further deliver even more high-quality VPS without being trained on video data. The results demonstrate a substantial improvement in both the image and video panoptic segmentation evaluation metrics by up to 5 points. |
Accep...Accepted by 2024 International Conference on Intelligent Computing and its Emerging Applications |
None |
Language-Guided Instance-Aware Domain-Adaptive Panoptic Segmentation | 2024-12-25 | ShowThe increasing relevance of panoptic segmentation is tied to the advancements in autonomous driving and AR/VR applications. However, the deployment of such models has been limited due to the expensive nature of dense data annotation, giving rise to unsupervised domain adaptation (UDA). A key challenge in panoptic UDA is reducing the domain gap between a labeled source and an unlabeled target domain while harmonizing the subtasks of semantic and instance segmentation to limit catastrophic interference. While considerable progress has been achieved, existing approaches mainly focus on the adaptation of semantic segmentation. In this work, we focus on incorporating instance-level adaptation via a novel instance-aware cross-domain mixing strategy IMix. IMix significantly enhances the panoptic quality by improving instance segmentation performance. Specifically, we propose inserting high-confidence predicted instances from the target domain onto source images, retaining the exhaustiveness of the resulting pseudo-labels while reducing the injected confirmation bias. Nevertheless, such an enhancement comes at the cost of degraded semantic performance, attributed to catastrophic forgetting. To mitigate this issue, we regularize our semantic branch by employing CLIP-based domain alignment (CDA), exploiting the domain-robustness of natural language prompts. Finally, we present an end-to-end model incorporating these two mechanisms called LIDAPS, achieving state-of-the-art results on all popular panoptic UDA benchmarks. |
Accep...Accepted at the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) |
None |
Open-Vocabulary Panoptic Segmentation Using BERT Pre-Training of Vision-Language Multiway Transformer Model | 2024-12-25 | ShowOpen-vocabulary panoptic segmentation remains a challenging problem. One of the biggest difficulties lies in training models to generalize to an unlimited number of classes using limited categorized training data. Recent popular methods involve large-scale vision-language pre-trained foundation models, such as CLIP. In this paper, we propose OMTSeg for open-vocabulary segmentation using another large-scale vision-language pre-trained model called BEiT-3 and leveraging the cross-modal attention between visual and linguistic features in BEiT-3 to achieve better performance. Experiments result demonstrates that OMTSeg performs favorably against state-of-the-art models. |
ICIP 2024 | None |
SANPO: A Scene Understanding, Accessibility and Human Navigation Dataset | 2024-12-20 | ShowVision is essential for human navigation. The World Health Organization (WHO) estimates that 43.3 million people were blind in 2020, and this number is projected to reach 61 million by 2050. Modern scene understanding models could empower these people by assisting them with navigation, obstacle avoidance and visual recognition capabilities. The research community needs high quality datasets for both training and evaluation to build these systems. While datasets for autonomous vehicles are abundant, there is a critical gap in datasets tailored for outdoor human navigation. This gap poses a major obstacle to the development of computer vision based Assistive Technologies. To overcome this obstacle, we present SANPO, a large-scale egocentric video dataset designed for dense prediction in outdoor human navigation environments. SANPO contains 701 stereo videos of 30+ seconds captured in diverse real-world outdoor environments across four geographic locations in the USA. Every frame has a high resolution depth map and 112K frames were annotated with temporally consistent dense video panoptic segmentation labels. The dataset also includes 1961 high-quality synthetic videos with pixel accurate depth and panoptic segmentation annotations to balance the noisy real world annotations with the high precision synthetic annotations. SANPO is already publicly available and is being used by mobile applications like Project Guideline to train mobile models that help low-vision users go running outdoors independently. To preserve anonymization during peer review, we will provide a link to our dataset upon acceptance. SANPO is available here: https://google-research-datasets.github.io/sanpo_dataset/ |
WACV2...WACV2025 submission version. 8 pages, plus supplementary material |
Code Link |
Open-World Panoptic Segmentation | 2024-12-17 | ShowPerception is a key building block of autonomously acting vision systems such as autonomous vehicles. It is crucial that these systems are able to understand their surroundings in order to operate safely and robustly. Additionally, autonomous systems deployed in unconstrained real-world scenarios must be able of dealing with novel situations and object that have never been seen before. In this article, we tackle the problem of open-world panoptic segmentation, i.e., the task of discovering new semantic categories and new object instances at test time, while enforcing consistency among the categories that we incrementally discover. We propose Con2MAV, an approach for open-world panoptic segmentation that extends our previous work, ContMAV, which was developed for open-world semantic segmentation. Through extensive experiments across multiple datasets, we show that our model achieves state-of-the-art results on open-world segmentation tasks, while still performing competitively on the known categories. We will open-source our implementation upon acceptance. Additionally, we propose PANIC (Panoptic ANomalies In Context), a benchmark for evaluating open-world panoptic segmentation in autonomous driving scenarios. This dataset, recorded with a multi-modal sensor suite mounted on a car, provides high-quality, pixel-wise annotations of anomalous objects at both semantic and instance level. Our dataset contains 800 images, with more than 50 unknown classes, i.e., classes that do not appear in the training set, and 4000 object instances, making it an extremely challenging dataset for open-world segmentation tasks in the autonomous driving scenario. We provide competitions for multiple open-world tasks on a hidden test set. Our dataset and competitions are available at https://www.ipb.uni-bonn.de/data/panic. |
Submitted to PAMI | None |
EOV-Seg: Efficient Open-Vocabulary Panoptic Segmentation | 2024-12-16 | ShowOpen-vocabulary panoptic segmentation aims to segment and classify everything in diverse scenes across an unbounded vocabulary. Existing methods typically employ two-stage or single-stage framework. The two-stage framework involves cropping the image multiple times using masks generated by a mask generator, followed by feature extraction, while the single-stage framework relies on a heavyweight mask decoder to make up for the lack of spatial position information through self-attention and cross-attention in multiple stacked Transformer blocks. Both methods incur substantial computational overhead, thereby hindering the efficiency of model inference. To fill the gap in efficiency, we propose EOV-Seg, a novel single-stage, shared, efficient, and spatialaware framework designed for open-vocabulary panoptic segmentation. Specifically, EOV-Seg innovates in two aspects. First, a Vocabulary-Aware Selection (VAS) module is proposed to improve the semantic comprehension of visual aggregated features and alleviate the feature interaction burden on the mask decoder. Second, we introduce a Two-way Dynamic Embedding Experts (TDEE), which efficiently utilizes the spatial awareness capabilities of ViT-based CLIP backbone. To the best of our knowledge, EOV-Seg is the first open-vocabulary panoptic segmentation framework towards efficiency, which runs faster and achieves competitive performance compared with state-of-the-art methods. Specifically, with COCO training only, EOV-Seg achieves 24.5 PQ, 32.1 mIoU, and 11.6 FPS on the ADE20K dataset and the inference time of EOV-Seg is 4-19 times faster than state-of-theart methods. Especially, equipped with ResNet50 backbone, EOV-Seg runs 23.8 FPS with only 71M parameters on a single RTX 3090 GPU. Code is available at https://github.com/nhw649/EOV-Seg. |
Accep...Accepted by AAAI 2025 |
Code Link |
Volumetric Mapping with Panoptic Refinement via Kernel Density Estimation for Mobile Robots | 2024-12-15 | ShowReconstructing three-dimensional (3D) scenes with semantic understanding is vital in many robotic applications. Robots need to identify which objects, along with their positions and shapes, to manipulate them precisely with given tasks. Mobile robots, especially, usually use lightweight networks to segment objects on RGB images and then localize them via depth maps; however, they often encounter out-of-distribution scenarios where masks over-cover the objects. In this paper, we address the problem of panoptic segmentation quality in 3D scene reconstruction by refining segmentation errors using non-parametric statistical methods. To enhance mask precision, we map the predicted masks into a depth frame to estimate their distribution via kernel densities. The outliers in depth perception are then rejected without the need for additional parameters in an adaptive manner to out-of-distribution scenarios, followed by 3D reconstruction using projective signed distance functions (SDFs). We validate our method on a synthetic dataset, which shows improvements in both quantitative and qualitative results for panoptic mapping. Through real-world testing, the results furthermore show our method's capability to be deployed on a real-robot system. Our source code is available at: https://github.com/mkhangg/refined panoptic mapping. |
Code Link | |
PanSR: An Object-Centric Mask Transformer for Panoptic Segmentation | 2024-12-13 | ShowPanoptic segmentation is a fundamental task in computer vision and a crucial component for perception in autonomous vehicles. Recent mask-transformer-based methods achieve impressive performance on standard benchmarks but face significant challenges with small objects, crowded scenes and scenes exhibiting a wide range of object scales. We identify several fundamental shortcomings of the current approaches: (i) the query proposal generation process is biased towards larger objects, resulting in missed smaller objects, (ii) initially well-localized queries may drift to other objects, resulting in missed detections, (iii) spatially well-separated instances may be merged into a single mask causing inconsistent and false scene interpretations. To address these issues, we rethink the individual components of the network and its supervision, and propose a novel method for panoptic segmentation PanSR. PanSR effectively mitigates instance merging, enhances small-object detection and increases performance in crowded scenes, delivering a notable +3.4 PQ improvement over state-of-the-art on the challenging LaRS benchmark, while reaching state-of-the-art performance on Cityscapes. The code and models will be publicly available at https://github.com/lojzezust/PanSR. |
8 pages, 9 figures | Code Link |
Balancing Shared and Task-Specific Representations: A Hybrid Approach to Depth-Aware Video Panoptic Segmentation | 2024-12-10 | ShowIn this work, we present Multiformer, a novel approach to depth-aware video panoptic segmentation (DVPS) based on the mask transformer paradigm. Our method learns object representations that are shared across segmentation, monocular depth estimation, and object tracking subtasks. In contrast to recent unified approaches that progressively refine a common object representation, we propose a hybrid method using task-specific branches within each decoder block, ultimately fusing them into a shared representation at the block interfaces. Extensive experiments on the Cityscapes-DVPS and SemKITTI-DVPS datasets demonstrate that Multiformer achieves state-of-the-art performance across all DVPS metrics, outperforming previous methods by substantial margins. With a ResNet-50 backbone, Multiformer surpasses the previous best result by 3.0 DVPQ points while also improving depth estimation accuracy. Using a Swin-B backbone, Multiformer further improves performance by 4.0 DVPQ points. Multiformer also provides valuable insights into the design of multi-task decoder architectures. |
Accep...Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025. Code and trained models are available at: https://research.khws.io/multiformer |
None |
A Good Foundation is Worth Many Labels: Label-Efficient Panoptic Segmentation | 2024-12-03 | ShowA key challenge for the widespread application of learning-based models for robotic perception is to significantly reduce the required amount of annotated training data while achieving accurate predictions. This is essential not only to decrease operating costs but also to speed up deployment time. In this work, we address this challenge for PAnoptic SegmenTation with fEw Labels (PASTEL) by exploiting the groundwork paved by visual foundation models. We leverage descriptive image features from such a model to train two lightweight network heads for semantic segmentation and object boundary detection, using very few annotated training samples. We then merge their predictions via a novel fusion module that yields panoptic maps based on normalized cut. To further enhance the performance, we utilize self-training on unlabeled images selected by a feature-driven similarity scheme. We underline the relevance of our approach by employing PASTEL to important robot perception use cases from autonomous driving and agricultural robotics. In extensive experiments, we demonstrate that PASTEL significantly outperforms previous methods for label-efficient segmentation even when using fewer annotations. The code of our work is publicly available at http://pastel.cs.uni-freiburg.de. |
None | |
LDA-AQU: Adaptive Query-guided Upsampling via Local Deformable Attention | 2024-11-29 | ShowFeature upsampling is an essential operation in constructing deep convolutional neural networks. However, existing upsamplers either lack specific feature guidance or necessitate the utilization of high-resolution feature maps, resulting in a loss of performance and flexibility. In this paper, we find that the local self-attention naturally has the feature guidance capability, and its computational paradigm aligns closely with the essence of feature upsampling (\ie feature reassembly of neighboring points). Therefore, we introduce local self-attention into the upsampling task and demonstrate that the majority of existing upsamplers can be regarded as special cases of upsamplers based on local self-attention. Considering the potential semantic gap between upsampled points and their neighboring points, we further introduce the deformation mechanism into the upsampler based on local self-attention, thereby proposing LDA-AQU. As a novel dynamic kernel-based upsampler, LDA-AQU utilizes the feature of queries to guide the model in adaptively adjusting the position and aggregation weight of neighboring points, thereby meeting the upsampling requirements across various complex scenarios. In addition, LDA-AQU is lightweight and can be easily integrated into various model architectures. We evaluate the effectiveness of LDA-AQU across four dense prediction tasks: object detection, instance segmentation, panoptic segmentation, and semantic segmentation. LDA-AQU consistently outperforms previous state-of-the-art upsamplers, achieving performance enhancements of 1.7 AP, 1.5 AP, 2.0 PQ, and 2.5 mIoU compared to the baseline models in the aforementioned four tasks, respectively. Code is available at \url{https://github.com/duzw9311/LDA-AQU}. |
Accep...Accepted by ACM MM2024 |
Code Link |
Image Segmentation in Foundation Model Era: A Survey | 2024-11-27 | ShowImage segmentation is a long-standing challenge in computer vision, studied continuously over several decades, as evidenced by seminal algorithms such as N-Cut, FCN, and MaskFormer. With the advent of foundation models (FMs), contemporary segmentation methodologies have embarked on a new epoch by either adapting FMs (e.g., CLIP, Stable Diffusion, DINO) for image segmentation or developing dedicated segmentation foundation models (e.g., SAM). These approaches not only deliver superior segmentation performance, but also herald newfound segmentation capabilities previously unseen in deep learning context. However, current research in image segmentation lacks a detailed analysis of distinct characteristics, challenges, and solutions associated with these advancements. This survey seeks to fill this gap by providing a thorough review of cutting-edge research centered around FM-driven image segmentation. We investigate two basic lines of research -- generic image segmentation (i.e., semantic segmentation, instance segmentation, panoptic segmentation), and promptable image segmentation (i.e., interactive segmentation, referring segmentation, few-shot segmentation) -- by delineating their respective task settings, background concepts, and key challenges. Furthermore, we provide insights into the emergence of segmentation knowledge from FMs like CLIP, Stable Diffusion, and DINO. An exhaustive overview of over 300 segmentation approaches is provided to encapsulate the breadth of current research efforts. Subsequently, we engage in a discussion of open issues and potential avenues for future research. We envisage that this fresh, comprehensive, and systematic survey catalyzes the evolution of advanced image segmentation systems. A public website is created to continuously track developments in this fast advancing field: \url{https://github.com/stanley-313/ImageSegFM-Survey}. |
A com...A comprehensive survey of image segmentation in foundation model era |
Code Link |
@Bench: Benchmarking Vision-Language Models for Human-centered Assistive Technology | 2024-11-25 | ShowAs Vision-Language Models (VLMs) advance, human-centered Assistive Technologies (ATs) for helping People with Visual Impairments (PVIs) are evolving into generalists, capable of performing multiple tasks simultaneously. However, benchmarking VLMs for ATs remains under-explored. To bridge this gap, we first create a novel AT benchmark (@Bench). Guided by a pre-design user study with PVIs, our benchmark includes the five most crucial vision-language tasks: Panoptic Segmentation, Depth Estimation, Optical Character Recognition (OCR), Image Captioning, and Visual Question Answering (VQA). Besides, we propose a novel AT model (@Model) that addresses all tasks simultaneously and can be expanded to more assistive functions for helping PVIs. Our framework exhibits outstanding performance across tasks by integrating multi-modal information, and it offers PVIs a more comprehensive assistance. Extensive experiments prove the effectiveness and generalizability of our framework. |
Accep...Accepted by WACV 2025, project page: https://junweizheng93.github.io/publications/ATBench/ATBench.html |
Code Link |
Weakly supervised image segmentation for defect-based grading of fresh produce | 2024-11-25 | ShowImplementing image-based machine learning in agriculture is often limited by scarce data and annotations, making it hard to achieve high-quality model predictions. This study tackles the issue of postharvest quality assessment of bananas in decentralized supply chains. We propose a method to detect and segment surface defects in banana images using panoptic segmentation to quantify defect size and number. Instead of time-consuming pixel-level annotations, we use weak supervision with coarse labels. A dataset of 476 smartphone images of bananas was collected under real-world field conditions and annotated for bruises and scars. Using the Segment Anything Model (SAM), a recently published foundation model for image segmentation, we generated dense annotations from coarse bounding boxes to train a segmentation model, significantly reducing manual effort while achieving a panoptic quality score of 77.6%. This demonstrates SAM's potential for low-effort, accurate segmentation in agricultural settings with limited data. |
None | |
Agricultural Landscape Understanding At Country-Scale | 2024-11-08 | ShowAgricultural landscapes are quite complex, especially in the Global South where fields are smaller, and agricultural practices are more varied. In this paper we report on our progress in digitizing the agricultural landscape (natural and man-made) in our study region of India. We use high resolution imagery and a UNet style segmentation model to generate the first of its kind national-scale multi-class panoptic segmentation output. Through this work we have been able to identify individual fields across 151.7M hectares, and delineating key features such as water resources and vegetation. We share how this output was validated by our team and externally by downstream users, including some sample use cases that can lead to targeted data driven decision making. We believe this dataset will contribute towards digitizing agriculture by generating the foundational baselayer. |
34 pa...34 pages, 7 tables, 15 figs |
None |
Seeing Eye to AI: Comparing Human Gaze and Model Attention in Video Memorability | 2024-11-05 | ShowUnderstanding what makes a video memorable has important applications in advertising or education technology. Towards this goal, we investigate spatio-temporal attention mechanisms underlying video memorability. Different from previous works that fuse multiple features, we adopt a simple CNN+Transformer architecture that enables analysis of spatio-temporal attention while matching state-of-the-art (SoTA) performance on video memorability prediction. We compare model attention against human gaze fixations collected through a small-scale eye-tracking study where humans perform the video memory task. We uncover the following insights: (i) Quantitative saliency metrics show that our model, trained only to predict a memorability score, exhibits similar spatial attention patterns to human gaze, especially for more memorable videos. (ii) The model assigns greater importance to initial frames in a video, mimicking human attention patterns. (iii) Panoptic segmentation reveals that both (model and humans) assign a greater share of attention to things and less attention to stuff as compared to their occurrence probability. |
Accep...Accepted to WACV 2025 |
None |
UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding | 2024-10-29 | ShowVision-language foundation models, represented by Contrastive Language-Image Pre-training (CLIP), have gained increasing attention for jointly understanding both vision and textual tasks. However, existing approaches primarily focus on training models to match global image representations with textual descriptions, thereby overlooking the critical alignment between local regions and corresponding text tokens. This paper extends CLIP with multi-granularity alignment. Notably, we deliberately construct a new dataset comprising pseudo annotations at various levels of granularities, encompassing image-level, region-level as well as pixel-level captions and tags. Accordingly, we develop a Unified Multi-Granularity learning framework, termed UMG-CLIP, which simultaneously empowers the model with versatile perception abilities across different levels of detail. With parameter efficient tuning, UMG-CLIP surpasses current widely used CLIP variants and achieves state-of-the-art performance on diverse image understanding benchmarks, including open-world recognition, retrieval, semantic segmentation, and panoptic segmentation tasks. We believe that UMG-CLIP represents a valuable advancement in vision-language foundation models. The code is available at https://github.com/lygsbw/UMG-CLIP. |
ECCV 2024 | Code Link |
PLGS: Robust Panoptic Lifting with 3D Gaussian Splatting | 2024-10-23 | ShowPrevious methods utilize the Neural Radiance Field (NeRF) for panoptic lifting, while their training and rendering speed are unsatisfactory. In contrast, 3D Gaussian Splatting (3DGS) has emerged as a prominent technique due to its rapid training and rendering speed. However, unlike NeRF, the conventional 3DGS may not satisfy the basic smoothness assumption as it does not rely on any parameterized structures to render (e.g., MLPs). Consequently, the conventional 3DGS is, in nature, more susceptible to noisy 2D mask supervision. In this paper, we propose a new method called PLGS that enables 3DGS to generate consistent panoptic segmentation masks from noisy 2D segmentation masks while maintaining superior efficiency compared to NeRF-based methods. Specifically, we build a panoptic-aware structured 3D Gaussian model to introduce smoothness and design effective noise reduction strategies. For the semantic field, instead of initialization with structure from motion, we construct reliable semantic anchor points to initialize the 3D Gaussians. We then use these anchor points as smooth regularization during training. Additionally, we present a self-training approach using pseudo labels generated by merging the rendered masks with the noisy masks to enhance the robustness of PLGS. For the instance field, we project the 2D instance masks into 3D space and match them with oriented bounding boxes to generate cross-view consistent instance masks for supervision. Experiments on various benchmarks demonstrate that our method outperforms previous state-of-the-art methods in terms of both segmentation quality and speed. |
None | |
Configurable Embodied Data Generation for Class-Agnostic RGB-D Video Segmentation | 2024-10-16 | ShowThis paper presents a method for generating large-scale datasets to improve class-agnostic video segmentation across robots with different form factors. Specifically, we consider the question of whether video segmentation models trained on generic segmentation data could be more effective for particular robot platforms if robot embodiment is factored into the data generation process. To answer this question, a pipeline is formulated for using 3D reconstructions (e.g. from HM3DSem) to generate segmented videos that are configurable based on a robot's embodiment (e.g. sensor type, sensor placement, and illumination source). A resulting massive RGB-D video panoptic segmentation dataset (MVPd) is introduced for extensive benchmarking with foundation and video segmentation models, as well as to support embodiment-focused research in video segmentation. Our experimental findings demonstrate that using MVPd for finetuning can lead to performance improvements when transferring foundation models to certain robot embodiments, such as specific camera placements. These experiments also show that using 3D modalities (depth images and camera pose) can lead to improvements in video segmentation accuracy and consistency. The project webpage is available at https://topipari.com/projects/MVPd |
Accep...Accepted in IEEE Robotics and Automation Letters October 2024 |
None |
Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration | 2024-10-16 | ShowThis paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes. Specifically, our approach, namely NCLR, focuses on 2D-3D neural calibration, a novel pretext task that estimates the rigid pose aligning camera and LiDAR coordinate systems. First, we propose the learnable transformation alignment to bridge the domain gap between image and point cloud data, converting features into a unified representation space for effective comparison and matching. Second, we identify the overlapping area between the image and point cloud with the fused features. Third, we establish dense 2D-3D correspondences to estimate the rigid pose. The framework not only learns fine-grained matching from points to pixels but also achieves alignment of the image and point cloud at a holistic level, understanding their relative pose. We demonstrate the efficacy of NCLR by applying the pre-trained backbone to downstream tasks, such as LiDAR-based 3D semantic segmentation, object detection, and panoptic segmentation. Comprehensive experiments on various datasets illustrate the superiority of NCLR over existing self-supervised methods. The results confirm that joint learning from different modalities significantly enhances the network's understanding abilities and effectiveness of learned representation. The code is publicly available at https://github.com/Eaphan/NCLR. |
Under review | Code Link |
PCF-Lift: Panoptic Lifting by Probabilistic Contrastive Fusion | 2024-10-14 | ShowPanoptic lifting is an effective technique to address the 3D panoptic segmentation task by unprojecting 2D panoptic segmentations from multi-views to 3D scene. However, the quality of its results largely depends on the 2D segmentations, which could be noisy and error-prone, so its performance often drops significantly for complex scenes. In this work, we design a new pipeline coined PCF-Lift based on our Probabilis-tic Contrastive Fusion (PCF) to learn and embed probabilistic features throughout our pipeline to actively consider inaccurate segmentations and inconsistent instance IDs. Technical-wise, we first model the probabilistic feature embeddings through multivariate Gaussian distributions. To fuse the probabilistic features, we incorporate the probability product kernel into the contrastive loss formulation and design a cross-view constraint to enhance the feature consistency across different views. For the inference, we introduce a new probabilistic clustering method to effectively associate prototype features with the underlying 3D object instances for the generation of consistent panoptic segmentation results. Further, we provide a theoretical analysis to justify the superiority of the proposed probabilistic solution. By conducting extensive experiments, our PCF-lift not only significantly outperforms the state-of-the-art methods on widely used benchmarks including the ScanNet dataset and the challenging Messy Room dataset (4.4% improvement of scene-level PQ), but also demonstrates strong robustness when incorporating various 2D segmentation models or different levels of hand-crafted noise. |
ECCV ...ECCV 2024. The code is publicly available at https://github.com/Runsong123/PCF-Lift |
Code Link |
In-Place Panoptic Radiance Field Segmentation with Perceptual Prior for 3D Scene Understanding | 2024-10-06 | ShowAccurate 3D scene representation and panoptic understanding are essential for applications such as virtual reality, robotics, and autonomous driving. However, challenges persist with existing methods, including precise 2D-to-3D mapping, handling complex scene characteristics like boundary ambiguity and varying scales, and mitigating noise in panoptic pseudo-labels. This paper introduces a novel perceptual-prior-guided 3D scene representation and panoptic understanding method, which reformulates panoptic understanding within neural radiance fields as a linear assignment problem involving 2D semantics and instance recognition. Perceptual information from pre-trained 2D panoptic segmentation models is incorporated as prior guidance, thereby synchronizing the learning processes of appearance, geometry, and panoptic understanding within neural radiance fields. An implicit scene representation and understanding model is developed to enhance generalization across indoor and outdoor scenes by extending the scale-encoded cascaded grids within a reparameterized domain distillation framework. This model effectively manages complex scene attributes and generates 3D-consistent scene representations and panoptic understanding outcomes for various scenes. Experiments and ablation studies under challenging conditions, including synthetic and real-world scenes, demonstrate the proposed method's effectiveness in enhancing 3D scene representation and panoptic segmentation accuracy. |
None | |
ETHcavation: A Dataset and Pipeline for Panoptic Scene Understanding and Object Tracking in Dynamic Construction Environments | 2024-10-05 | ShowConstruction sites are challenging environments for autonomous systems due to their unstructured nature and the presence of dynamic actors, such as workers and machinery. This work presents a comprehensive panoptic scene understanding solution designed to handle the complexities of such environments by integrating 2D panoptic segmentation with 3D LiDAR mapping. Our system generates detailed environmental representations in real-time by combining semantic and geometric data, supported by Kalman Filter-based tracking for dynamic object detection. We introduce a fine-tuning method that adapts large pre-trained panoptic segmentation models for construction site applications using a limited number of domain-specific samples. For this use case, we release a first-of-its-kind dataset of 502 hand-labeled sample images with panoptic annotations from construction sites. In addition, we propose a dynamic panoptic mapping technique that enhances scene understanding in unstructured environments. As a case study, we demonstrate the system's application for autonomous navigation, utilizing real-time RRT* for reactive path planning in dynamic scenarios. The dataset (https://leggedrobotics.github.io/panoptic-scene-understanding.github.io/) and code (https://github.com/leggedrobotics/rsl_panoptic_mapping) for training and deployment are publicly available to support future research. |
9 pag...9 pages, 7 figures, 4 tables, submitted to 2024 Australasian Conference on Robotics and Automation (ACRA 2024) |
Code Link |
OMG-Seg: Is One Model Good Enough For All Segmentation? | 2024-10-01 | ShowIn this work, we address various segmentation tasks, each traditionally tackled by distinct or partially unified models. We propose OMG-Seg, One Model that is Good enough to efficiently and effectively handle all the segmentation tasks, including image semantic, instance, and panoptic segmentation, as well as their video counterparts, open vocabulary settings, prompt-driven, interactive segmentation like SAM, and video object segmentation. To our knowledge, this is the first model to handle all these tasks in one model and achieve satisfactory performance. We show that OMG-Seg, a transformer-based encoder-decoder architecture with task-specific queries and outputs, can support over ten distinct segmentation tasks and yet significantly reduce computational and parameter overhead across various tasks and datasets. We rigorously evaluate the inter-task influences and correlations during co-training. Code and models are available at https://github.com/lxtGH/OMG-Seg. |
CVPR-...CVPR-2024. Project Page: https://lxtgh.github.io/project/omg_seg/ |
Code Link |
MUSES: The Multi-Sensor Semantic Perception Dataset for Driving under Uncertainty | 2024-09-30 | ShowAchieving level-5 driving automation in autonomous vehicles necessitates a robust semantic visual perception system capable of parsing data from different sensors across diverse conditions. However, existing semantic perception datasets often lack important non-camera modalities typically used in autonomous vehicles, or they do not exploit such modalities to aid and improve semantic annotations in challenging conditions. To address this, we introduce MUSES, the MUlti-SEnsor Semantic perception dataset for driving in adverse conditions under increased uncertainty. MUSES includes synchronized multimodal recordings with 2D panoptic annotations for 2500 images captured under diverse weather and illumination. The dataset integrates a frame camera, a lidar, a radar, an event camera, and an IMU/GNSS sensor. Our new two-stage panoptic annotation protocol captures both class-level and instance-level uncertainty in the ground truth and enables the novel task of uncertainty-aware panoptic segmentation we introduce, along with standard semantic and panoptic segmentation. MUSES proves both effective for training and challenging for evaluating models under diverse visual conditions, and it opens new avenues for research in multimodal and uncertainty-aware dense semantic perception. Our dataset and benchmark are publicly available at https://muses.vision.ee.ethz.ch. |
Datas...Dataset available at http://muses.vision.ee.ethz.ch |
None |
Layer-wise Model Merging for Unsupervised Domain Adaptation in Segmentation Tasks | 2024-09-24 | ShowMerging parameters of multiple models has resurfaced as an effective strategy to enhance task performance and robustness, but prior work is limited by the high costs of ensemble creation and inference. In this paper, we leverage the abundance of freely accessible trained models to introduce a cost-free approach to model merging. It focuses on a layer-wise integration of merged models, aiming to maintain the distinctiveness of the task-specific final layers while unifying the initial layers, which are primarily associated with feature extraction. This approach ensures parameter consistency across all layers, essential for boosting performance. Moreover, it facilitates seamless integration of knowledge, enabling effective merging of models from different datasets and tasks. Specifically, we investigate its applicability in Unsupervised Domain Adaptation (UDA), an unexplored area for model merging, for Semantic and Panoptic Segmentation. Experimental results demonstrate substantial UDA improvements without additional costs for merging same-architecture models from distinct datasets ( |
None | |
Lidar Panoptic Segmentation in an Open World | 2024-09-22 | ShowAddressing Lidar Panoptic Segmentation (LPS ) is crucial for safe deployment of autonomous vehicles. LPS aims to recognize and segment lidar points w.r.t. a pre-defined vocabulary of semantic classes, including thing classes of countable objects (e.g., pedestrians and vehicles) and stuff classes of amorphous regions (e.g., vegetation and road). Importantly, LPS requires segmenting individual thing instances (e.g., every single vehicle). Current LPS methods make an unrealistic assumption that the semantic class vocabulary is fixed in the real open world, but in fact, class ontologies usually evolve over time as robots encounter instances of novel classes that are considered to be unknowns w.r.t. the pre-defined class vocabulary. To address this unrealistic assumption, we study LPS in the Open World (LiPSOW): we train models on a dataset with a pre-defined semantic class vocabulary and study their generalization to a larger dataset where novel instances of thing and stuff classes can appear. This experimental setting leads to interesting conclusions. While prior art train class-specific instance segmentation methods and obtain state-of-the-art results on known classes, methods based on class-agnostic bottom-up grouping perform favorably on classes outside of the initial class vocabulary (i.e., unknown classes). Unfortunately, these methods do not perform on-par with fully data-driven methods on known classes. Our work suggests a middle ground: we perform class-agnostic point clustering and over-segment the input cloud in a hierarchical fashion, followed by binary point segment classification, akin to Region Proposal Network [1]. We obtain the final point cloud segmentation by computing a cut in the weighted hierarchical tree of point segments, independently of semantic classification. Remarkably, this unified approach leads to strong performance on both known and unknown classes. |
Pre-p...Pre-print. Accepted in the International Journal of Computer Vision, 19 Sept 2024. Code available at https://github.com/g-meghana-reddy/open-world-panoptic-segmentation |
Code Link |
EPRecon: An Efficient Framework for Real-Time Panoptic 3D Reconstruction from Monocular Video | 2024-09-20 | ShowPanoptic 3D reconstruction from a monocular video is a fundamental perceptual task in robotic scene understanding. However, existing efforts suffer from inefficiency in terms of inference speed and accuracy, limiting their practical applicability. We present EPRecon, an efficient real-time panoptic 3D reconstruction framework. Current volumetric-based reconstruction methods usually utilize multi-view depth map fusion to obtain scene depth priors, which is time-consuming and poses challenges to real-time scene reconstruction. To address this issue, we propose a lightweight module to directly estimate scene depth priors in a 3D volume for reconstruction quality improvement by generating occupancy probabilities of all voxels. In addition, compared with existing panoptic segmentation methods, EPRecon extracts panoptic features from both voxel features and corresponding image features, obtaining more detailed and comprehensive instance-level semantic information and achieving more accurate segmentation results. Experimental results on the ScanNetV2 dataset demonstrate the superiority of EPRecon over current state-of-the-art methods in terms of both panoptic 3D reconstruction quality and real-time inference. Code is available at https://github.com/zhen6618/EPRecon. |
Code Link | |
Panoptic-Depth Forecasting | 2024-09-18 | ShowForecasting the semantics and 3D structure of scenes is essential for robots to navigate and plan actions safely. Recent methods have explored semantic and panoptic scene forecasting; however, they do not consider the geometry of the scene. In this work, we propose the panoptic-depth forecasting task for jointly predicting the panoptic segmentation and depth maps of unobserved future frames, from monocular camera images. To facilitate this work, we extend the popular KITTI-360 and Cityscapes benchmarks by computing depth maps from LiDAR point clouds and leveraging sequential labeled data. We also introduce a suitable evaluation metric that quantifies both the panoptic quality and depth estimation accuracy of forecasts in a coherent manner. Furthermore, we present two baselines and propose the novel PDcast architecture that learns rich spatio-temporal representations by incorporating a transformer-based encoder, a forecasting module, and task-specific decoders to predict future panoptic-depth outputs. Extensive evaluations demonstrate the effectiveness of PDcast across two datasets and three forecasting tasks, consistently addressing the primary challenges. We make the code publicly available at https://pdcast.cs.uni-freiburg.de. |
None | |
Resolving Inconsistent Semantics in Multi-Dataset Image Segmentation | 2024-09-15 | ShowLeveraging multiple training datasets to scale up image segmentation models is beneficial for increasing robustness and semantic understanding. Individual datasets have well-defined ground truth with non-overlapping mask layouts and mutually exclusive semantics. However, merging them for multi-dataset training disrupts this harmony and leads to semantic inconsistencies; for example, the class "person" in one dataset and class "face" in another will require multilabel handling for certain pixels. Existing methods struggle with this setting, particularly when evaluated on label spaces mixed from the individual training sets. To overcome these issues, we introduce a simple yet effective multi-dataset training approach by integrating language-based embeddings of class names and label space-specific query embeddings. Our method maintains high performance regardless of the underlying inconsistencies between training datasets. Notably, on four benchmark datasets with label space inconsistencies during inference, we outperform previous methods by 1.6% mIoU for semantic segmentation, 9.1% PQ for panoptic segmentation, 12.1% AP for instance segmentation, and 3.0% in the newly proposed PIQ metric. |
None | |
Dynamic Prompting of Frozen Text-to-Image Diffusion Models for Panoptic Narrative Grounding | 2024-09-12 | ShowPanoptic narrative grounding (PNG), whose core target is fine-grained image-text alignment, requires a panoptic segmentation of referred objects given a narrative caption. Previous discriminative methods achieve only weak or coarse-grained alignment by panoptic segmentation pretraining or CLIP model adaptation. Given the recent progress of text-to-image Diffusion models, several works have shown their capability to achieve fine-grained image-text alignment through cross-attention maps and improved general segmentation performance. However, the direct use of phrase features as static prompts to apply frozen Diffusion models to the PNG task still suffers from a large task gap and insufficient vision-language interaction, yielding inferior performance. Therefore, we propose an Extractive-Injective Phrase Adapter (EIPA) bypass within the Diffusion UNet to dynamically update phrase prompts with image features and inject the multimodal cues back, which leverages the fine-grained image-text alignment capability of Diffusion models more sufficiently. In addition, we also design a Multi-Level Mutual Aggregation (MLMA) module to reciprocally fuse multi-level image and phrase features for segmentation refinement. Extensive experiments on the PNG benchmark show that our method achieves new state-of-the-art performance. |
Accep...Accepted by ACM MM 2024 |
None |
Towards Localizing Structural Elements: Merging Geometrical Detection with Semantic Verification in RGB-D Data | 2024-09-10 | ShowRGB-D cameras supply rich and dense visual and spatial information for various robotics tasks such as scene understanding, map reconstruction, and localization. Integrating depth and visual information can aid robots in localization and element mapping, advancing applications like 3D scene graph generation and Visual Simultaneous Localization and Mapping (VSLAM). While point cloud data containing such information is primarily used for enhanced scene understanding, exploiting their potential to capture and represent rich semantic information has yet to be adequately targeted. This paper presents a real-time pipeline for localizing building components, including wall and ground surfaces, by integrating geometric calculations for pure 3D plane detection followed by validating their semantic category using point cloud data from RGB-D cameras. It has a parallel multi-thread architecture to precisely estimate poses and equations of all the planes detected in the environment, filters the ones forming the map structure using a panoptic segmentation validation, and keeps only the validated building components. Incorporating the proposed method into a VSLAM framework confirmed that constraining the map with the detected environment-driven semantic elements can improve scene understanding and map reconstruction accuracy. It can also ensure (re-)association of these detected components into a unified 3D scene graph, bridging the gap between geometric accuracy and semantic understanding. Additionally, the pipeline allows for the detection of potential higher-level structural entities, such as rooms, by identifying the relationships between building components based on their layout. |
6 pag...6 pages, 5 figures. 3 tables |
None |
Uncertainty estimation in Deep Learning for Panoptic segmentation | 2024-09-08 | ShowAs deep learning-based computer vision algorithms continue to advance the state of the art, their robustness to real-world data continues to be an issue, making it difficult to bring an algorithm from the lab to the real world. Ensemble-based uncertainty estimation approaches such as Monte Carlo Dropout have been successfully used in many applications in an attempt to address this robustness issue. Unfortunately, it is not always clear if such ensemble-based approaches can be applied to a new problem domain. This is the case with panoptic segmentation, where the structure of the problem and architectures designed to solve it means that unlike image classification or even semantic segmentation, the typical solution of using a mean across samples cannot be directly applied. In this paper, we demonstrate how ensemble-based uncertainty estimation approaches such as Monte Carlo Dropout can be used in the panoptic segmentation domain with no changes to an existing network, providing both improved performance and more importantly a better measure of uncertainty for predictions made by the network. Results are demonstrated quantitatively and qualitatively on the COCO, KITTI-STEP and VIPER datasets. |
29 pa...29 pages, 9 figures including Supplementary Material. Revision includes additional comparisons and clarifications |
None |
DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery | 2024-09-06 | ShowNeural Radiance Fields (NeRFs) have become a powerful tool for modeling 3D scenes from multiple images. However, NeRFs remain difficult to segment into semantically meaningful regions. Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision. As a consequence, they generalize poorly to class-agnostic masks automatically generated in real scenes. This is attributable to the ambiguity arising from zero-shot segmentation, yielding inconsistent masks across views. In contrast, we propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class. By introducing a limited number of competing object slots against which masks are matched, a meaningful object representation emerges that best explains the 2D supervision and minimizes an additional regularization term. Our experiments demonstrate the ability of our method to generate 3D panoptic segmentations on complex scenes, and extract high-quality 3D assets from NeRFs that can then be used in virtual 3D environments. |
None | |
PanopticPartFormer++: A Unified and Decoupled View for Panoptic Part Segmentation | 2024-09-01 | ShowPanoptic Part Segmentation (PPS) unifies panoptic and part segmentation into one task. Previous works utilize separate approaches to handle things, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework, Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we first design a meta-architecture that decouples part features and things/stuff features, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Second, we propose a new metric Part-Whole Quality (PWQ), better to measure this task from pixel-region and part-whole perspectives. It also decouples the errors for part segmentation and panoptic segmentation. Third, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross-attention scheme to boost part segmentation qualities further. We design a new part-whole interaction method using masked cross attention. Finally, extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results. Our models can serve as a strong baseline and aid future research in PPS. The source code and trained models will be available at~\url{https://github.com/lxtGH/Panoptic-PartFormer}. |
T-PAM...T-PAMI-2024, Extension of PanopticPartFormer (ECCV 2022) |
Code Link |
DQFormer: Towards Unified LiDAR Panoptic Segmentation with Decoupled Queries | 2024-08-28 | ShowLiDAR panoptic segmentation, which jointly performs instance and semantic segmentation for things and stuff classes, plays a fundamental role in LiDAR perception tasks. While most existing methods explicitly separate these two segmentation tasks and utilize different branches (i.e., semantic and instance branches), some recent methods have embraced the query-based paradigm to unify LiDAR panoptic segmentation. However, the distinct spatial distribution and inherent characteristics of objects(things) and their surroundings(stuff) in 3D scenes lead to challenges, including the mutual competition of things/stuff and the ambiguity of classification/segmentation. In this paper, we propose decoupling things/stuff queries according to their intrinsic properties for individual decoding and disentangling classification/segmentation to mitigate ambiguity. To this end, we propose a novel framework dubbed DQFormer to implement semantic and instance segmentation in a unified workflow. Specifically, we design a decoupled query generator to propose informative queries with semantics by localizing things/stuff positions and fusing multi-level BEV embeddings. Moreover, a query-oriented mask decoder is introduced to decode corresponding segmentation masks by performing masked cross-attention between queries and mask embeddings. Finally, the decoded masks are combined with the semantics of the queries to produce panoptic results. Extensive experiments on nuScenes and SemanticKITTI datasets demonstrate the superiority of our DQFormer framework. |
13 pages, 10 figures | None |
kNN-CLIP: Retrieval Enables Training-Free Segmentation on Continually Expanding Large Vocabularies | 2024-08-13 | ShowContinual segmentation has not yet tackled the challenge of improving open-vocabulary segmentation models with training data for accurate segmentation across large, continually expanding vocabularies. We discover that traditional continual training results in severe catastrophic forgetting, failing to outperform a zero-shot segmentation baseline. We introduce a novel training-free strategy, kNN-CLIP, which augments the model with a database of instance embeddings for semantic and panoptic segmentation that achieves zero forgetting. We demonstrate that kNN-CLIP can adapt to continually growing vocabularies without the need for retraining or large memory costs. kNN-CLIP enables open-vocabulary segmentation methods to expand their vocabularies on any domain with a single pass through the data, while only storing compact embeddings. This approach minimizes both compute and memory costs. kNN-CLIP achieves state-of-the-art performance across large-vocabulary semantic and panoptic segmentation datasets. We hope kNN-CLIP represents a significant step forward in enabling more efficient and adaptable continual segmentation, paving the way for advances in real-world large-vocabulary continual segmentation methods. |
None | |
Pair then Relation: Pair-Net for Panoptic Scene Graph Generation | 2024-08-09 | ShowPanoptic Scene Graph (PSG) is a challenging task in Scene Graph Generation (SGG) that aims to create a more comprehensive scene graph representation using panoptic segmentation instead of boxes. Compared to SGG, PSG has several challenging problems: pixel-level segment outputs and full relationship exploration (It also considers thing and stuff relation). Thus, current PSG methods have limited performance, which hinders downstream tasks or applications. The goal of this work aims to design a novel and strong baseline for PSG. To achieve that, we first conduct an in-depth analysis to identify the bottleneck of the current PSG models, finding that inter-object pair-wise recall is a crucial factor that was ignored by previous PSG methods. Based on this and the recent query-based frameworks, we present a novel framework: Pair then Relation (Pair-Net), which uses a Pair Proposal Network (PPN) to learn and filter sparse pair-wise relationships between subjects and objects. Moreover, we also observed the sparse nature of object pairs for both Motivated by this, we design a lightweight Matrix Learner within the PPN, which directly learns pair-wised relationships for pair proposal generation. Through extensive ablation and analysis, our approach significantly improves upon leveraging the segmenter solid baseline. Notably, our method achieves over 10% absolute gains compared to our baseline, PSGFormer. The code of this paper is publicly available at https://github.com/king159/Pair-Net. |
IEEE ...IEEE TPAMI 2024. 13 pages. Project Page: https://github.com/king159/Pair-Net |
Code Link |
Better Call SAL: Towards Learning to Segment Anything in Lidar | 2024-07-25 | ShowWe propose the SAL (Segment Anything in Lidar) method consisting of a text-promptable zero-shot model for segmenting and classifying any object in Lidar, and a pseudo-labeling engine that facilitates model training without manual supervision. While the established paradigm for Lidar Panoptic Segmentation (LPS) relies on manual supervision for a handful of object classes defined a priori, we utilize 2D vision foundation models to generate 3D supervision ``for free''. Our pseudo-labels consist of instance masks and corresponding CLIP tokens, which we lift to Lidar using calibrated multi-modal data. By training our model on these labels, we distill the 2D foundation models into our Lidar SAL model. Even without manual labels, our model achieves |
Accep...Accepted to ECCV 2024 |
Code Link |
SAM-CP: Marrying SAM with Composable Prompts for Versatile Segmentation | 2024-07-23 | ShowThe Segment Anything model (SAM) has shown a generalized ability to group image pixels into patches, but applying it to semantic-aware segmentation still faces major challenges. This paper presents SAM-CP, a simple approach that establishes two types of composable prompts beyond SAM and composes them for versatile segmentation. Specifically, given a set of classes (in texts) and a set of SAM patches, the Type-I prompt judges whether a SAM patch aligns with a text label, and the Type-II prompt judges whether two SAM patches with the same text label also belong to the same instance. To decrease the complexity in dealing with a large number of semantic classes and patches, we establish a unified framework that calculates the affinity between (semantic and instance) queries and SAM patches and merges patches with high affinity to the query. Experiments show that SAM-CP achieves semantic, instance, and panoptic segmentation in both open and closed domains. In particular, it achieves state-of-the-art performance in open-vocabulary segmentation. Our research offers a novel and generalized methodology for equipping vision foundation models like SAM with multi-grained semantic perception abilities. |
None | |
Strike a Balance in Continual Panoptic Segmentation | 2024-07-23 | ShowThis study explores the emerging area of continual panoptic segmentation, highlighting three key balances. First, we introduce past-class backtrace distillation to balance the stability of existing knowledge with the adaptability to new information. This technique retraces the features associated with past classes based on the final label assignment results, performing knowledge distillation targeting these specific features from the previous model while allowing other features to flexibly adapt to new information. Additionally, we introduce a class-proportional memory strategy, which aligns the class distribution in the replay sample set with that of the historical training data. This strategy maintains a balanced class representation during replay, enhancing the utility of the limited-capacity replay sample set in recalling prior classes. Moreover, recognizing that replay samples are annotated only for the classes of their original step, we devise balanced anti-misguidance losses, which combat the impact of incomplete annotations without incurring classification bias. Building upon these innovations, we present a new method named Balanced Continual Panoptic Segmentation (BalConpas). Our evaluation on the challenging ADE20K dataset demonstrates its superior performance compared to existing state-of-the-art methods. The official code is available at https://github.com/jinpeng0528/BalConpas. |
Code Link | |
Panoptic Segmentation of Mammograms with Text-To-Image Diffusion Model | 2024-07-19 | ShowMammography is crucial for breast cancer surveillance and early diagnosis. However, analyzing mammography images is a demanding task for radiologists, who often review hundreds of mammograms daily, leading to overdiagnosis and overtreatment. Computer-Aided Diagnosis (CAD) systems have been developed to assist in this process, but their capabilities, particularly in lesion segmentation, remained limited. With the contemporary advances in deep learning their performance may be improved. Recently, vision-language diffusion models emerged, demonstrating outstanding performance in image generation and transferability to various downstream tasks. We aim to harness their capabilities for breast lesion segmentation in a panoptic setting, which encompasses both semantic and instance-level predictions. Specifically, we propose leveraging pretrained features from a Stable Diffusion model as inputs to a state-of-the-art panoptic segmentation architecture, resulting in accurate delineation of individual breast lesions. To bridge the gap between natural and medical imaging domains, we incorporated a mammography-specific MAM-E diffusion model and BiomedCLIP image and text encoders into this framework. We evaluated our approach on two recently published mammography datasets, CDD-CESM and VinDr-Mammo. For the instance segmentation task, we noted 40.25 AP0.1 and 46.82 AP0.05, as well as 25.44 PQ0.1 and 26.92 PQ0.05. For the semantic segmentation task, we achieved Dice scores of 38.86 and 40.92, respectively. |
13 pa...13 pages, 4 figures. Submitted to Deep Generative Models workshop @ MICCAI 2024 |
None |
MC-PanDA: Mask Confidence for Panoptic Domain Adaptation | 2024-07-19 | ShowDomain adaptive panoptic segmentation promises to resolve the long tail of corner cases in natural scene understanding. Previous state of the art addresses this problem with cross-task consistency, careful system-level optimization and heuristic improvement of teacher predictions. In contrast, we propose to build upon remarkable capability of mask transformers to estimate their own prediction uncertainty. Our method avoids noise amplification by leveraging fine-grained confidence of panoptic teacher predictions. In particular, we modulate the loss with mask-wide confidence and discourage back-propagation in pixels with uncertain teacher or confident student. Experimental evaluation on standard benchmarks reveals a substantial contribution of the proposed selection techniques. We report 47.4 PQ on Synthia to Cityscapes, which corresponds to an improvement of 6.2 percentage points over the state of the art. The source code is available at https://github.com/helen1c/MC-PanDA. |
Accep...Accepted on ECCV 2024 |
Code Link |
GIVT: Generative Infinite-Vocabulary Transformers | 2024-07-17 | ShowWe introduce Generative Infinite-Vocabulary Transformers (GIVT) which generate vector sequences with real-valued entries, instead of discrete tokens from a finite vocabulary. To this end, we propose two surprisingly simple modifications to decoder-only transformers: 1) at the input, we replace the finite-vocabulary lookup table with a linear projection of the input vectors; and 2) at the output, we replace the logits prediction (usually mapped to a categorical distribution) with the parameters of a multivariate Gaussian mixture model. Inspired by the image-generation paradigm of VQ-GAN and MaskGIT, where transformers are used to model the discrete latent sequences of a VQ-VAE, we use GIVT to model the unquantized real-valued latent sequences of a |
v2: a...v2: add related NLP work, loss details. v3: Improved GMM formulation, added adapter module, larger models, better image generation results. v4: ECCV 2024 camera ready version (minor changes). Code and model checkpoints are available at: https://github.com/google-research/big_vision |
Code Link |
A Simple Latent Diffusion Approach for Panoptic Segmentation and Mask Inpainting | 2024-07-16 | ShowPanoptic and instance segmentation networks are often trained with specialized object detection modules, complex loss functions, and ad-hoc post-processing steps to manage the permutation-invariance of the instance masks. This work builds upon Stable Diffusion and proposes a latent diffusion approach for panoptic segmentation, resulting in a simple architecture that omits these complexities. Our training consists of two steps: (1) training a shallow autoencoder to project the segmentation masks to latent space; (2) training a diffusion model to allow image-conditioned sampling in latent space. This generative approach unlocks the exploration of mask completion or inpainting. The experimental validation on COCO and ADE20k yields strong segmentation results. Finally, we demonstrate our model's adaptability to multi-tasking by introducing learnable task embeddings. |
Accep...Accepted at ECCV 2024, Code: https://github.com/segments-ai/latent-diffusion-segmentation |
Code Link |
OpenPSG: Open-set Panoptic Scene Graph Generation via Large Multimodal Models | 2024-07-15 | ShowPanoptic Scene Graph Generation (PSG) aims to segment objects and recognize their relations, enabling the structured understanding of an image. Previous methods focus on predicting predefined object and relation categories, hence limiting their applications in the open world scenarios. With the rapid development of large multimodal models (LMMs), significant progress has been made in open-set object detection and segmentation, yet open-set relation prediction in PSG remains unexplored. In this paper, we focus on the task of open-set relation prediction integrated with a pretrained open-set panoptic segmentation model to achieve true open-set panoptic scene graph generation (OpenPSG). Our OpenPSG leverages LMMs to achieve open-set relation prediction in an autoregressive manner. We introduce a relation query transformer to efficiently extract visual features of object pairs and estimate the existence of relations between them. The latter can enhance the prediction efficiency by filtering irrelevant pairs. Finally, we design the generation and judgement instructions to perform open-set relation prediction in PSG autoregressively. To our knowledge, we are the first to propose the open-set PSG task. Extensive experiments demonstrate that our method achieves state-of-the-art performance in open-set relation prediction and panoptic scene graph generation. Code is available at \url{https://github.com/franciszzj/OpenPSG}. |
ECCV 2024 | Code Link |
A Fair Ranking and New Model for Panoptic Scene Graph Generation | 2024-07-12 | ShowIn panoptic scene graph generation (PSGG), models retrieve interactions between objects in an image which are grounded by panoptic segmentation masks. Previous evaluations on panoptic scene graphs have been subject to an erroneous evaluation protocol where multiple masks for the same object can lead to multiple relation distributions per mask-mask pair. This can be exploited to increase the final score. We correct this flaw and provide a fair ranking over a wide range of existing PSGG models. The observed scores for existing methods increase by up to 7.4 mR@50 for all two-stage methods, while dropping by up to 19.3 mR@50 for all one-stage methods, highlighting the importance of a correct evaluation. Contrary to recent publications, we show that existing two-stage methods are competitive to one-stage methods. Building on this, we introduce the Decoupled SceneFormer (DSFormer), a novel two-stage model that outperforms all existing scene graph models by a large margin of +11 mR@50 and +10 mNgR@50 on the corrected evaluation, thus setting a new SOTA. As a core design principle, DSFormer encodes subject and object masks directly into feature space. |
None | |
From Easy to Hard: Learning Curricular Shape-aware Features for Robust Panoptic Scene Graph Generation | 2024-07-12 | ShowPanoptic Scene Graph Generation (PSG) aims to generate a comprehensive graph-structure representation based on panoptic segmentation masks. Despite remarkable progress in PSG, almost all existing methods neglect the importance of shape-aware features, which inherently focus on the contours and boundaries of objects. To bridge this gap, we propose a model-agnostic Curricular shApe-aware FEature (CAFE) learning strategy for PSG. Specifically, we incorporate shape-aware features (i.e., mask features and boundary features) into PSG, moving beyond reliance solely on bbox features. Furthermore, drawing inspiration from human cognition, we propose to integrate shape-aware features in an easy-to-hard manner. To achieve this, we categorize the predicates into three groups based on cognition learning difficulty and correspondingly divide the training process into three stages. Each stage utilizes a specialized relation classifier to distinguish specific groups of predicates. As the learning difficulty of predicates increases, these classifiers are equipped with features of ascending complexity. We also incorporate knowledge distillation to retain knowledge acquired in earlier stages. Due to its model-agnostic nature, CAFE can be seamlessly incorporated into any PSG model. Extensive experiments and ablations on two PSG tasks under both robust and zero-shot PSG have attested to the superiority and robustness of our proposed CAFE, which outperforms existing state-of-the-art methods by a large margin. |
Accepted by IJCV | None |
Panoptic Segmentation of Galactic Structures in LSB Images | 2024-07-10 | ShowWe explore the use of deep learning to localise galactic structures in low surface brightness (LSB) images. LSB imaging reveals many interesting structures, though these are frequently confused with galactic dust contamination, due to a strong local visual similarity. We propose a novel unified approach to multi-class segmentation of galactic structures and of extended amorphous image contaminants. Our panoptic segmentation model combines Mask R-CNN with a contaminant specialised network and utilises an adaptive preprocessing layer to better capture the subtle features of LSB images. Further, a human-in-the-loop training scheme is employed to augment ground truth labels. These different approaches are evaluated in turn, and together greatly improve the detection of both galactic structures and contaminants in LSB images. |
None | |
SegGen: Supercharging Segmentation Models with Text2Mask and Mask2Img Synthesis | 2024-07-04 | ShowWe propose SegGen, a highly-effective training data generation method for image segmentation, which pushes the performance limits of state-of-the-art segmentation models to a significant extent. SegGen designs and integrates two data generation strategies: MaskSyn and ImgSyn. (i) MaskSyn synthesizes new mask-image pairs via our proposed text-to-mask generation model and mask-to-image generation model, greatly improving the diversity in segmentation masks for model supervision; (ii) ImgSyn synthesizes new images based on existing masks using the mask-to-image generation model, strongly improving image diversity for model inputs. On the highly competitive ADE20K and COCO benchmarks, our data generation method markedly improves the performance of state-of-the-art segmentation models in semantic segmentation, panoptic segmentation, and instance segmentation. Notably, in terms of the ADE20K mIoU, Mask2Former R50 is largely boosted from 47.2 to 49.9 (+2.7); Mask2Former Swin-L is also significantly increased from 56.1 to 57.4 (+1.3). These promising results strongly suggest the effectiveness of our SegGen even when abundant human-annotated training data is utilized. Moreover, training with our synthetic data makes the segmentation models more robust towards unseen domains. Project website: https://seggenerator.github.io |
None | |
Context-Aware Video Instance Segmentation | 2024-07-03 | ShowIn this paper, we introduce the Context-Aware Video Instance Segmentation (CAVIS), a novel framework designed to enhance instance association by integrating contextual information adjacent to each object. To efficiently extract and leverage this information, we propose the Context-Aware Instance Tracker (CAIT), which merges contextual data surrounding the instances with the core instance features to improve tracking accuracy. Additionally, we introduce the Prototypical Cross-frame Contrastive (PCC) loss, which ensures consistency in object-level features across frames, thereby significantly enhancing instance matching accuracy. CAVIS demonstrates superior performance over state-of-the-art methods on all benchmark datasets in video instance segmentation (VIS) and video panoptic segmentation (VPS). Notably, our method excels on the OVIS dataset, which is known for its particularly challenging videos. |
Proje...Project page: https://seung-hun-lee.github.io/projects/CAVIS/ |
Code Link |
PanopticRecon: Leverage Open-vocabulary Instance Segmentation for Zero-shot Panoptic Reconstruction | 2024-07-01 | ShowPanoptic reconstruction is a challenging task in 3D scene understanding. However, most existing methods heavily rely on pre-trained semantic segmentation models and known 3D object bounding boxes for 3D panoptic segmentation, which is not available for in-the-wild scenes. In this paper, we propose a novel zero-shot panoptic reconstruction method from RGB-D images of scenes. For zero-shot segmentation, we leverage open-vocabulary instance segmentation, but it has to face partial labeling and instance association challenges. We tackle both challenges by propagating partial labels with the aid of dense generalized features and building a 3D instance graph for associating 2D instance IDs. Specifically, we exploit partial labels to learn a classifier for generalized semantic features to provide complete labels for scenes with dense distilled features. Moreover, we formulate instance association as a 3D instance graph segmentation problem, allowing us to fully utilize the scene geometry prior and all 2D instance masks to infer global unique pseudo 3D instance ID. Our method outperforms state-of-the-art methods on the indoor dataset ScanNet V2 and the outdoor dataset KITTI-360, demonstrating the effectiveness of our graph segmentation method and reconstruction network. |
None | |
Gradient-based Class Weighting for Unsupervised Domain Adaptation in Dense Prediction Visual Tasks | 2024-07-01 | ShowIn unsupervised domain adaptation (UDA), where models are trained on source data (e.g., synthetic) and adapted to target data (e.g., real-world) without target annotations, addressing the challenge of significant class imbalance remains an open issue. Despite considerable progress in bridging the domain gap, existing methods often experience performance degradation when confronted with highly imbalanced dense prediction visual tasks like semantic and panoptic segmentation. This discrepancy becomes especially pronounced due to the lack of equivalent priors between the source and target domains, turning class imbalanced techniques used for other areas (e.g., image classification) ineffective in UDA scenarios. This paper proposes a class-imbalance mitigation strategy that incorporates class-weights into the UDA learning losses, but with the novelty of estimating these weights dynamically through the loss gradient, defining a Gradient-based class weighting (GBW) learning. GBW naturally increases the contribution of classes whose learning is hindered by large-represented classes, and has the advantage of being able to automatically and quickly adapt to the iteration training outcomes, avoiding explicitly curricular learning patterns common in loss-weighing strategies. Extensive experimentation validates the effectiveness of GBW across architectures (convolutional and transformer), UDA strategies (adversarial, self-training and entropy minimization), tasks (semantic and panoptic segmentation), and datasets (GTA and Synthia). Analysing the source of advantage, GBW consistently increases the recall of low represented classes. |
None | |
Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part Representations | 2024-06-14 | ShowPart-aware panoptic segmentation (PPS) requires (a) that each foreground object and background region in an image is segmented and classified, and (b) that all parts within foreground objects are segmented, classified and linked to their parent object. Existing methods approach PPS by separately conducting object-level and part-level segmentation. However, their part-level predictions are not linked to individual parent objects. Therefore, their learning objective is not aligned with the PPS task objective, which harms the PPS performance. To solve this, and make more accurate PPS predictions, we propose Task-Aligned Part-aware Panoptic Segmentation (TAPPS). This method uses a set of shared queries to jointly predict (a) object-level segments, and (b) the part-level segments within those same objects. As a result, TAPPS learns to predict part-level segments that are linked to individual parent objects, aligning the learning objective with the task objective, and allowing TAPPS to leverage joint object-part representations. With experiments, we show that TAPPS considerably outperforms methods that predict objects and parts separately, and achieves new state-of-the-art PPS results. |
CVPR ...CVPR 2024. Project page and code: https://tue-mps.github.io/tapps/ |
Code Link |
PanoSSC: Exploring Monocular Panoptic 3D Scene Reconstruction for Autonomous Driving | 2024-06-11 | ShowVision-centric occupancy networks, which represent the surrounding environment with uniform voxels with semantics, have become a new trend for safe driving of camera-only autonomous driving perception systems, as they are able to detect obstacles regardless of their shape and occlusion. Modern occupancy networks mainly focus on reconstructing visible voxels from object surfaces with voxel-wise semantic prediction. Usually, they suffer from inconsistent predictions of one object and mixed predictions for adjacent objects. These confusions may harm the safety of downstream planning modules. To this end, we investigate panoptic segmentation on 3D voxel scenarios and propose an instance-aware occupancy network, PanoSSC. We predict foreground objects and backgrounds separately and merge both in post-processing. For foreground instance grouping, we propose a novel 3D instance mask decoder that can efficiently extract individual objects. we unify geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation into PanoSSC framework and propose new metrics for evaluating panoptic voxels. Extensive experiments show that our method achieves competitive results on SemanticKITTI semantic scene completion benchmark. |
3dv2024 | None |
1st Place Winner of the 2024 Pixel-level Video Understanding in the Wild (CVPR'24 PVUW) Challenge in Video Panoptic Segmentation and Best Long Video Consistency of Video Semantic Segmentation | 2024-06-08 | ShowThe third Pixel-level Video Understanding in the Wild (PVUW CVPR 2024) challenge aims to advance the state of art in video understanding through benchmarking Video Panoptic Segmentation (VPS) and Video Semantic Segmentation (VSS) on challenging videos and scenes introduced in the large-scale Video Panoptic Segmentation in the Wild (VIPSeg) test set and the large-scale Video Scene Parsing in the Wild (VSPW) test set, respectively. This paper details our research work that achieved the 1st place winner in the PVUW'24 VPS challenge, establishing state of art results in all metrics, including the Video Panoptic Quality (VPQ) and Segmentation and Tracking Quality (STQ). With minor fine-tuning our approach also achieved the 3rd place in the PVUW'24 VSS challenge ranked by the mIoU (mean intersection over union) metric and the first place ranked by the VC16 (16-frame video consistency) metric. Our winning solution stands on the shoulders of giant foundational vision transformer model (DINOv2 ViT-g) and proven multi-stage Decoupled Video Instance Segmentation (DVIS) frameworks for video understanding. |
None | |
ACDC: The Adverse Conditions Dataset with Correspondences for Robust Semantic Driving Scene Perception | 2024-06-07 | ShowLevel-5 driving automation requires a robust visual perception system that can parse input images under any condition. However, existing driving datasets for dense semantic perception are either dominated by images captured under normal conditions or are small in scale. To address this, we introduce ACDC, the Adverse Conditions Dataset with Correspondences for training and testing methods for diverse semantic perception tasks on adverse visual conditions. ACDC consists of a large set of 8012 images, half of which (4006) are equally distributed between four common adverse conditions: fog, nighttime, rain, and snow. Each adverse-condition image comes with a high-quality pixel-level panoptic annotation, a corresponding image of the same scene under normal conditions, and a binary mask that distinguishes between intra-image regions of clear and uncertain semantic content. 1503 of the corresponding normal-condition images feature panoptic annotations, raising the total annotated images to 5509. ACDC supports the standard tasks of semantic segmentation, object detection, instance segmentation, and panoptic segmentation, as well as the newly introduced uncertainty-aware semantic segmentation. A detailed empirical study demonstrates the challenges that the adverse domains of ACDC pose to state-of-the-art supervised and unsupervised approaches and indicates the value of our dataset in steering future progress in the field. Our dataset and benchmark are publicly available at https://acdc.vision.ee.ethz.ch |
Submi...Submitted for review to IEEE T-PAMI. Extended version of original conference paper published in ICCV 2021 |
None |
3rd Place Solution for PVUW Challenge 2024: Video Panoptic Segmentation | 2024-06-07 | ShowVideo panoptic segmentation is an advanced task that extends panoptic segmentation by applying its concept to video sequences. In the hope of addressing the challenge of video panoptic segmentation in diverse conditions, We utilize DVIS++ as our baseline model and enhance it by introducing a comprehensive approach centered on the query-wise ensemble, supplemented by additional techniques. Our proposed approach achieved a VPQ score of 57.01 on the VIPSeg test set, and ranked 3rd in the VPS track of the 3rd Pixel-level Video Understanding in the Wild Challenge. |
3nd P...3nd Place Solution for CVPR 2024 PVUW VPS Track |
None |
2nd Place Solution for PVUW Challenge 2024: Video Panoptic Segmentation | 2024-06-01 | ShowVideo Panoptic Segmentation (VPS) is a challenging task that is extends from image panoptic segmentation.VPS aims to simultaneously classify, track, segment all objects in a video, including both things and stuff. Due to its wide application in many downstream tasks such as video understanding, video editing, and autonomous driving. In order to deal with the task of video panoptic segmentation in the wild, we propose a robust integrated video panoptic segmentation solution. We use DVIS++ framework as our baseline to generate the initial masks. Then,we add an additional image semantic segmentation model to further improve the performance of semantic classes.Finally, our method achieves state-of-the-art performance with a VPQ score of 56.36 and 57.12 in the development and test phases, respectively, and ultimately ranked 2nd in the VPS track of the PVUW Challenge at CVPR2024. |
2nd P...2nd Place Solution for CVPR 2024 PVUW VPS Track |
None |
Efficient Robot Learning for Perception and Mapping | 2024-05-23 | ShowHolistic scene understanding poses a fundamental contribution to the autonomous operation of a robotic agent in its environment. Key ingredients include a well-defined representation of the surroundings to capture its spatial structure as well as assigning semantic meaning while delineating individual objects. Classic components from the toolbox of roboticists to address these tasks are simultaneous localization and mapping (SLAM) and panoptic segmentation. Although recent methods demonstrate impressive advances, mostly due to employing deep learning, they commonly utilize in-domain training on large datasets. Since following such a paradigm substantially limits their real-world application, my research investigates how to minimize human effort in deploying perception-based robotic systems to previously unseen environments. In particular, I focus on leveraging continual learning and reducing human annotations for efficient learning. An overview of my work can be found at https://vniclas.github.io. |
RSS P...RSS Pioneers 2024 Research Statement |
None |
4D Panoptic Scene Graph Generation | 2024-05-16 | ShowWe are living in a three-dimensional space while moving forward through a fourth dimension: time. To allow artificial intelligence to develop a comprehensive understanding of such a 4D environment, we introduce 4D Panoptic Scene Graph (PSG-4D), a new representation that bridges the raw visual data perceived in a dynamic 4D world and high-level visual understanding. Specifically, PSG-4D abstracts rich 4D sensory data into nodes, which represent entities with precise location and status information, and edges, which capture the temporal relations. To facilitate research in this new area, we build a richly annotated PSG-4D dataset consisting of 3K RGB-D videos with a total of 1M frames, each of which is labeled with 4D panoptic segmentation masks as well as fine-grained, dynamic scene graphs. To solve PSG-4D, we propose PSG4DFormer, a Transformer-based model that can predict panoptic segmentation masks, track masks along the time axis, and generate the corresponding scene graphs via a relation component. Extensive experiments on the new dataset show that our method can serve as a strong baseline for future research on PSG-4D. In the end, we provide a real-world application example to demonstrate how we can achieve dynamic scene understanding by integrating a large language model into our PSG-4D system. |
Accep...Accepted as NeurIPS 2023. Code: https://github.com/Jingkang50/PSG4D Previous Series: PSG https://github.com/Jingkang50/OpenPSG and PVSG https://github.com/Jingkang50/OpenPVSG |
Code Link |
An Integrated Framework for Multi-Granular Explanation of Video Summarization | 2024-05-16 | ShowIn this paper, we propose an integrated framework for multi-granular explanation of video summarization. This framework integrates methods for producing explanations both at the fragment level (indicating which video fragments influenced the most the decisions of the summarizer) and the more fine-grained visual object level (highlighting which visual objects were the most influential for the summarizer). To build this framework, we extend our previous work on this field, by investigating the use of a model-agnostic, perturbation-based approach for fragment-level explanation of the video summarization results, and introducing a new method that combines the results of video panoptic segmentation with an adaptation of a perturbation-based explanation approach to produce object-level explanations. The performance of the developed framework is evaluated using a state-of-the-art summarization method and two datasets for benchmarking video summarization. The findings of the conducted quantitative and qualitative evaluations demonstrate the ability of our framework to spot the most and least influential fragments and visual objects of the video for the summarizer, and to provide a comprehensive set of visual-based explanations about the output of the summarization process. |
Under review | None |
Building a Strong Pre-Training Baseline for Universal 3D Large-Scale Perception | 2024-05-12 | ShowAn effective pre-training framework with universal 3D representations is extremely desired in perceiving large-scale dynamic scenes. However, establishing such an ideal framework that is both task-generic and label-efficient poses a challenge in unifying the representation of the same primitive across diverse scenes. The current contrastive 3D pre-training methods typically follow a frame-level consistency, which focuses on the 2D-3D relationships in each detached image. Such inconsiderate consistency greatly hampers the promising path of reaching an universal pre-training framework: (1) The cross-scene semantic self-conflict, i.e., the intense collision between primitive segments of the same semantics from different scenes; (2) Lacking a globally unified bond that pushes the cross-scene semantic consistency into 3D representation learning. To address above challenges, we propose a CSC framework that puts a scene-level semantic consistency in the heart, bridging the connection of the similar semantic segments across various scenes. To achieve this goal, we combine the coherent semantic cues provided by the vision foundation model and the knowledge-rich cross-scene prototypes derived from the complementary multi-modality information. These allow us to train a universal 3D pre-training model that facilitates various downstream tasks with less fine-tuning efforts. Empirically, we achieve consistent improvements over SOTA pre-training approaches in semantic segmentation (+1.4% mIoU), object detection (+1.0% mAP), and panoptic segmentation (+3.0% PQ) using their task-specific 3D network on nuScenes. Code is released at https://github.com/chenhaomingbob/CSC, hoping to inspire future research. |
Accep...Accepted to CVPR 2024 |
Code Link |
PEM: Prototype-based Efficient MaskFormer for Image Segmentation | 2024-05-06 | ShowRecent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semantic and panoptic, under a single unified framework. To achieve such impressive performance, these architectures employ intensive operations and require substantial computational resources, which are often not available, especially on edge devices. To fill this gap, we propose Prototype-based Efficient MaskFormer (PEM), an efficient transformer-based architecture that can operate in multiple segmentation tasks. PEM proposes a novel prototype-based cross-attention which leverages the redundancy of visual features to restrict the computation and improve the efficiency without harming the performance. In addition, PEM introduces an efficient multi-scale feature pyramid network, capable of extracting features that have high semantic content in an efficient way, thanks to the combination of deformable convolutions and context-based self-modulation. We benchmark the proposed PEM architecture on two tasks, semantic and panoptic segmentation, evaluated on two different datasets, Cityscapes and ADE20K. PEM demonstrates outstanding performance on every task and dataset, outperforming task-specific architectures while being comparable and even better than computationally-expensive baselines. |
CVPR ...CVPR 2024. Project page: https://niccolocavagnero.github.io/PEM |
Code Link |
Panoptic-SLAM: Visual SLAM in Dynamic Environments using Panoptic Segmentation | 2024-05-03 | ShowThe majority of visual SLAM systems are not robust in dynamic scenarios. The ones that deal with dynamic objects in the scenes usually rely on deep-learning-based methods to detect and filter these objects. However, these methods cannot deal with unknown moving objects. This work presents Panoptic-SLAM, an open-source visual SLAM system robust to dynamic environments, even in the presence of unknown objects. It uses panoptic segmentation to filter dynamic objects from the scene during the state estimation process. Panoptic-SLAM is based on ORB-SLAM3, a state-of-the-art SLAM system for static environments. The implementation was tested using real-world datasets and compared with several state-of-the-art systems from the literature, including DynaSLAM, DS-SLAM, SaD-SLAM, PVO and FusingPanoptic. For example, Panoptic-SLAM is on average four times more accurate than PVO, the most recent panoptic-based approach for visual SLAM. Also, experiments were performed using a quadruped robot with an RGB-D camera to test the applicability of our method in real-world scenarios. The tests were validated by a ground-truth created with a motion capture system. |
None | |
Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet | 2024-04-28 | ShowSegmentation and labeling of vertebrae in MRI images of the spine are critical for the diagnosis of illnesses and abnormalities. These steps are indispensable as MRI technology provides detailed information about the tissue structure of the spine. Both supervised and unsupervised segmentation methods exist, yet acquiring sufficient data remains challenging for achieving high accuracy. In this study, we propose an enhancing approach based on modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine. Our method achieves an impressive accuracy of 99.5% by incorporating novel masking logic, thus significantly advancing the state-of-the-art in vertebral segmentation and labeling. This contributes to more precise and reliable diagnosis and treatment planning. |
9 pages, 10 figures | None |
The revenge of BiSeNet: Efficient Multi-Task Image Segmentation | 2024-04-15 | ShowRecent advancements in image segmentation have focused on enhancing the efficiency of the models to meet the demands of real-time applications, especially on edge devices. However, existing research has primarily concentrated on single-task settings, especially on semantic segmentation, leading to redundant efforts and specialized architectures for different tasks. To address this limitation, we propose a novel architecture for efficient multi-task image segmentation, capable of handling various segmentation tasks without sacrificing efficiency or accuracy. We introduce BiSeNetFormer, that leverages the efficiency of two-stream semantic segmentation architectures and it extends them into a mask classification framework. Our approach maintains the efficient spatial and context paths to capture detailed and semantic information, respectively, while leveraging an efficient transformed-based segmentation head that computes the binary masks and class probabilities. By seamlessly supporting multiple tasks, namely semantic and panoptic segmentation, BiSeNetFormer offers a versatile solution for multi-task segmentation. We evaluate our approach on popular datasets, Cityscapes and ADE20K, demonstrating impressive inference speeds while maintaining competitive accuracy compared to state-of-the-art architectures. Our results indicate that BiSeNetFormer represents a significant advancement towards fast, efficient, and multi-task segmentation networks, bridging the gap between model efficiency and task adaptability. |
Accep...Accepted to ECV workshop at CVPR2024 |
None |
A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, and Future | 2024-04-15 | ShowAs the most fundamental scene understanding tasks, object detection and segmentation have made tremendous progress in deep learning era. Due to the expensive manual labeling cost, the annotated categories in existing datasets are often small-scale and pre-defined, i.e., state-of-the-art fully-supervised detectors and segmentors fail to generalize beyond the closed vocabulary. To resolve this limitation, in the last few years, the community has witnessed an increasing attention toward Open-Vocabulary Detection (OVD) and Segmentation (OVS). By ``open-vocabulary'', we mean that the models can classify objects beyond pre-defined categories. In this survey, we provide a comprehensive review on recent developments of OVD and OVS. A taxonomy is first developed to organize different tasks and methodologies. We find that the permission and usage of weak supervision signals can well discriminate different methodologies, including: visual-semantic space mapping, novel visual feature synthesis, region-aware training, pseudo-labeling, knowledge distillation, and transfer learning. The proposed taxonomy is universal across different tasks, covering object detection, semantic/instance/panoptic segmentation, 3D and video understanding. The main design principles, key challenges, development routes, methodology strengths, and weaknesses are thoroughly analyzed. In addition, we benchmark each task along with the vital components of each method in appendix and updated online at https://github.com/seanzhuh/awesome-open-vocabulary-detection-and-segmentation. Finally, several promising directions are provided and discussed to stimulate future research. |
Code Link | |
COCONut: Modernizing COCO Segmentation | 2024-04-12 | ShowIn recent decades, the vision community has witnessed remarkable progress in visual recognition, partially owing to advancements in dataset benchmarks. Notably, the established COCO benchmark has propelled the development of modern detection and segmentation systems. However, the COCO segmentation benchmark has seen comparatively slow improvement over the last decade. Originally equipped with coarse polygon annotations for thing instances, it gradually incorporated coarse superpixel annotations for stuff regions, which were subsequently heuristically amalgamated to yield panoptic segmentation annotations. These annotations, executed by different groups of raters, have resulted not only in coarse segmentation masks but also in inconsistencies between segmentation types. In this study, we undertake a comprehensive reevaluation of the COCO segmentation annotations. By enhancing the annotation quality and expanding the dataset to encompass 383K images with more than 5.18M panoptic masks, we introduce COCONut, the COCO Next Universal segmenTation dataset. COCONut harmonizes segmentation annotations across semantic, instance, and panoptic segmentation with meticulously crafted high-quality masks, and establishes a robust benchmark for all segmentation tasks. To our knowledge, COCONut stands as the inaugural large-scale universal segmentation dataset, verified by human raters. We anticipate that the release of COCONut will significantly contribute to the community's ability to assess the progress of novel neural networks. |
Accep...Accepted at CVPR2024, data available at https://xdeng7.github.io/coconut.github.io/ |
Code Link |
Mask4Former: Mask Transformer for 4D Panoptic Segmentation | 2024-04-10 | ShowAccurately perceiving and tracking instances over time is essential for the decision-making processes of autonomous agents interacting safely in dynamic environments. With this intention, we propose Mask4Former for the challenging task of 4D panoptic segmentation of LiDAR point clouds. Mask4Former is the first transformer-based approach unifying semantic instance segmentation and tracking of sparse and irregular sequences of 3D point clouds into a single joint model. Our model directly predicts semantic instances and their temporal associations without relying on hand-crafted non-learned association strategies such as probabilistic clustering or voting-based center prediction. Instead, Mask4Former introduces spatio-temporal instance queries that encode the semantic and geometric properties of each semantic tracklet in the sequence. In an in-depth study, we find that promoting spatially compact instance predictions is critical as spatio-temporal instance queries tend to merge multiple semantically similar instances, even if they are spatially distant. To this end, we regress 6-DOF bounding box parameters from spatio-temporal instance queries, which are used as an auxiliary task to foster spatially compact predictions. Mask4Former achieves a new state-of-the-art on the SemanticKITTI test set with a score of 68.4 LSTQ. |
Renam...Renamed from MASK4D to Mask4Former. ICRA 2024. Project page: https://vision.rwth-aachen.de/Mask4Former |
None |
3D Open-Vocabulary Panoptic Segmentation with 2D-3D Vision-Language Distillation | 2024-04-03 | Show3D panoptic segmentation is a challenging perception task, especially in autonomous driving. It aims to predict both semantic and instance annotations for 3D points in a scene. Although prior 3D panoptic segmentation approaches have achieved great performance on closed-set benchmarks, generalizing these approaches to unseen things and unseen stuff categories remains an open problem. For unseen object categories, 2D open-vocabulary segmentation has achieved promising results that solely rely on frozen CLIP backbones and ensembling multiple classification outputs. However, we find that simply extending these 2D models to 3D does not guarantee good performance due to poor per-mask classification quality, especially for novel stuff categories. In this paper, we propose the first method to tackle 3D open-vocabulary panoptic segmentation. Our model takes advantage of the fusion between learnable LiDAR features and dense frozen vision CLIP features, using a single classification head to make predictions for both base and novel classes. To further improve the classification performance on novel classes and leverage the CLIP model, we propose two novel loss functions: object-level distillation loss and voxel-level distillation loss. Our experiments on the nuScenes and SemanticKITTI datasets show that our method outperforms the strong baseline by a large margin. |
None | |
VidEdit: Zero-Shot and Spatially Aware Text-Driven Video Editing | 2024-04-02 | ShowRecently, diffusion-based generative models have achieved remarkable success for image generation and edition. However, existing diffusion-based video editing approaches lack the ability to offer precise control over generated content that maintains temporal consistency in long-term videos. On the other hand, atlas-based methods provide strong temporal consistency but are costly to edit a video and lack spatial control. In this work, we introduce VidEdit, a novel method for zero-shot text-based video editing that guarantees robust temporal and spatial consistency. In particular, we combine an atlas-based video representation with a pre-trained text-to-image diffusion model to provide a training-free and efficient video editing method, which by design fulfills temporal smoothness. To grant precise user control over generated content, we utilize conditional information extracted from off-the-shelf panoptic segmenters and edge detectors which guides the diffusion sampling process. This method ensures a fine spatial control on targeted regions while strictly preserving the structure of the original video. Our quantitative and qualitative experiments show that VidEdit outperforms state-of-the-art methods on DAVIS dataset, regarding semantic faithfulness, image preservation, and temporal consistency metrics. With this framework, processing a single video only takes approximately one minute, and it can generate multiple compatible edits based on a unique text prompt. Project web-page at https://videdit.github.io |
TMLR ...TMLR 2024. Project web-page at https://videdit.github.io |
None |
JRDB-PanoTrack: An Open-world Panoptic Segmentation and Tracking Robotic Dataset in Crowded Human Environments | 2024-04-02 | ShowAutonomous robot systems have attracted increasing research attention in recent years, where environment understanding is a crucial step for robot navigation, human-robot interaction, and decision. Real-world robot systems usually collect visual data from multiple sensors and are required to recognize numerous objects and their movements in complex human-crowded settings. Traditional benchmarks, with their reliance on single sensors and limited object classes and scenarios, fail to provide the comprehensive environmental understanding robots need for accurate navigation, interaction, and decision-making. As an extension of JRDB dataset, we unveil JRDB-PanoTrack, a novel open-world panoptic segmentation and tracking benchmark, towards more comprehensive environmental perception. JRDB-PanoTrack includes (1) various data involving indoor and outdoor crowded scenes, as well as comprehensive 2D and 3D synchronized data modalities; (2) high-quality 2D spatial panoptic segmentation and temporal tracking annotations, with additional 3D label projections for further spatial understanding; (3) diverse object classes for closed- and open-world recognition benchmarks, with OSPA-based metrics for evaluation. Extensive evaluation of leading methods shows significant challenges posed by our dataset. |
CVPR 2024 | None |
ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning | 2024-03-29 | ShowPanoptic segmentation, combining semantic and instance segmentation, stands as a cutting-edge computer vision task. Despite recent progress with deep learning models, the dynamic nature of real-world applications necessitates continual learning, where models adapt to new classes (plasticity) over time without forgetting old ones (catastrophic forgetting). Current continual segmentation methods often rely on distillation strategies like knowledge distillation and pseudo-labeling, which are effective but result in increased training complexity and computational overhead. In this paper, we introduce a novel and efficient method for continual panoptic segmentation based on Visual Prompt Tuning, dubbed ECLIPSE. Our approach involves freezing the base model parameters and fine-tuning only a small set of prompt embeddings, addressing both catastrophic forgetting and plasticity and significantly reducing the trainable parameters. To mitigate inherent challenges such as error propagation and semantic drift in continual segmentation, we propose logit manipulation to effectively leverage common knowledge across the classes. Experiments on ADE20K continual panoptic segmentation benchmark demonstrate the superiority of ECLIPSE, notably its robustness against catastrophic forgetting and its reasonable plasticity, achieving a new state-of-the-art. The code is available at https://github.com/clovaai/ECLIPSE. |
CVPR 2024 | Code Link |
Using Images as Covariates: Measuring Curb Appeal with Deep Learning | 2024-03-29 | ShowThis paper details an innovative methodology to integrate image data into traditional econometric models. Motivated by forecasting sales prices for residential real estate, we harness the power of deep learning to add "information" contained in images as covariates. Specifically, images of homes were categorized and encoded using an ensemble of image classifiers (ResNet-50, VGG16, MobileNet, and Inception V3). Unique features presented within each image were further encoded through panoptic segmentation. Forecasts from a neural network trained on the encoded data results in improved out-of-sample predictive power. We also combine these image-based forecasts with standard hedonic real estate property and location characteristics, resulting in a unified dataset. We show that image-based forecasts increase the accuracy of hedonic forecasts when encoded features are regarded as additional covariates. We also attempt to "explain" which covariates the image-based forecasts are most highly correlated with. The study exemplifies the benefits of interdisciplinary methodologies, merging machine learning and econometrics to harness untapped data sources for more accurate forecasting. |
None | |
PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model | 2024-03-21 | ShowPSALM is a powerful extension of the Large Multi-modal Model (LMM) to address the segmentation task challenges. To overcome the limitation of the LMM being limited to textual output, PSALM incorporates a mask decoder and a well-designed input schema to handle a variety of segmentation tasks. This schema includes images, task instructions, conditional prompts, and mask tokens, which enable the model to generate and classify segmentation masks effectively. The flexible design of PSALM supports joint training across multiple datasets and tasks, leading to improved performance and task generalization. PSALM achieves superior results on several benchmarks, such as RefCOCO/RefCOCO+/RefCOCOg, COCO Panoptic Segmentation, and COCO-Interactive, and further exhibits zero-shot capabilities on unseen tasks, such as open-vocabulary segmentation, generalized referring expression segmentation and video object segmentation, making a significant step towards a GPT moment in computer vision. Through extensive experiments, PSALM demonstrates its potential to transform the domain of image segmentation, leveraging the robust visual understanding capabilities of LMMs as seen in natural language processing. Code and models are available at https://github.com/zamling/PSALM. |
Code Link | |
Depth-aware Panoptic Segmentation | 2024-03-21 | ShowPanoptic segmentation unifies semantic and instance segmentation and thus delivers a semantic class label and, for so-called thing classes, also an instance label per pixel. The differentiation of distinct objects of the same class with a similar appearance is particularly challenging and frequently causes such objects to be incorrectly assigned to a single instance. In the present work, we demonstrate that information on the 3D geometry of the observed scene can be used to mitigate this issue: We present a novel CNN-based method for panoptic segmentation which processes RGB images and depth maps given as input in separate network branches and fuses the resulting feature maps in a late fusion manner. Moreover, we propose a new depth-aware dice loss term which penalises the assignment of pixels to the same thing instance based on the difference between their associated distances to the camera. Experiments carried out on the Cityscapes dataset show that the proposed method reduces the number of objects that are erroneously merged into one thing instance and outperforms the method used as basis by 2.2% in terms of panoptic quality. |
None | |
SimPLR: A Simple and Plain Transformer for Scaling-Efficient Object Detection and Segmentation | 2024-03-15 | ShowThe ability to detect objects in images at varying scales has played a pivotal role in the design of modern object detectors. Despite considerable progress in removing hand-crafted components and simplifying the architecture with transformers, multi-scale feature maps and/or pyramid design remain a key factor for their empirical success. In this paper, we show that this reliance on either feature pyramids or an hierarchical backbone is unnecessary and a transformer-based detector with scale-aware attention enables the plain detector `SimPLR' whose backbone and detection head are both non-hierarchical and operate on single-scale features. We find through our experiments that SimPLR with scale-aware attention is plain and simple, yet competitive with multi-scale vision transformer alternatives. Compared to the multi-scale and single-scale state-of-the-art, our model scales much better with bigger capacity (self-supervised) models and more pre-training data, allowing us to report a consistently better accuracy and faster runtime for object detection, instance segmentation as well as panoptic segmentation. Code will be released. |
None | |
PosSAM: Panoptic Open-vocabulary Segment Anything | 2024-03-14 | ShowIn this paper, we introduce an open-vocabulary panoptic segmentation model that effectively unifies the strengths of the Segment Anything Model (SAM) with the vision-language CLIP model in an end-to-end framework. While SAM excels in generating spatially-aware masks, it's decoder falls short in recognizing object class information and tends to oversegment without additional guidance. Existing approaches address this limitation by using multi-stage techniques and employing separate models to generate class-aware prompts, such as bounding boxes or segmentation masks. Our proposed method, PosSAM is an end-to-end model which leverages SAM's spatially rich features to produce instance-aware masks and harnesses CLIP's semantically discriminative features for effective instance classification. Specifically, we address the limitations of SAM and propose a novel Local Discriminative Pooling (LDP) module leveraging class-agnostic SAM and class-aware CLIP features for unbiased open-vocabulary classification. Furthermore, we introduce a Mask-Aware Selective Ensembling (MASE) algorithm that adaptively enhances the quality of generated masks and boosts the performance of open-vocabulary classification during inference for each image. We conducted extensive experiments to demonstrate our methods strong generalization properties across multiple datasets, achieving state-of-the-art performance with substantial improvements over SOTA open-vocabulary panoptic segmentation methods. In both COCO to ADE20K and ADE20K to COCO settings, PosSAM outperforms the previous state-of-the-art methods by a large margin, 2.4 PQ and 4.6 PQ, respectively. Project Website: https://vibashan.github.io/possam-web/. |
Code Link | |
PanDepth: Joint Panoptic Segmentation and Depth Completion | 2024-03-06 | ShowUnderstanding 3D environments semantically is pivotal in autonomous driving applications where multiple computer vision tasks are involved. Multi-task models provide different types of outputs for a given scene, yielding a more holistic representation while keeping the computational cost low. We propose a multi-task model for panoptic segmentation and depth completion using RGB images and sparse depth maps. Our model successfully predicts fully dense depth maps and performs semantic segmentation, instance segmentation, and panoptic segmentation for every input frame. Extensive experiments were done on the Virtual KITTI 2 dataset and we demonstrate that our model solves multiple tasks, without a significant increase in computational cost, while keeping high accuracy performance. Code is available at https://github.com/juanb09111/PanDepth.git |
Code Link | |
Few-Shot Panoptic Segmentation With Foundation Models | 2024-03-01 | ShowCurrent state-of-the-art methods for panoptic segmentation require an immense amount of annotated training data that is both arduous and expensive to obtain posing a significant challenge for their widespread adoption. Concurrently, recent breakthroughs in visual representation learning have sparked a paradigm shift leading to the advent of large foundation models that can be trained with completely unlabeled images. In this work, we propose to leverage such task-agnostic image features to enable few-shot panoptic segmentation by presenting Segmenting Panoptic Information with Nearly 0 labels (SPINO). In detail, our method combines a DINOv2 backbone with lightweight network heads for semantic segmentation and boundary estimation. We show that our approach, albeit being trained with only ten annotated images, predicts high-quality pseudo-labels that can be used with any existing panoptic segmentation method. Notably, we demonstrate that SPINO achieves competitive results compared to fully supervised baselines while using less than 0.3% of the ground truth labels, paving the way for learning complex visual recognition tasks leveraging foundation models. To illustrate its general applicability, we further deploy SPINO on real-world robotic vision systems for both outdoor and indoor environments. To foster future research, we make the code and trained models publicly available at http://spino.cs.uni-freiburg.de. |
Accep...Accepted for "IEEE International Conference on Robotics and Automation (ICRA) 2024" |
None |
Small, Versatile and Mighty: A Range-View Perception Framework | 2024-03-01 | ShowDespite its compactness and information integrity, the range view representation of LiDAR data rarely occurs as the first choice for 3D perception tasks. In this work, we further push the envelop of the range-view representation with a novel multi-task framework, achieving unprecedented 3D detection performances. Our proposed Small, Versatile, and Mighty (SVM) network utilizes a pure convolutional architecture to fully unleash the efficiency and multi-tasking potentials of the range view representation. To boost detection performances, we first propose a range-view specific Perspective Centric Label Assignment (PCLA) strategy, and a novel View Adaptive Regression (VAR) module to further refine hard-to-predict box properties. In addition, our framework seamlessly integrates semantic segmentation and panoptic segmentation tasks for the LiDAR point cloud, without extra modules. Among range-view-based methods, our model achieves new state-of-the-art detection performances on the Waymo Open Dataset. Especially, over 10 mAP improvement over convolutional counterparts can be obtained on the vehicle class. Our presented results for other tasks further reveal the multi-task capabilities of the proposed small but mighty framework. |
None | |
Benchmarking the Robustness of Panoptic Segmentation for Automated Driving | 2024-02-23 | ShowPrecise situational awareness is required for the safe decision-making of assisted and automated driving (AAD) functions. Panoptic segmentation is a promising perception technique to identify and categorise objects, impending hazards, and driveable space at a pixel level. While segmentation quality is generally associated with the quality of the camera data, a comprehensive understanding and modelling of this relationship are paramount for AAD system designers. Motivated by such a need, this work proposes a unifying pipeline to assess the robustness of panoptic segmentation models for AAD, correlating it with traditional image quality. The first step of the proposed pipeline involves generating degraded camera data that reflects real-world noise factors. To this end, 19 noise factors have been identified and implemented with 3 severity levels. Of these factors, this work proposes novel models for unfavourable light and snow. After applying the degradation models, three state-of-the-art CNN- and vision transformers (ViT)-based panoptic segmentation networks are used to analyse their robustness. The variations of the segmentation performance are then correlated to 8 selected image quality metrics. This research reveals that: 1) certain specific noise factors produce the highest impact on panoptic segmentation, i.e. droplets on lens and Gaussian noise; 2) the ViT-based panoptic segmentation backbones show better robustness to the considered noise factors; 3) some image quality metrics (i.e. LPIPS and CW-SSIM) correlate strongly with panoptic segmentation performance and therefore they can be used as predictive metrics for network performance. |
None | |
Generalizable Semantic Vision Query Generation for Zero-shot Panoptic and Semantic Segmentation | 2024-02-21 | ShowZero-shot Panoptic Segmentation (ZPS) aims to recognize foreground instances and background stuff without images containing unseen categories in training. Due to the visual data sparsity and the difficulty of generalizing from seen to unseen categories, this task remains challenging. To better generalize to unseen classes, we propose Conditional tOken aligNment and Cycle trAnsiTion (CONCAT), to produce generalizable semantic vision queries. First, a feature extractor is trained by CON to link the vision and semantics for providing target queries. Formally, CON is proposed to align the semantic queries with the CLIP visual CLS token extracted from complete and masked images. To address the lack of unseen categories, a generator is required. However, one of the gaps in synthesizing pseudo vision queries, ie, vision queries for unseen categories, is describing fine-grained visual details through semantic embeddings. Therefore, we approach CAT to train the generator in semantic-vision and vision-semantic manners. In semantic-vision, visual query contrast is proposed to model the high granularity of vision by pulling the pseudo vision queries with the corresponding targets containing segments while pushing those without segments away. To ensure the generated queries retain semantic information, in vision-semantic, the pseudo vision queries are mapped back to semantic and supervised by real semantic embeddings. Experiments on ZPS achieve a 5.2% hPQ increase surpassing SOTA. We also examine inductive ZPS and open-vocabulary semantic segmentation and obtain comparative results while being 2 times faster in testing. |
None | |
Semantically-aware Neural Radiance Fields for Visual Scene Understanding: A Comprehensive Review | 2024-02-17 | ShowThis review thoroughly examines the role of semantically-aware Neural Radiance Fields (NeRFs) in visual scene understanding, covering an analysis of over 250 scholarly papers. It explores how NeRFs adeptly infer 3D representations for both stationary and dynamic objects in a scene. This capability is pivotal for generating high-quality new viewpoints, completing missing scene details (inpainting), conducting comprehensive scene segmentation (panoptic segmentation), predicting 3D bounding boxes, editing 3D scenes, and extracting object-centric 3D models. A significant aspect of this study is the application of semantic labels as viewpoint-invariant functions, which effectively map spatial coordinates to a spectrum of semantic labels, thus facilitating the recognition of distinct objects within the scene. Overall, this survey highlights the progression and diverse applications of semantically-aware neural radiance fields in the context of visual scene interpretation. |
None | |
Beyond the Label Itself: Latent Labels Enhance Semi-supervised Point Cloud Panoptic Segmentation | 2024-02-11 | ShowAs the exorbitant expense of labeling autopilot datasets and the growing trend of utilizing unlabeled data, semi-supervised segmentation on point clouds becomes increasingly imperative. Intuitively, finding out more ``unspoken words'' (i.e., latent instance information) beyond the label itself should be helpful to improve performance. In this paper, we discover two types of latent labels behind the displayed label embedded in LiDAR and image data. First, in the LiDAR Branch, we propose a novel augmentation, Cylinder-Mix, which is able to augment more yet reliable samples for training. Second, in the Image Branch, we propose the Instance Position-scale Learning (IPSL) Module to learn and fuse the information of instance position and scale, which is from a 2D pre-trained detector and a type of latent label obtained from 3D to 2D projection. Finally, the two latent labels are embedded into the multi-modal panoptic segmentation network. The ablation of the IPSL module demonstrates its robust adaptability, and the experiments evaluated on SemanticKITTI and nuScenes demonstrate that our model outperforms the state-of-the-art method, LaserMix. |
12 pa...12 pages, 8 figures, 11 tables |
None |
Scalable 3D Panoptic Segmentation As Superpoint Graph Clustering | 2024-02-07 | ShowWe introduce a highly efficient method for panoptic segmentation of large 3D point clouds by redefining this task as a scalable graph clustering problem. This approach can be trained using only local auxiliary tasks, thereby eliminating the resource-intensive instance-matching step during training. Moreover, our formulation can easily be adapted to the superpoint paradigm, further increasing its efficiency. This allows our model to process scenes with millions of points and thousands of objects in a single inference. Our method, called SuperCluster, achieves a new state-of-the-art panoptic segmentation performance for two indoor scanning datasets: |
Accep...Accepted at 3DV 2024, Oral presentation |
Code Link |
Generalizable Entity Grounding via Assistance of Large Language Model | 2024-02-04 | ShowIn this work, we propose a novel approach to densely ground visual entities from a long caption. We leverage a large multimodal model (LMM) to extract semantic nouns, a class-agnostic segmentation model to generate entity-level segmentation, and the proposed multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask. Additionally, we introduce a strategy of encoding entity segmentation masks into a colormap, enabling the preservation of fine-grained predictions from features of high-resolution masks. This approach allows us to extract visual features from low-resolution images using the CLIP vision encoder in the LMM, which is more computationally efficient than existing approaches that use an additional encoder for high-resolution images. Our comprehensive experiments demonstrate the superiority of our method, outperforming state-of-the-art techniques on three tasks, including panoptic narrative grounding, referring expression segmentation, and panoptic segmentation. |
None | |
UrbanGenAI: Reconstructing Urban Landscapes using Panoptic Segmentation and Diffusion Models | 2024-01-25 | ShowIn contemporary design practices, the integration of computer vision and generative artificial intelligence (genAI) represents a transformative shift towards more interactive and inclusive processes. These technologies offer new dimensions of image analysis and generation, which are particularly relevant in the context of urban landscape reconstruction. This paper presents a novel workflow encapsulated within a prototype application, designed to leverage the synergies between advanced image segmentation and diffusion models for a comprehensive approach to urban design. Our methodology encompasses the OneFormer model for detailed image segmentation and the Stable Diffusion XL (SDXL) diffusion model, implemented through ControlNet, for generating images from textual descriptions. Validation results indicated a high degree of performance by the prototype application, showcasing significant accuracy in both object detection and text-to-image generation. This was evidenced by superior Intersection over Union (IoU) and CLIP scores across iterative evaluations for various categories of urban landscape features. Preliminary testing included utilising UrbanGenAI as an educational tool enhancing the learning experience in design pedagogy, and as a participatory instrument facilitating community-driven urban planning. Early results suggested that UrbanGenAI not only advances the technical frontiers of urban landscape reconstruction but also provides significant pedagogical and participatory planning benefits. The ongoing development of UrbanGenAI aims to further validate its effectiveness across broader contexts and integrate additional features such as real-time feedback mechanisms and 3D modelling capabilities. Keywords: generative AI; panoptic image segmentation; diffusion models; urban landscape design; design pedagogy; co-design |
19 pa...19 pages, 4 figures, 2 tables |
None |
CLIPSelf: Vision Transformer Distills Itself for Open-Vocabulary Dense Prediction | 2024-01-24 | ShowOpen-vocabulary dense prediction tasks including object detection and image segmentation have been advanced by the success of Contrastive Language-Image Pre-training (CLIP). CLIP models, particularly those incorporating vision transformers (ViTs), have exhibited remarkable generalization ability in zero-shot image classification. However, when transferring the vision-language alignment of CLIP from global image representation to local region representation for the open-vocabulary dense prediction tasks, CLIP ViTs suffer from the domain shift from full images to local image regions. In this paper, we embark on an in-depth analysis of the region-language alignment in CLIP models, which is essential for downstream open-vocabulary dense prediction tasks. Subsequently, we propose an approach named CLIPSelf, which adapts the image-level recognition ability of CLIP ViT to local image regions without needing any region-text pairs. CLIPSelf empowers ViTs to distill itself by aligning a region representation extracted from its dense feature map with the image-level representation of the corresponding image crop. With the enhanced CLIP ViTs, we achieve new state-of-the-art performance on open-vocabulary object detection, semantic segmentation, and panoptic segmentation across various benchmarks. Models and code are released at https://github.com/wusize/CLIPSelf. |
Code Link | |
Panoptic Vision-Language Feature Fields | 2024-01-18 | ShowRecently, methods have been proposed for 3D open-vocabulary semantic segmentation. Such methods are able to segment scenes into arbitrary classes based on text descriptions provided during runtime. In this paper, we propose to the best of our knowledge the first algorithm for open-vocabulary panoptic segmentation in 3D scenes. Our algorithm, Panoptic Vision-Language Feature Fields (PVLFF), learns a semantic feature field of the scene by distilling vision-language features from a pretrained 2D model, and jointly fits an instance feature field through contrastive learning using 2D instance segments on input frames. Despite not being trained on the target classes, our method achieves panoptic segmentation performance similar to the state-of-the-art closed-set 3D systems on the HyperSim, ScanNet and Replica dataset and additionally outperforms current 3D open-vocabulary systems in terms of semantic segmentation. We ablate the components of our method to demonstrate the effectiveness of our model architecture. Our code will be available at https://github.com/ethz-asl/pvlff. |
This ...This work has been accepted by IEEE Robotics and Automation Letters |
Code Link |
BUOL: A Bottom-Up Framework with Occupancy-aware Lifting for Panoptic 3D Scene Reconstruction From A Single Image | 2024-01-16 | ShowUnderstanding and modeling the 3D scene from a single image is a practical problem. A recent advance proposes a panoptic 3D scene reconstruction task that performs both 3D reconstruction and 3D panoptic segmentation from a single image. Although having made substantial progress, recent works only focus on top-down approaches that fill 2D instances into 3D voxels according to estimated depth, which hinders their performance by two ambiguities. (1) instance-channel ambiguity: The variable ids of instances in each scene lead to ambiguity during filling voxel channels with 2D information, confusing the following 3D refinement. (2) voxel-reconstruction ambiguity: 2D-to-3D lifting with estimated single view depth only propagates 2D information onto the surface of 3D regions, leading to ambiguity during the reconstruction of regions behind the frontal view surface. In this paper, we propose BUOL, a Bottom-Up framework with Occupancy-aware Lifting to address the two issues for panoptic 3D scene reconstruction from a single image. For instance-channel ambiguity, a bottom-up framework lifts 2D information to 3D voxels based on deterministic semantic assignments rather than arbitrary instance id assignments. The 3D voxels are then refined and grouped into 3D instances according to the predicted 2D instance centers. For voxel-reconstruction ambiguity, the estimated multi-plane occupancy is leveraged together with depth to fill the whole regions of things and stuff. Our method shows a tremendous performance advantage over state-of-the-art methods on synthetic dataset 3D-Front and real-world dataset Matterport3D. Code and models are available in https://github.com/chtsy/buol. |
CVPR ...CVPR 2023, https://github.com/chtsy/buol |
Code Link |
HOI4D: A 4D Egocentric Dataset for Category-Level Human-Object Interaction | 2024-01-03 | ShowWe present HOI4D, a large-scale 4D egocentric dataset with rich annotations, to catalyze the research of category-level human-object interaction. HOI4D consists of 2.4M RGB-D egocentric video frames over 4000 sequences collected by 4 participants interacting with 800 different object instances from 16 categories over 610 different indoor rooms. Frame-wise annotations for panoptic segmentation, motion segmentation, 3D hand pose, category-level object pose and hand action have also been provided, together with reconstructed object meshes and scene point clouds. With HOI4D, we establish three benchmarking tasks to promote category-level HOI from 4D visual signals including semantic segmentation of 4D dynamic point cloud sequences, category-level object pose tracking, and egocentric action segmentation with diverse interaction targets. In-depth analysis shows HOI4D poses great challenges to existing methods and produces great research opportunities. |
None | |
Unsupervised Universal Image Segmentation | 2023-12-28 | ShowSeveral unsupervised image segmentation approaches have been proposed which eliminate the need for dense manually-annotated segmentation masks; current models separately handle either semantic segmentation (e.g., STEGO) or class-agnostic instance segmentation (e.g., CutLER), but not both (i.e., panoptic segmentation). We propose an Unsupervised Universal Segmentation model (U2Seg) adept at performing various image segmentation tasks -- instance, semantic and panoptic -- using a novel unified framework. U2Seg generates pseudo semantic labels for these segmentation tasks via leveraging self-supervised models followed by clustering; each cluster represents different semantic and/or instance membership of pixels. We then self-train the model on these pseudo semantic labels, yielding substantial performance gains over specialized methods tailored to each task: a +2.6 AP$^{\text{box}}$ boost vs. CutLER in unsupervised instance segmentation on COCO and a +7.0 PixelAcc increase (vs. STEGO) in unsupervised semantic segmentation on COCOStuff. Moreover, our method sets up a new baseline for unsupervised panoptic segmentation, which has not been previously explored. U2Seg is also a strong pretrained model for few-shot segmentation, surpassing CutLER by +5.0 AP$^{\text{mask}}$ when trained on a low-data regime, e.g., only 1% COCO labels. We hope our simple yet effective method can inspire more research on unsupervised universal image segmentation. |
None | |
Digital Histopathology with Graph Neural Networks: Concepts and Explanations for Clinicians | 2023-12-28 | ShowTo address the challenge of the ``black-box" nature of deep learning in medical settings, we combine GCExplainer - an automated concept discovery solution - along with Logic Explained Networks to provide global explanations for Graph Neural Networks. We demonstrate this using a generally applicable graph construction and classification pipeline, involving panoptic segmentation with HoVer-Net and cancer prediction with Graph Convolution Networks. By training on H&E slides of breast cancer, we show promising results in offering explainable and trustworthy AI tools for clinicians. |
None | |
Scalable SoftGroup for 3D Instance Segmentation on Point Clouds | 2023-12-23 | ShowThis paper considers a network referred to as SoftGroup for accurate and scalable 3D instance segmentation. Existing state-of-the-art methods produce hard semantic predictions followed by grouping instance segmentation results. Unfortunately, errors stemming from hard decisions propagate into the grouping, resulting in poor overlap between predicted instances and ground truth and substantial false positives. To address the abovementioned problems, SoftGroup allows each point to be associated with multiple classes to mitigate the uncertainty stemming from semantic prediction. It also suppresses false positive instances by learning to categorize them as background. Regarding scalability, the existing fast methods require computational time on the order of tens of seconds on large-scale scenes, which is unsatisfactory and far from applicable for real-time. Our finding is that the |
Accep...Accepted by TPAMI. Extension of arXiv:2203.01509 |
Code Link |
EDAPS: Enhanced Domain-Adaptive Panoptic Segmentation | 2023-12-21 | ShowWith autonomous industries on the rise, domain adaptation of the visual perception stack is an important research direction due to the cost savings promise. Much prior art was dedicated to domain-adaptive semantic segmentation in the synthetic-to-real context. Despite being a crucial output of the perception stack, panoptic segmentation has been largely overlooked by the domain adaptation community. Therefore, we revisit well-performing domain adaptation strategies from other fields, adapt them to panoptic segmentation, and show that they can effectively enhance panoptic domain adaptation. Further, we study the panoptic network design and propose a novel architecture (EDAPS) designed explicitly for domain-adaptive panoptic segmentation. It uses a shared, domain-robust transformer encoder to facilitate the joint adaptation of semantic and instance features, but task-specific decoders tailored for the specific requirements of both domain-adaptive semantic and instance segmentation. As a result, the performance gap seen in challenging panoptic benchmarks is substantially narrowed. EDAPS significantly improves the state-of-the-art performance for panoptic segmentation UDA by a large margin of 20% on SYNTHIA-to-Cityscapes and even 72% on the more challenging SYNTHIA-to-Mapillary Vistas. The implementation is available at https://github.com/susaha/edaps. |
ICCV 2023 | Code Link |
EfficientPPS: Part-aware Panoptic Segmentation of Transparent Objects for Robotic Manipulation | 2023-12-21 | ShowThe use of autonomous robots for assistance tasks in hospitals has the potential to free up qualified staff and im-prove patient care. However, the ubiquity of deformable and transparent objects in hospital settings poses signif-icant challenges to vision-based perception systems. We present EfficientPPS, a neural architecture for part-aware panoptic segmentation that provides robots with semantically rich visual information for grasping and ma-nipulation tasks. We also present an unsupervised data collection and labelling method to reduce the need for human involvement in the training process. EfficientPPS is evaluated on a dataset containing real-world hospital objects and demonstrated to be robust and efficient in grasping transparent transfusion bags with a collaborative robot arm. |
8 pag...8 pages, 8 figures, presented at the 56th International Symposium on Robotics (ISR Europe) |
None |
DVIS++: Improved Decoupled Framework for Universal Video Segmentation | 2023-12-20 | ShowWe present the \textbf{D}ecoupled \textbf{VI}deo \textbf{S}egmentation (DVIS) framework, a novel approach for the challenging task of universal video segmentation, including video instance segmentation (VIS), video semantic segmentation (VSS), and video panoptic segmentation (VPS). Unlike previous methods that model video segmentation in an end-to-end manner, our approach decouples video segmentation into three cascaded sub-tasks: segmentation, tracking, and refinement. This decoupling design allows for simpler and more effective modeling of the spatio-temporal representations of objects, especially in complex scenes and long videos. Accordingly, we introduce two novel components: the referring tracker and the temporal refiner. These components track objects frame by frame and model spatio-temporal representations based on pre-aligned features. To improve the tracking capability of DVIS, we propose a denoising training strategy and introduce contrastive learning, resulting in a more robust framework named DVIS++. Furthermore, we evaluate DVIS++ in various settings, including open vocabulary and using a frozen pre-trained backbone. By integrating CLIP with DVIS++, we present OV-DVIS++, the first open-vocabulary universal video segmentation framework. We conduct extensive experiments on six mainstream benchmarks, including the VIS, VSS, and VPS datasets. Using a unified architecture, DVIS++ significantly outperforms state-of-the-art specialized methods on these benchmarks in both close- and open-vocabulary settings. Code:~\url{https://github.com/zhang-tao-whu/DVIS_Plus}. |
Code Link | |
SportsSloMo: A New Benchmark and Baselines for Human-centric Video Frame Interpolation | 2023-12-12 | ShowHuman-centric video frame interpolation has great potential for improving people's entertainment experiences and finding commercial applications in the sports analysis industry, e.g., synthesizing slow-motion videos. Although there are multiple benchmark datasets available in the community, none of them is dedicated for human-centric scenarios. To bridge this gap, we introduce SportsSloMo, a benchmark consisting of more than 130K video clips and 1M video frames of high-resolution ($\geq$720p) slow-motion sports videos crawled from YouTube. We re-train several state-of-the-art methods on our benchmark, and the results show a decrease in their accuracy compared to other datasets. It highlights the difficulty of our benchmark and suggests that it poses significant challenges even for the best-performing methods, as human bodies are highly deformable and occlusions are frequent in sports videos. To improve the accuracy, we introduce two loss terms considering the human-aware priors, where we add auxiliary supervision to panoptic segmentation and human keypoints detection, respectively. The loss terms are model agnostic and can be easily plugged into any video frame interpolation approaches. Experimental results validate the effectiveness of our proposed loss terms, leading to consistent performance improvement over 5 existing models, which establish strong baseline models on our benchmark. The dataset and code can be found at: https://neu-vi.github.io/SportsSlomo/. |
Proje...Project Page: https://neu-vi.github.io/SportsSlomo/ |
Code Link |
Hybrid Tracker with Pixel and Instance for Video Panoptic Segmentation | 2023-12-11 | ShowVideo Panoptic Segmentation (VPS) aims to generate coherent panoptic segmentation and track the identities of all pixels across video frames. Existing methods predominantly utilize the trained instance embedding to keep the consistency of panoptic segmentation. However, they inevitably struggle to cope with the challenges of small objects, similar appearance but inconsistent identities, occlusion, and strong instance contour deformations. To address these problems, we present HybridTracker, a lightweight and joint tracking model attempting to eliminate the limitations of the single tracker. HybridTracker performs pixel tracker and instance tracker in parallel to obtain the association matrices, which are fused into a matching matrix. In the instance tracker, we design a differentiable matching layer, ensuring the stability of inter-frame matching. In the pixel tracker, we compute the dice coefficient of the same instance of different frames given the estimated optical flow, forming the Intersection Over Union (IoU) matrix. We additionally propose mutual check and temporal consistency constraints during inference to settle the occlusion and contour deformation challenges. Comprehensive experiments show that HybridTracker achieves superior performance than state-of-the-art methods on Cityscapes-VPS and VIPER datasets. |
None | |
MaskConver: Revisiting Pure Convolution Model for Panoptic Segmentation | 2023-12-11 | ShowIn recent years, transformer-based models have dominated panoptic segmentation, thanks to their strong modeling capabilities and their unified representation for both semantic and instance classes as global binary masks. In this paper, we revisit pure convolution model and propose a novel panoptic architecture named MaskConver. MaskConver proposes to fully unify things and stuff representation by predicting their centers. To that extent, it creates a lightweight class embedding module that can break the ties when multiple centers co-exist in the same location. Furthermore, our study shows that the decoder design is critical in ensuring that the model has sufficient context for accurate detection and segmentation. We introduce a powerful ConvNeXt-UNet decoder that closes the performance gap between convolution- and transformerbased models. With ResNet50 backbone, our MaskConver achieves 53.6% PQ on the COCO panoptic val set, outperforming the modern convolution-based model, Panoptic FCN, by 9.3% as well as transformer-based models such as Mask2Former (+1.7% PQ) and kMaX-DeepLab (+0.6% PQ). Additionally, MaskConver with a MobileNet backbone reaches 37.2% PQ, improving over Panoptic-DeepLab by +6.4% under the same FLOPs/latency constraints. A further optimized version of MaskConver achieves 29.7% PQ, while running in real-time on mobile devices. The code and model weights will be publicly available |
11 pages, 5 figures | None |
Aligning and Prompting Everything All at Once for Universal Visual Perception | 2023-12-04 | ShowVision foundation models have been explored recently to build general-purpose vision systems. However, predominant paradigms, driven by casting instance-level tasks as an object-word alignment, bring heavy cross-modality interaction, which is not effective in prompting object detection and visual grounding. Another line of work that focuses on pixel-level tasks often encounters a large annotation gap of things and stuff, and suffers from mutual interference between foreground-object and background-class segmentation. In stark contrast to the prevailing methods, we present APE, a universal visual perception model for aligning and prompting everything all at once in an image to perform diverse tasks, i.e., detection, segmentation, and grounding, as an instance-level sentence-object matching paradigm. Specifically, APE advances the convergence of detection and grounding by reformulating language-guided grounding as open-vocabulary detection, which efficiently scales up model prompting to thousands of category vocabularies and region descriptions while maintaining the effectiveness of cross-modality fusion. To bridge the granularity gap of different pixel-level tasks, APE equalizes semantic and panoptic segmentation to proxy instance learning by considering any isolated regions as individual instances. APE aligns vision and language representation on broad data with natural and challenging characteristics all at once without task-specific fine-tuning. The extensive experiments on over 160 datasets demonstrate that, with only one-suit of weights, APE outperforms (or is on par with) the state-of-the-art models, proving that an effective yet universal perception for anything aligning and prompting is indeed feasible. Codes and trained models are released at https://github.com/shenyunhang/APE. |
Code Link | |
JPPF: Multi-task Fusion for Consistent Panoptic-Part Segmentation | 2023-11-30 | ShowPart-aware panoptic segmentation is a problem of computer vision that aims to provide a semantic understanding of the scene at multiple levels of granularity. More precisely, semantic areas, object instances, and semantic parts are predicted simultaneously. In this paper, we present our Joint Panoptic Part Fusion (JPPF) that combines the three individual segmentations effectively to obtain a panoptic-part segmentation. Two aspects are of utmost importance for this: First, a unified model for the three problems is desired that allows for mutually improved and consistent representation learning. Second, balancing the combination so that it gives equal importance to all individual results during fusion. Our proposed JPPF is parameter-free and dynamically balances its input. The method is evaluated and compared on the Cityscapes Panoptic Parts (CPP) and Pascal Panoptic Parts (PPP) datasets in terms of PartPQ and Part-Whole Quality (PWQ). In extensive experiments, we verify the importance of our fair fusion, highlight its most significant impact for areas that can be further segmented into parts, and demonstrate the generalization capabilities of our design without fine-tuning on 5 additional datasets. |
Accep...Accepted for Springer Nature Computer Science. arXiv admin note: substantial text overlap with arXiv:2212.07671 |
None |
Panoptic Video Scene Graph Generation | 2023-11-28 | ShowTowards building comprehensive real-world visual perception systems, we propose and study a new problem called panoptic scene graph generation (PVSG). PVSG relates to the existing video scene graph generation (VidSGG) problem, which focuses on temporal interactions between humans and objects grounded with bounding boxes in videos. However, the limitation of bounding boxes in detecting non-rigid objects and backgrounds often causes VidSGG to miss key details crucial for comprehensive video understanding. In contrast, PVSG requires nodes in scene graphs to be grounded by more precise, pixel-level segmentation masks, which facilitate holistic scene understanding. To advance research in this new area, we contribute the PVSG dataset, which consists of 400 videos (289 third-person + 111 egocentric videos) with a total of 150K frames labeled with panoptic segmentation masks as well as fine, temporal scene graphs. We also provide a variety of baseline methods and share useful design practices for future work. |
Accep...Accepted to CVPR 2023. Project Page: https://jingkang50.github.io/PVSG/. Codebase: https://github.com/LilyDaytoy/OpenPVSG. We provide 400 long videos with frame-level panoptic segmentation, scene graph, dense captions, and QA annotations |
Code Link |
OneFormer3D: One Transformer for Unified Point Cloud Segmentation | 2023-11-24 | ShowSemantic, instance, and panoptic segmentation of 3D point clouds have been addressed using task-specific models of distinct design. Thereby, the similarity of all segmentation tasks and the implicit relationship between them have not been utilized effectively. This paper presents a unified, simple, and effective model addressing all these tasks jointly. The model, named OneFormer3D, performs instance and semantic segmentation consistently, using a group of learnable kernels, where each kernel is responsible for generating a mask for either an instance or a semantic category. These kernels are trained with a transformer-based decoder with unified instance and semantic queries passed as an input. Such a design enables training a model end-to-end in a single run, so that it achieves top performance on all three segmentation tasks simultaneously. Specifically, our OneFormer3D ranks 1st and sets a new state-of-the-art (+2.1 mAP50) in the ScanNet test leaderboard. We also demonstrate the state-of-the-art results in semantic, instance, and panoptic segmentation of ScanNet (+21 PQ), ScanNet200 (+3.8 mAP50), and S3DIS (+0.8 mIoU) datasets. |
None | |
4D-Former: Multimodal 4D Panoptic Segmentation | 2023-11-17 | Show4D panoptic segmentation is a challenging but practically useful task that requires every point in a LiDAR point-cloud sequence to be assigned a semantic class label, and individual objects to be segmented and tracked over time. Existing approaches utilize only LiDAR inputs which convey limited information in regions with point sparsity. This problem can, however, be mitigated by utilizing RGB camera images which offer appearance-based information that can reinforce the geometry-based LiDAR features. Motivated by this, we propose 4D-Former: a novel method for 4D panoptic segmentation which leverages both LiDAR and image modalities, and predicts semantic masks as well as temporally consistent object masks for the input point-cloud sequence. We encode semantic classes and objects using a set of concise queries which absorb feature information from both data modalities. Additionally, we propose a learned mechanism to associate object tracks over time which reasons over both appearance and spatial location. We apply 4D-Former to the nuScenes and SemanticKITTI datasets where it achieves state-of-the-art results. |
accep...accepted at CoRL 2023 |
None |
Self-trained Panoptic Segmentation | 2023-11-17 | ShowPanoptic segmentation is an important computer vision task which combines semantic and instance segmentation. It plays a crucial role in domains of medical image analysis, self-driving vehicles, and robotics by providing a comprehensive understanding of visual environments. Traditionally, deep learning panoptic segmentation models have relied on dense and accurately annotated training data, which is expensive and time consuming to obtain. Recent advancements in self-supervised learning approaches have shown great potential in leveraging synthetic and unlabelled data to generate pseudo-labels using self-training to improve the performance of instance and semantic segmentation models. The three available methods for self-supervised panoptic segmentation use proposal-based transformer architectures which are computationally expensive, complicated and engineered for specific tasks. The aim of this work is to develop a framework to perform embedding-based self-supervised panoptic segmentation using self-training in a synthetic-to-real domain adaptation problem setting. |
None | |
Center Focusing Network for Real-Time LiDAR Panoptic Segmentation | 2023-11-16 | ShowLiDAR panoptic segmentation facilitates an autonomous vehicle to comprehensively understand the surrounding objects and scenes and is required to run in real time. The recent proposal-free methods accelerate the algorithm, but their effectiveness and efficiency are still limited owing to the difficulty of modeling non-existent instance centers and the costly center-based clustering modules. To achieve accurate and real-time LiDAR panoptic segmentation, a novel center focusing network (CFNet) is introduced. Specifically, the center focusing feature encoding (CFFE) is proposed to explicitly understand the relationships between the original LiDAR points and virtual instance centers by shifting the LiDAR points and filling in the center points. Moreover, to leverage the redundantly detected centers, a fast center deduplication module (CDM) is proposed to select only one center for each instance. Experiments on the SemanticKITTI and nuScenes panoptic segmentation benchmarks demonstrate that our CFNet outperforms all existing methods by a large margin and is 1.6 times faster than the most efficient method. The code is available at https://github.com/GangZhang842/CFNet. |
Publi...Published in the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023) |
Code Link |
ASSIST: Interactive Scene Nodes for Scalable and Realistic Indoor Simulation | 2023-11-10 | ShowWe present ASSIST, an object-wise neural radiance field as a panoptic representation for compositional and realistic simulation. Central to our approach is a novel scene node data structure that stores the information of each object in a unified fashion, allowing online interaction in both intra- and cross-scene settings. By incorporating a differentiable neural network along with the associated bounding box and semantic features, the proposed structure guarantees user-friendly interaction on independent objects to scale up novel view simulation. Objects in the scene can be queried, added, duplicated, deleted, transformed, or swapped simply through mouse/keyboard controls or language instructions. Experiments demonstrate the efficacy of the proposed method, where scaled realistic simulation can be achieved through interactive editing and compositional rendering, with color images, depth images, and panoptic segmentation masks generated in a 3D consistent manner. |
None | |
Lidar Panoptic Segmentation and Tracking without Bells and Whistles | 2023-10-19 | ShowState-of-the-art lidar panoptic segmentation (LPS) methods follow bottom-up segmentation-centric fashion wherein they build upon semantic segmentation networks by utilizing clustering to obtain object instances. In this paper, we re-think this approach and propose a surprisingly simple yet effective detection-centric network for both LPS and tracking. Our network is modular by design and optimized for all aspects of both the panoptic segmentation and tracking task. One of the core components of our network is the object instance detection branch, which we train using point-level (modal) annotations, as available in segmentation-centric datasets. In the absence of amodal (cuboid) annotations, we regress modal centroids and object extent using trajectory-level supervision that provides information about object size, which cannot be inferred from single scans due to occlusions and the sparse nature of the lidar data. We obtain fine-grained instance segments by learning to associate lidar points with detected centroids. We evaluate our method on several 3D/4D LPS benchmarks and observe that our model establishes a new state-of-the-art among open-sourced models, outperforming recent query-based models. |
IROS ...IROS 2023. Code at https://github.com/abhinavagarwalla/most-lps |
Code Link |
Panoptic Out-of-Distribution Segmentation | 2023-10-18 | ShowDeep learning has led to remarkable strides in scene understanding with panoptic segmentation emerging as a key holistic scene interpretation task. However, the performance of panoptic segmentation is severely impacted in the presence of out-of-distribution (OOD) objects i.e. categories of objects that deviate from the training distribution. To overcome this limitation, we propose Panoptic Out-of Distribution Segmentation for joint pixel-level semantic in-distribution and out-of-distribution classification with instance prediction. We extend two established panoptic segmentation benchmarks, Cityscapes and BDD100K, with out-of-distribution instance segmentation annotations, propose suitable evaluation metrics, and present multiple strong baselines. Importantly, we propose the novel PoDS architecture with a shared backbone, an OOD contextual module for learning global and local OOD object cues, and dual symmetrical decoders with task-specific heads that employ our alignment-mismatch strategy for better OOD generalization. Combined with our data augmentation strategy, this approach facilitates progressive learning of out-of-distribution objects while maintaining in-distribution performance. We perform extensive evaluations that demonstrate that our proposed PoDS network effectively addresses the main challenges and substantially outperforms the baselines. We make the dataset, code, and trained models publicly available at http://pods.cs.uni-freiburg.de. |
None | |
A Generalist Framework for Panoptic Segmentation of Images and Videos | 2023-10-12 | ShowPanoptic segmentation assigns semantic and instance ID labels to every pixel of an image. As permutations of instance IDs are also valid solutions, the task requires learning of high-dimensional one-to-many mapping. As a result, state-of-the-art approaches use customized architectures and task-specific loss functions. We formulate panoptic segmentation as a discrete data generation problem, without relying on inductive bias of the task. A diffusion model is proposed to model panoptic masks, with a simple architecture and generic loss function. By simply adding past predictions as a conditioning signal, our method is capable of modeling video (in a streaming setting) and thereby learns to track object instances automatically. With extensive experiments, we demonstrate that our simple approach can perform competitively to state-of-the-art specialist methods in similar settings. |
ICCV'...ICCV'23. Code at https://github.com/google-research/pix2seq |
Code Link |
Finite Scalar Quantization: VQ-VAE Made Simple | 2023-10-12 | ShowWe propose to replace vector quantization (VQ) in the latent representation of VQ-VAEs with a simple scheme termed finite scalar quantization (FSQ), where we project the VAE representation down to a few dimensions (typically less than 10). Each dimension is quantized to a small set of fixed values, leading to an (implicit) codebook given by the product of these sets. By appropriately choosing the number of dimensions and values each dimension can take, we obtain the same codebook size as in VQ. On top of such discrete representations, we can train the same models that have been trained on VQ-VAE representations. For example, autoregressive and masked transformer models for image generation, multimodal generation, and dense prediction computer vision tasks. Concretely, we employ FSQ with MaskGIT for image generation, and with UViM for depth estimation, colorization, and panoptic segmentation. Despite the much simpler design of FSQ, we obtain competitive performance in all these tasks. We emphasize that FSQ does not suffer from codebook collapse and does not need the complex machinery employed in VQ (commitment losses, codebook reseeding, code splitting, entropy penalties, etc.) to learn expressive discrete representations. |
Code Link | |
Hierarchical Mask2Former: Panoptic Segmentation of Crops, Weeds and Leaves | 2023-10-10 | ShowAdvancements in machine vision that enable detailed inferences to be made from images have the potential to transform many sectors including agriculture. Precision agriculture, where data analysis enables interventions to be precisely targeted, has many possible applications. Precision spraying, for example, can limit the application of herbicide only to weeds, or limit the application of fertiliser only to undernourished crops, instead of spraying the entire field. The approach promises to maximise yields, whilst minimising resource use and harms to the surrounding environment. To this end, we propose a hierarchical panoptic segmentation method to simultaneously identify indicators of plant growth and locate weeds within an image. We adapt Mask2Former, a state-of-the-art architecture for panoptic segmentation, to predict crop, weed and leaf masks. We achieve a PQ{\dag} of 75.99. Additionally, we explore approaches to make the architecture more compact and therefore more suitable for time and compute constrained applications. With our more compact architecture, inference is up to 60% faster and the reduction in PQ{\dag} is less than 1%. |
6 pag...6 pages, 5 figures, 2 tables, for code, see https://github.com/madeleinedarbyshire/HierarchicalMask2Former |
Code Link |
ClusterFormer: Clustering As A Universal Visual Learner | 2023-10-06 | ShowThis paper presents CLUSTERFORMER, a universal vision model that is based on the CLUSTERing paradigm with TransFORMER. It comprises two novel designs: 1. recurrent cross-attention clustering, which reformulates the cross-attention mechanism in Transformer and enables recursive updates of cluster centers to facilitate strong representation learning; and 2. feature dispatching, which uses the updated cluster centers to redistribute image features through similarity-based metrics, resulting in a transparent pipeline. This elegant design streamlines an explainable and transferable workflow, capable of tackling heterogeneous vision tasks (i.e., image classification, object detection, and image segmentation) with varying levels of clustering granularity (i.e., image-, box-, and pixel-level). Empirical results demonstrate that CLUSTERFORMER outperforms various well-known specialized architectures, achieving 83.41% top-1 acc. over ImageNet-1K for image classification, 54.2% and 47.0% mAP over MS COCO for object detection and instance segmentation, 52.4% mIoU over ADE20K for semantic segmentation, and 55.8% PQ over COCO Panoptic for panoptic segmentation. For its efficacy, we hope our work can catalyze a paradigm shift in universal models in computer vision. |
None | |
A SAM-based Solution for Hierarchical Panoptic Segmentation of Crops and Weeds Competition | 2023-09-24 | ShowPanoptic segmentation in agriculture is an advanced computer vision technique that provides a comprehensive understanding of field composition. It facilitates various tasks such as crop and weed segmentation, plant panoptic segmentation, and leaf instance segmentation, all aimed at addressing challenges in agriculture. Exploring the application of panoptic segmentation in agriculture, the 8th Workshop on Computer Vision in Plant Phenotyping and Agriculture (CVPPA) hosted the challenge of hierarchical panoptic segmentation of crops and weeds using the PhenoBench dataset. To tackle the tasks presented in this competition, we propose an approach that combines the effectiveness of the Segment AnyThing Model (SAM) for instance segmentation with prompt input from object detection models. Specifically, we integrated two notable approaches in object detection, namely DINO and YOLO-v8. Our best-performing model achieved a PQ+ score of 81.33 based on the evaluation metrics of the competition. |
Techn...Technical report of NYCU-WEED team for the challenge of hierarchical panoptic segmentation of crops and weeds using the PhenoBench dataset at the 8th Workshop on Computer Vision in Plant Phenotyping and Agriculture (CVPPA) - International Conference on Computer Vision (ICCV) 2023 |
None |
4D Panoptic Segmentation as Invariant and Equivariant Field Prediction | 2023-09-12 | ShowIn this paper, we develop rotation-equivariant neural networks for 4D panoptic segmentation. 4D panoptic segmentation is a benchmark task for autonomous driving that requires recognizing semantic classes and object instances on the road based on LiDAR scans, as well as assigning temporally consistent IDs to instances across time. We observe that the driving scenario is symmetric to rotations on the ground plane. Therefore, rotation-equivariance could provide better generalization and more robust feature learning. Specifically, we review the object instance clustering strategies and restate the centerness-based approach and the offset-based approach as the prediction of invariant scalar fields and equivariant vector fields. Other sub-tasks are also unified from this perspective, and different invariant and equivariant layers are designed to facilitate their predictions. Through evaluation on the standard 4D panoptic segmentation benchmark of SemanticKITTI, we show that our equivariant models achieve higher accuracy with lower computational costs compared to their non-equivariant counterparts. Moreover, our method sets the new state-of-the-art performance and achieves 1st place on the SemanticKITTI 4D Panoptic Segmentation leaderboard. |
13 pa...13 pages. Accepted at ICCV 2023 |
None |
Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation | 2023-09-12 | ShowSegmenting unknown or anomalous object instances is a critical task in autonomous driving applications, and it is approached traditionally as a per-pixel classification problem. However, reasoning individually about each pixel without considering their contextual semantics results in high uncertainty around the objects' boundaries and numerous false positives. We propose a paradigm change by shifting from a per-pixel classification to a mask classification. Our mask-based method, Mask2Anomaly, demonstrates the feasibility of integrating a mask-classification architecture to jointly address anomaly segmentation, open-set semantic segmentation, and open-set panoptic segmentation. Mask2Anomaly includes several technical novelties that are designed to improve the detection of anomalies/unknown objects: i) a global masked attention module to focus individually on the foreground and background regions; ii) a mask contrastive learning that maximizes the margin between an anomaly and known classes; iii) a mask refinement solution to reduce false positives; and iv) a novel approach to mine unknown instances based on the mask-architecture properties. By comprehensive qualitative and qualitative evaluation, we show Mask2Anomaly achieves new state-of-the-art results across the benchmarks of anomaly segmentation, open-set semantic segmentation, and open-set panoptic segmentation. |
16 pa...16 pages. arXiv admin note: substantial text overlap with arXiv:2307.13316 |
None |
UniSeg: A Unified Multi-Modal LiDAR Segmentation Network and the OpenPCSeg Codebase | 2023-09-11 | ShowPoint-, voxel-, and range-views are three representative forms of point clouds. All of them have accurate 3D measurements but lack color and texture information. RGB images are a natural complement to these point cloud views and fully utilizing the comprehensive information of them benefits more robust perceptions. In this paper, we present a unified multi-modal LiDAR segmentation network, termed UniSeg, which leverages the information of RGB images and three views of the point cloud, and accomplishes semantic segmentation and panoptic segmentation simultaneously. Specifically, we first design the Learnable cross-Modal Association (LMA) module to automatically fuse voxel-view and range-view features with image features, which fully utilize the rich semantic information of images and are robust to calibration errors. Then, the enhanced voxel-view and range-view features are transformed to the point space,where three views of point cloud features are further fused adaptively by the Learnable cross-View Association module (LVA). Notably, UniSeg achieves promising results in three public benchmarks, i.e., SemanticKITTI, nuScenes, and Waymo Open Dataset (WOD); it ranks 1st on two challenges of two benchmarks, including the LiDAR semantic segmentation challenge of nuScenes and panoptic segmentation challenges of SemanticKITTI. Besides, we construct the OpenPCSeg codebase, which is the largest and most comprehensive outdoor LiDAR segmentation codebase. It contains most of the popular outdoor LiDAR segmentation algorithms and provides reproducible implementations. The OpenPCSeg codebase will be made publicly available at https://github.com/PJLab-ADG/PCSeg. |
ICCV ...ICCV 2023; 21 pages; 9 figures; 18 tables; Code at https://github.com/PJLab-ADG/PCSeg |
Code Link |
Revisiting the Encoding of Satellite Image Time Series | 2023-09-08 | ShowSatellite Image Time Series (SITS) representation learning is complex due to high spatiotemporal resolutions, irregular acquisition times, and intricate spatiotemporal interactions. These challenges result in specialized neural network architectures tailored for SITS analysis. The field has witnessed promising results achieved by pioneering researchers, but transferring the latest advances or established paradigms from Computer Vision (CV) to SITS is still highly challenging due to the existing suboptimal representation learning framework. In this paper, we develop a novel perspective of SITS processing as a direct set prediction problem, inspired by the recent trend in adopting query-based transformer decoders to streamline the object detection or image segmentation pipeline. We further propose to decompose the representation learning process of SITS into three explicit steps: collect-update-distribute, which is computationally efficient and suits for irregularly-sampled and asynchronous temporal satellite observations. Facilitated by the unique reformulation, our proposed temporal learning backbone of SITS, initially pre-trained on the resource efficient pixel-set format and then fine-tuned on the downstream dense prediction tasks, has attained new state-of-the-art (SOTA) results on the PASTIS benchmark dataset. Specifically, the clear separation between temporal and spatial components in the semantic/panoptic segmentation pipeline of SITS makes us leverage the latest advances in CV, such as the universal image segmentation architecture, resulting in a noticeable 2.5 points increase in mIoU and 8.8 points increase in PQ, respectively, compared to the best scores reported so far. |
None | |
Tracking Anything with Decoupled Video Segmentation | 2023-09-07 | ShowTraining data for video segmentation are expensive to annotate. This impedes extensions of end-to-end algorithms to new video segmentation tasks, especially in large-vocabulary settings. To 'track anything' without training on video data for every individual task, we develop a decoupled video segmentation approach (DEVA), composed of task-specific image-level segmentation and class/task-agnostic bi-directional temporal propagation. Due to this design, we only need an image-level model for the target task (which is cheaper to train) and a universal temporal propagation model which is trained once and generalizes across tasks. To effectively combine these two modules, we use bi-directional propagation for (semi-)online fusion of segmentation hypotheses from different frames to generate a coherent segmentation. We show that this decoupled formulation compares favorably to end-to-end approaches in several data-scarce tasks including large-vocabulary video panoptic segmentation, open-world video segmentation, referring video segmentation, and unsupervised video object segmentation. Code is available at: https://hkchengrex.github.io/Tracking-Anything-with-DEVA |
Accep...Accepted to ICCV 2023. Project page: https://hkchengrex.github.io/Tracking-Anything-with-DEVA |
Code Link |
Instance Neural Radiance Field | 2023-09-04 | ShowThis paper presents one of the first learning-based NeRF 3D instance segmentation pipelines, dubbed as Instance Neural Radiance Field, or Instance NeRF. Taking a NeRF pretrained from multi-view RGB images as input, Instance NeRF can learn 3D instance segmentation of a given scene, represented as an instance field component of the NeRF model. To this end, we adopt a 3D proposal-based mask prediction network on the sampled volumetric features from NeRF, which generates discrete 3D instance masks. The coarse 3D mask prediction is then projected to image space to match 2D segmentation masks from different views generated by existing panoptic segmentation models, which are used to supervise the training of the instance field. Notably, beyond generating consistent 2D segmentation maps from novel views, Instance NeRF can query instance information at any 3D point, which greatly enhances NeRF object segmentation and manipulation. Our method is also one of the first to achieve such results in pure inference. Experimented on synthetic and real-world NeRF datasets with complex indoor scenes, Instance NeRF surpasses previous NeRF segmentation works and competitive 2D segmentation methods in segmentation performance on unseen views. Watch the demo video at https://youtu.be/wW9Bme73coI. Code and data are available at https://github.com/lyclyc52/Instance_NeRF. |
Inter...International Conference on Computer Vision (ICCV) 2023 |
Code Link |
Rethinking Range View Representation for LiDAR Segmentation | 2023-09-03 | ShowLiDAR segmentation is crucial for autonomous driving perception. Recent trends favor point- or voxel-based methods as they often yield better performance than the traditional range view representation. In this work, we unveil several key factors in building powerful range view models. We observe that the "many-to-one" mapping, semantic incoherence, and shape deformation are possible impediments against effective learning from range view projections. We present RangeFormer -- a full-cycle framework comprising novel designs across network architecture, data augmentation, and post-processing -- that better handles the learning and processing of LiDAR point clouds from the range view. We further introduce a Scalable Training from Range view (STR) strategy that trains on arbitrary low-resolution 2D range images, while still maintaining satisfactory 3D segmentation accuracy. We show that, for the first time, a range view method is able to surpass the point, voxel, and multi-view fusion counterparts in the competing LiDAR semantic and panoptic segmentation benchmarks, i.e., SemanticKITTI, nuScenes, and ScribbleKITTI. |
ICCV ...ICCV 2023; 24 pages, 10 figures, 14 tables; Webpage at https://ldkong.com/RangeFormer |
None |
Learning to Upsample by Learning to Sample | 2023-08-29 | ShowWe present DySample, an ultra-lightweight and effective dynamic upsampler. While impressive performance gains have been witnessed from recent kernel-based dynamic upsamplers such as CARAFE, FADE, and SAPA, they introduce much workload, mostly due to the time-consuming dynamic convolution and the additional sub-network used to generate dynamic kernels. Further, the need for high-res feature guidance of FADE and SAPA somehow limits their application scenarios. To address these concerns, we bypass dynamic convolution and formulate upsampling from the perspective of point sampling, which is more resource-efficient and can be easily implemented with the standard built-in function in PyTorch. We first showcase a naive design, and then demonstrate how to strengthen its upsampling behavior step by step towards our new upsampler, DySample. Compared with former kernel-based dynamic upsamplers, DySample requires no customized CUDA package and has much fewer parameters, FLOPs, GPU memory, and latency. Besides the light-weight characteristics, DySample outperforms other upsamplers across five dense prediction tasks, including semantic segmentation, object detection, instance segmentation, panoptic segmentation, and monocular depth estimation. Code is available at https://github.com/tiny-smart/dysample. |
Accep...Accepted by ICCV 2023 |
Code Link |
Segmenting Known Objects and Unseen Unknowns without Prior Knowledge | 2023-08-18 | ShowPanoptic segmentation methods assign a known class to each pixel given in input. Even for state-of-the-art approaches, this inevitably enforces decisions that systematically lead to wrong predictions for objects outside the training categories. However, robustness against out-of-distribution samples and corner cases is crucial in safety-critical settings to avoid dangerous consequences. Since real-world datasets cannot contain enough data points to adequately sample the long tail of the underlying distribution, models must be able to deal with unseen and unknown scenarios as well. Previous methods targeted this by re-identifying already-seen unlabeled objects. In this work, we propose the necessary step to extend segmentation with a new setting which we term holistic segmentation. Holistic segmentation aims to identify and separate objects of unseen, unknown categories into instances without any prior knowledge about them while performing panoptic segmentation of known classes. We tackle this new problem with U3HS, which finds unknowns as highly uncertain regions and clusters their corresponding instance-aware embeddings into individual objects. By doing so, for the first time in panoptic segmentation with unknown objects, our U3HS is trained without unknown categories, reducing assumptions and leaving the settings as unconstrained as in real-life scenarios. Extensive experiments on public data from MS COCO, Cityscapes, and Lost&Found demonstrate the effectiveness of U3HS for this new, challenging, and assumptions-free setting called holistic segmentation. Project page: https://holisticseg.github.io. |
ICCV ...ICCV 2023. Project page: https://holisticseg.github.io |
None |
LaRS: A Diverse Panoptic Maritime Obstacle Detection Dataset and Benchmark | 2023-08-18 | ShowThe progress in maritime obstacle detection is hindered by the lack of a diverse dataset that adequately captures the complexity of general maritime environments. We present the first maritime panoptic obstacle detection benchmark LaRS, featuring scenes from Lakes, Rivers and Seas. Our major contribution is the new dataset, which boasts the largest diversity in recording locations, scene types, obstacle classes, and acquisition conditions among the related datasets. LaRS is composed of over 4000 per-pixel labeled key frames with nine preceding frames to allow utilization of the temporal texture, amounting to over 40k frames. Each key frame is annotated with 8 thing, 3 stuff classes and 19 global scene attributes. We report the results of 27 semantic and panoptic segmentation methods, along with several performance insights and future research directions. To enable objective evaluation, we have implemented an online evaluation server. The LaRS dataset, evaluation toolkit and benchmark are publicly available at: https://lojzezust.github.io/lars-dataset |
ICCV ...ICCV 2023, 9 pages, 8 figures |
Code Link |
Unified Open-Vocabulary Dense Visual Prediction | 2023-08-18 | ShowIn recent years, open-vocabulary (OV) dense visual prediction (such as OV object detection, semantic, instance and panoptic segmentations) has attracted increasing research attention. However, most of existing approaches are task-specific and individually tackle each task. In this paper, we propose a Unified Open-Vocabulary Network (UOVN) to jointly address four common dense prediction tasks. Compared with separate models, a unified network is more desirable for diverse industrial applications. Moreover, OV dense prediction training data is relatively less. Separate networks can only leverage task-relevant training data, while a unified approach can integrate diverse training data to boost individual tasks. We address two major challenges in unified OV prediction. Firstly, unlike unified methods for fixed-set predictions, OV networks are usually trained with multi-modal data. Therefore, we propose a multi-modal, multi-scale and multi-task (MMM) decoding mechanism to better leverage multi-modal data. Secondly, because UOVN uses data from different tasks for training, there are significant domain and task gaps. We present a UOVN training mechanism to reduce such gaps. Experiments on four datasets demonstrate the effectiveness of our UOVN. |
None | |
A Review of Panoptic Segmentation for Mobile Mapping Point Clouds | 2023-08-17 | Show3D point cloud panoptic segmentation is the combined task to (i) assign each point to a semantic class and (ii) separate the points in each class into object instances. Recently there has been an increased interest in such comprehensive 3D scene understanding, building on the rapid advances of semantic segmentation due to the advent of deep 3D neural networks. Yet, to date there is very little work about panoptic segmentation of outdoor mobile-mapping data, and no systematic comparisons. The present paper tries to close that gap. It reviews the building blocks needed to assemble a panoptic segmentation pipeline and the related literature. Moreover, a modular pipeline is set up to perform comprehensive, systematic experiments to assess the state of panoptic segmentation in the context of street mapping. As a byproduct, we also provide the first public dataset for that task, by extending the NPM3D dataset to include instance labels. That dataset and our source code are publicly available. We discuss which adaptations are need to adapt current panoptic segmentation methods to outdoor scenes and large objects. Our study finds that for mobile mapping data, KPConv performs best but is slower, while PointNet++ is fastest but performs significantly worse. Sparse CNNs are in between. Regardless of the backbone, Instance segmentation by clustering embedding features is better than using shifted coordinates. |
None | |
Towards Deeply Unified Depth-aware Panoptic Segmentation with Bi-directional Guidance Learning | 2023-08-14 | ShowDepth-aware panoptic segmentation is an emerging topic in computer vision which combines semantic and geometric understanding for more robust scene interpretation. Recent works pursue unified frameworks to tackle this challenge but mostly still treat it as two individual learning tasks, which limits their potential for exploring cross-domain information. We propose a deeply unified framework for depth-aware panoptic segmentation, which performs joint segmentation and depth estimation both in a per-segment manner with identical object queries. To narrow the gap between the two tasks, we further design a geometric query enhancement method, which is able to integrate scene geometry into object queries using latent representations. In addition, we propose a bi-directional guidance learning approach to facilitate cross-task feature learning by taking advantage of their mutual relations. Our method sets the new state of the art for depth-aware panoptic segmentation on both Cityscapes-DVPS and SemKITTI-DVPS datasets. Moreover, our guidance learning approach is shown to deliver performance improvement even under incomplete supervision labels. |
to be...to be published in ICCV 2023 |
None |
LiDAR-Camera Panoptic Segmentation via Geometry-Consistent and Semantic-Aware Alignment | 2023-08-11 | Show3D panoptic segmentation is a challenging perception task that requires both semantic segmentation and instance segmentation. In this task, we notice that images could provide rich texture, color, and discriminative information, which can complement LiDAR data for evident performance improvement, but their fusion remains a challenging problem. To this end, we propose LCPS, the first LiDAR-Camera Panoptic Segmentation network. In our approach, we conduct LiDAR-Camera fusion in three stages: 1) an Asynchronous Compensation Pixel Alignment (ACPA) module that calibrates the coordinate misalignment caused by asynchronous problems between sensors; 2) a Semantic-Aware Region Alignment (SARA) module that extends the one-to-one point-pixel mapping to one-to-many semantic relations; 3) a Point-to-Voxel feature Propagation (PVP) module that integrates both geometric and semantic fusion information for the entire point cloud. Our fusion strategy improves about 6.9% PQ performance over the LiDAR-only baseline on NuScenes dataset. Extensive quantitative and qualitative experiments further demonstrate the effectiveness of our novel framework. The code will be released at https://github.com/zhangzw12319/lcps.git. |
Accep...Accepted as ICCV 2023 paper |
Code Link |
FoodSAM: Any Food Segmentation | 2023-08-11 | ShowIn this paper, we explore the zero-shot capability of the Segment Anything Model (SAM) for food image segmentation. To address the lack of class-specific information in SAM-generated masks, we propose a novel framework, called FoodSAM. This innovative approach integrates the coarse semantic mask with SAM-generated masks to enhance semantic segmentation quality. Besides, we recognize that the ingredients in food can be supposed as independent individuals, which motivated us to perform instance segmentation on food images. Furthermore, FoodSAM extends its zero-shot capability to encompass panoptic segmentation by incorporating an object detector, which renders FoodSAM to effectively capture non-food object information. Drawing inspiration from the recent success of promptable segmentation, we also extend FoodSAM to promptable segmentation, supporting various prompt variants. Consequently, FoodSAM emerges as an all-encompassing solution capable of segmenting food items at multiple levels of granularity. Remarkably, this pioneering framework stands as the first-ever work to achieve instance, panoptic, and promptable segmentation on food images. Extensive experiments demonstrate the feasibility and impressing performance of FoodSAM, validating SAM's potential as a prominent and influential tool within the domain of food image segmentation. We release our code at https://github.com/jamesjg/FoodSAM. |
Code ...Code is available at https://github.com/jamesjg/FoodSAM |
Code Link |
Syn-Mediverse: A Multimodal Synthetic Dataset for Intelligent Scene Understanding of Healthcare Facilities | 2023-08-06 | ShowSafety and efficiency are paramount in healthcare facilities where the lives of patients are at stake. Despite the adoption of robots to assist medical staff in challenging tasks such as complex surgeries, human expertise is still indispensable. The next generation of autonomous healthcare robots hinges on their capacity to perceive and understand their complex and frenetic environments. While deep learning models are increasingly used for this purpose, they require extensive annotated training data which is impractical to obtain in real-world healthcare settings. To bridge this gap, we present Syn-Mediverse, the first hyper-realistic multimodal synthetic dataset of diverse healthcare facilities. Syn-Mediverse contains over \num{48000} images from a simulated industry-standard optical tracking camera and provides more than 1.5M annotations spanning five different scene understanding tasks including depth estimation, object detection, semantic segmentation, instance segmentation, and panoptic segmentation. We demonstrate the complexity of our dataset by evaluating the performance on a broad range of state-of-the-art baselines for each task. To further advance research on scene understanding of healthcare facilities, along with the public dataset we provide an online evaluation benchmark available at \url{http://syn-mediverse.cs.uni-freiburg.de} |
None | |
RT-K-Net: Revisiting K-Net for Real-Time Panoptic Segmentation | 2023-08-04 | ShowPanoptic segmentation is one of the most challenging scene parsing tasks, combining the tasks of semantic segmentation and instance segmentation. While much progress has been made, few works focus on the real-time application of panoptic segmentation methods. In this paper, we revisit the recently introduced K-Net architecture. We propose vital changes to the architecture, training, and inference procedure, which massively decrease latency and improve performance. Our resulting RT-K-Net sets a new state-of-the-art performance for real-time panoptic segmentation methods on the Cityscapes dataset and shows promising results on the challenging Mapillary Vistas dataset. On Cityscapes, RT-K-Net reaches 60.2 % PQ with an average inference time of 32 ms for full resolution 1024x2048 pixel images on a single Titan RTX GPU. On Mapillary Vistas, RT-K-Net reaches 33.2 % PQ with an average inference time of 69 ms. Source code is available at https://github.com/markusschoen/RT-K-Net. |
Code Link | |
Point2Mask: Point-supervised Panoptic Segmentation via Optimal Transport | 2023-08-03 | ShowWeakly-supervised image segmentation has recently attracted increasing research attentions, aiming to avoid the expensive pixel-wise labeling. In this paper, we present an effective method, namely Point2Mask, to achieve high-quality panoptic prediction using only a single random point annotation per target for training. Specifically, we formulate the panoptic pseudo-mask generation as an Optimal Transport (OT) problem, where each ground-truth (gt) point label and pixel sample are defined as the label supplier and consumer, respectively. The transportation cost is calculated by the introduced task-oriented maps, which focus on the category-wise and instance-wise differences among the various thing and stuff targets. Furthermore, a centroid-based scheme is proposed to set the accurate unit number for each gt point supplier. Hence, the pseudo-mask generation is converted into finding the optimal transport plan at a globally minimal transportation cost, which can be solved via the Sinkhorn-Knopp Iteration. Experimental results on Pascal VOC and COCO demonstrate the promising performance of our proposed Point2Mask approach to point-supervised panoptic segmentation. Source code is available at: https://github.com/LiWentomng/Point2Mask. |
14 pa...14 pages, 8 figures, ICCV2023 |
Code Link |
Lowis3D: Language-Driven Open-World Instance-Level 3D Scene Understanding | 2023-08-01 | ShowOpen-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset. This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories. A key factor for the recent progress in 2D open-world perception is the availability of large-scale image-text pairs from the Internet, which cover a wide range of vocabulary concepts. However, this success is hard to replicate in 3D scenarios due to the scarcity of 3D-text pairs. To address this challenge, we propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for multi-view images of 3D scenes. This allows us to establish explicit associations between 3D shapes and semantic-rich captions. Moreover, to enhance the fine-grained visual-semantic representation learning from captions for object-level categorization, we design hierarchical point-caption association methods to learn semantic-aware embeddings that exploit the 3D geometry between 3D points and multi-view images. In addition, to tackle the localization challenge for novel classes in the open-world setting, we develop debiased instance localization, which involves training object grouping modules on unlabeled data using instance-level pseudo supervision. This significantly improves the generalization capabilities of instance grouping and thus the ability to accurately locate novel objects. We conduct extensive experiments on 3D semantic, instance, and panoptic segmentation tasks, covering indoor and outdoor scenes across three datasets. Our method outperforms baseline methods by a significant margin in semantic segmentation (e.g. 34.5%$\sim$65.3%), instance segmentation (e.g. 21.8%$\sim$54.0%) and panoptic segmentation (e.g. 14.7%$\sim$43.3%). Code will be available. |
submit to TPAMI | None |
Learning Dynamic Query Combinations for Transformer-based Object Detection and Segmentation | 2023-07-27 | ShowTransformer-based detection and segmentation methods use a list of learned detection queries to retrieve information from the transformer network and learn to predict the location and category of one specific object from each query. We empirically find that random convex combinations of the learned queries are still good for the corresponding models. We then propose to learn a convex combination with dynamic coefficients based on the high-level semantics of the image. The generated dynamic queries, named modulated queries, better capture the prior of object locations and categories in the different images. Equipped with our modulated queries, a wide range of DETR-based models achieve consistent and superior performance across multiple tasks including object detection, instance segmentation, panoptic segmentation, and video instance segmentation. |
12 pa...12 pages, 4 figures, ICML 2023, code is available at https://github.com/bytedance/DQ-Det |
Code Link |
UP-DETR: Unsupervised Pre-training for Object Detection with Transformers | 2023-07-24 | ShowDEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr. |
Accep...Accepted by TPAMI 2022 and CVPR 2021 |
Code Link |
Betrayed by Captions: Joint Caption Grounding and Generation for Open Vocabulary Instance Segmentation | 2023-07-23 | ShowIn this work, we focus on open vocabulary instance segmentation to expand a segmentation model to classify and segment instance-level novel categories. Previous approaches have relied on massive caption datasets and complex pipelines to establish one-to-one mappings between image regions and words in captions. However, such methods build noisy supervision by matching non-visible words to image regions, such as adjectives and verbs. Meanwhile, context words are also important for inferring the existence of novel objects as they show high inter-correlations with novel categories. To overcome these limitations, we devise a joint \textbf{Caption Grounding and Generation (CGG)} framework, which incorporates a novel grounding loss that only focuses on matching object nouns to improve learning efficiency. We also introduce a caption generation head that enables additional supervision and contextual modeling as a complementation to the grounding loss. Our analysis and results demonstrate that grounding and generation components complement each other, significantly enhancing the segmentation performance for novel classes. Experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS) demonstrate the superiority of the CGG. Specifically, CGG achieves a substantial improvement of 6.8% mAP for novel classes without extra data on the OVIS task and 15% PQ improvements for novel classes on the OSPS benchmark. |
ICCV-2023 | None |
On Point Affiliation in Feature Upsampling | 2023-07-17 | ShowWe introduce the notion of point affiliation into feature upsampling. By abstracting a feature map into non-overlapped semantic clusters formed by points of identical semantic meaning, feature upsampling can be viewed as point affiliation -- designating a semantic cluster for each upsampled point. In the framework of kernel-based dynamic upsampling, we show that an upsampled point can resort to its low-res decoder neighbors and high-res encoder point to reason the affiliation, conditioned on the mutual similarity between them. We therefore present a generic formulation for generating similarity-aware upsampling kernels and prove that such kernels encourage not only semantic smoothness but also boundary sharpness. This formulation constitutes a novel, lightweight, and universal upsampling solution, Similarity-Aware Point Affiliation (SAPA). We show its working mechanism via our preliminary designs with window-shape kernel. After probing the limitations of the designs on object detection, we reveal additional insights for upsampling, leading to SAPA with the dynamic kernel shape. Extensive experiments demonstrate that SAPA outperforms prior upsamplers and invites consistent performance improvements on a number of dense prediction tasks, including semantic segmentation, object detection, instance segmentation, panoptic segmentation, image matting, and depth estimation. Code is made available at: https://github.com/tiny-smart/sapa |
17 pa...17 pages. Extended version of NeurIPS 2022 paper "SAPA: Similarity-Aware Point Affiliation for Feature Upsampling" at arXiv:2209.12866v1. arXiv admin note: text overlap with arXiv:2209.12866 |
Code Link |
Open-vocabulary Panoptic Segmentation with Embedding Modulation | 2023-07-15 | ShowOpen-vocabulary image segmentation is attracting increasing attention due to its critical applications in the real world. Traditional closed-vocabulary segmentation methods are not able to characterize novel objects, whereas several recent open-vocabulary attempts obtain unsatisfactory results, i.e., notable performance reduction on the closed vocabulary and massive demand for extra data. To this end, we propose OPSNet, an omnipotent and data-efficient framework for Open-vocabulary Panoptic Segmentation. Specifically, the exquisitely designed Embedding Modulation module, together with several meticulous components, enables adequate embedding enhancement and information exchange between the segmentation model and the visual-linguistic well-aligned CLIP encoder, resulting in superior segmentation performance under both open- and closed-vocabulary settings with much fewer need of additional data. Extensive experimental evaluations are conducted across multiple datasets (e.g., COCO, ADE20K, Cityscapes, and PascalContext) under various circumstances, where the proposed OPSNet achieves state-of-the-art results, which demonstrates the effectiveness and generality of the proposed approach. The code and trained models will be made publicly available. |
ICCV2023 | None |
3D detection of roof sections from a single satellite image and application to LOD2-building reconstruction | 2023-07-11 | ShowReconstructing urban areas in 3D out of satellite raster images has been a long-standing and challenging goal of both academical and industrial research. The rare methods today achieving this objective at a Level Of Details |
None | |
kMaX-DeepLab: k-means Mask Transformer | 2023-07-10 | ShowThe rise of transformers in vision tasks not only advances network backbone designs, but also starts a brand-new page to achieve end-to-end image recognition (e.g., object detection and panoptic segmentation). Originated from Natural Language Processing (NLP), transformer architectures, consisting of self-attention and cross-attention, effectively learn long-range interactions between elements in a sequence. However, we observe that most existing transformer-based vision models simply borrow the idea from NLP, neglecting the crucial difference between languages and images, particularly the extremely large sequence length of spatially flattened pixel features. This subsequently impedes the learning in cross-attention between pixel features and object queries. In this paper, we rethink the relationship between pixels and object queries and propose to reformulate the cross-attention learning as a clustering process. Inspired by the traditional k-means clustering algorithm, we develop a k-means Mask Xformer (kMaX-DeepLab) for segmentation tasks, which not only improves the state-of-the-art, but also enjoys a simple and elegant design. As a result, our kMaX-DeepLab achieves a new state-of-the-art performance on COCO val set with 58.0% PQ, Cityscapes val set with 68.4% PQ, 44.0% AP, and 83.5% mIoU, and ADE20K val set with 50.9% PQ and 55.2% mIoU without test-time augmentation or external dataset. We hope our work can shed some light on designing transformers tailored for vision tasks. TensorFlow code and models are available at https://github.com/google-research/deeplab2 A PyTorch re-implementation is also available at https://github.com/bytedance/kmax-deeplab |
ECCV ...ECCV 2022. arXiv v2: add results on ADE20K. arXiv v3: fix appendix. v4: fix typo. v5: add PyTorch re-implementation. Codes and models are available at TensorFlow: https://github.com/google-research/deeplab2 PyTorch: https://github.com/bytedance/kmax-deeplab |
Code Link |
Towards accurate instance segmentation in large-scale LiDAR point clouds | 2023-07-06 | ShowPanoptic segmentation is the combination of semantic and instance segmentation: assign the points in a 3D point cloud to semantic categories and partition them into distinct object instances. It has many obvious applications for outdoor scene understanding, from city mapping to forest management. Existing methods struggle to segment nearby instances of the same semantic category, like adjacent pieces of street furniture or neighbouring trees, which limits their usability for inventory- or management-type applications that rely on object instances. This study explores the steps of the panoptic segmentation pipeline concerned with clustering points into object instances, with the goal to alleviate that bottleneck. We find that a carefully designed clustering strategy, which leverages multiple types of learned point embeddings, significantly improves instance segmentation. Experiments on the NPM3D urban mobile mapping dataset and the FOR-instance forest dataset demonstrate the effectiveness and versatility of the proposed strategy. |
None | |
InstaLoc: One-shot Global Lidar Localisation in Indoor Environments through Instance Learning | 2023-07-04 | ShowLocalization for autonomous robots in prior maps is crucial for their functionality. This paper offers a solution to this problem for indoor environments called InstaLoc, which operates on an individual lidar scan to localize it within a prior map. We draw on inspiration from how humans navigate and position themselves by recognizing the layout of distinctive objects and structures. Mimicking the human approach, InstaLoc identifies and matches object instances in the scene with those from a prior map. As far as we know, this is the first method to use panoptic segmentation directly inferring on 3D lidar scans for indoor localization. InstaLoc operates through two networks based on spatially sparse tensors to directly infer dense 3D lidar point clouds. The first network is a panoptic segmentation network that produces object instances and their semantic classes. The second smaller network produces a descriptor for each object instance. A consensus based matching algorithm then matches the instances to the prior map and estimates a six degrees of freedom (DoF) pose for the input cloud in the prior map. The significance of InstaLoc is that it has two efficient networks. It requires only one to two hours of training on a mobile GPU and runs in real-time at 1 Hz. Our method achieves between two and four times more detections when localizing, as compared to baseline methods, and achieves higher precision on these detections. |
None | |
ReMaX: Relaxing for Better Training on Efficient Panoptic Segmentation | 2023-06-29 | ShowThis paper presents a new mechanism to facilitate the training of mask transformers for efficient panoptic segmentation, democratizing its deployment. We observe that due to its high complexity, the training objective of panoptic segmentation will inevitably lead to much higher false positive penalization. Such unbalanced loss makes the training process of the end-to-end mask-transformer based architectures difficult, especially for efficient models. In this paper, we present ReMaX that adds relaxation to mask predictions and class predictions during training for panoptic segmentation. We demonstrate that via these simple relaxation techniques during training, our model can be consistently improved by a clear margin \textbf{without} any extra computational cost on inference. By combining our method with efficient backbones like MobileNetV3-Small, our method achieves new state-of-the-art results for efficient panoptic segmentation on COCO, ADE20K and Cityscapes. Code and pre-trained checkpoints will be available at \url{https://github.com/google-research/deeplab2}. |
Code Link | |
PANet: LiDAR Panoptic Segmentation with Sparse Instance Proposal and Aggregation | 2023-06-27 | ShowReliable LiDAR panoptic segmentation (LPS), including both semantic and instance segmentation, is vital for many robotic applications, such as autonomous driving. This work proposes a new LPS framework named PANet to eliminate the dependency on the offset branch and improve the performance on large objects, which are always over-segmented by clustering algorithms. Firstly, we propose a non-learning Sparse Instance Proposal (SIP) module with the ``sampling-shifting-grouping" scheme to directly group thing points into instances from the raw point cloud efficiently. More specifically, balanced point sampling is introduced to generate sparse seed points with more uniform point distribution over the distance range. And a shift module, termed bubble shifting, is proposed to shrink the seed points to the clustered centers. Then we utilize the connected component label algorithm to generate instance proposals. Furthermore, an instance aggregation module is devised to integrate potentially fragmented instances, improving the performance of the SIP module on large objects. Extensive experiments show that PANet achieves state-of-the-art performance among published works on the SemanticKITII validation and nuScenes validation for the panoptic segmentation task. |
8 pag...8 pages, 3 figures, IROS2023 |
None |
Improving Panoptic Segmentation for Nighttime or Low-Illumination Urban Driving Scenes | 2023-06-23 | ShowAutonomous vehicles and driving systems use scene parsing as an essential tool to understand the surrounding environment. Panoptic segmentation is a state-of-the-art technique which proves to be pivotal in this use case. Deep learning-based architectures have been utilized for effective and efficient Panoptic Segmentation in recent times. However, when it comes to adverse conditions like dark scenes with poor illumination or nighttime images, existing methods perform poorly in comparison to daytime images. One of the main factors for poor results is the lack of sufficient and accurately annotated nighttime images for urban driving scenes. In this work, we propose two new methods, first to improve the performance, and second to improve the robustness of panoptic segmentation in nighttime or poor illumination urban driving scenes using a domain translation approach. The proposed approach makes use of CycleGAN (Zhu et al., 2017) to translate daytime images with existing panoptic annotations into nighttime images, which are then utilized to retrain a Panoptic segmentation model to improve performance and robustness under poor illumination and nighttime conditions. In our experiments, Approach-1 demonstrates a significant improvement in the Panoptic segmentation performance on the converted Cityscapes dataset with more than +10% PQ, +12% RQ, +2% SQ, +14% mIoU and +10% AP50 absolute gain. Approach-2 demonstrates improved robustness to varied nighttime driving environments. Both the approaches are supported via comprehensive quantitative and qualitative analysis. |
12 pages, 6 figures | None |
Primitive Generation and Semantic-related Alignment for Universal Zero-Shot Segmentation | 2023-06-19 | ShowWe study universal zero-shot segmentation in this work to achieve panoptic, instance, and semantic segmentation for novel categories without any training samples. Such zero-shot segmentation ability relies on inter-class relationships in semantic space to transfer the visual knowledge learned from seen categories to unseen ones. Thus, it is desired to well bridge semantic-visual spaces and apply the semantic relationships to visual feature learning. We introduce a generative model to synthesize features for unseen categories, which links semantic and visual spaces as well as addresses the issue of lack of unseen training data. Furthermore, to mitigate the domain gap between semantic and visual spaces, firstly, we enhance the vanilla generator with learned primitives, each of which contains fine-grained attributes related to categories, and synthesize unseen features by selectively assembling these primitives. Secondly, we propose to disentangle the visual feature into the semantic-related part and the semantic-unrelated part that contains useful visual classification clues but is less relevant to semantic representation. The inter-class relationships of semantic-related visual features are then required to be aligned with those in semantic space, thereby transferring semantic knowledge to visual feature learning. The proposed approach achieves impressively state-of-the-art performance on zero-shot panoptic segmentation, instance segmentation, and semantic segmentation. Code is available at https://henghuiding.github.io/PADing/. |
CVPR ...CVPR 2023, Project Page: https://henghuiding.github.io/PADing/ |
Code Link |
PanoOcc: Unified Occupancy Representation for Camera-based 3D Panoptic Segmentation | 2023-06-16 | ShowComprehensive modeling of the surrounding 3D world is key to the success of autonomous driving. However, existing perception tasks like object detection, road structure segmentation, depth & elevation estimation, and open-set object localization each only focus on a small facet of the holistic 3D scene understanding task. This divide-and-conquer strategy simplifies the algorithm development procedure at the cost of losing an end-to-end unified solution to the problem. In this work, we address this limitation by studying camera-based 3D panoptic segmentation, aiming to achieve a unified occupancy representation for camera-only 3D scene understanding. To achieve this, we introduce a novel method called PanoOcc, which utilizes voxel queries to aggregate spatiotemporal information from multi-frame and multi-view images in a coarse-to-fine scheme, integrating feature learning and scene representation into a unified occupancy representation. We have conducted extensive ablation studies to verify the effectiveness and efficiency of the proposed method. Our approach achieves new state-of-the-art results for camera-based semantic segmentation and panoptic segmentation on the nuScenes dataset. Furthermore, our method can be easily extended to dense occupancy prediction and has shown promising performance on the Occ3D benchmark. The code will be released at https://github.com/Robertwyq/PanoOcc. |
technical report | Code Link |
Robust Double-Encoder Network for RGB-D Panoptic Segmentation | 2023-06-14 | ShowPerception is crucial for robots that act in real-world environments, as autonomous systems need to see and understand the world around them to act properly. Panoptic segmentation provides an interpretation of the scene by computing a pixelwise semantic label together with instance IDs. In this paper, we address panoptic segmentation using RGB-D data of indoor scenes. We propose a novel encoder-decoder neural network that processes RGB and depth separately through two encoders. The features of the individual encoders are progressively merged at different resolutions, such that the RGB features are enhanced using complementary depth information. We propose a novel merging approach called ResidualExcite, which reweighs each entry of the feature map according to its importance. With our double-encoder architecture, we are robust to missing cues. In particular, the same model can train and infer on RGB-D, RGB-only, and depth-only input data, without the need to train specialized models. We evaluate our method on publicly available datasets and show that our approach achieves superior results compared to other common approaches for panoptic segmentation. |
None | |
3rd Place Solution for PVUW Challenge 2023: Video Panoptic Segmentation | 2023-06-11 | ShowIn order to deal with the task of video panoptic segmentation in the wild, we propose a robust integrated video panoptic segmentation solution. In our solution, we regard the video panoptic segmentation task as a segmentation target querying task, represent both semantic and instance targets as a set of queries, and then combine these queries with video features extracted by neural networks to predict segmentation masks. In order to improve the learning accuracy and convergence speed of the solution, we add additional tasks of video semantic segmentation and video instance segmentation for joint training. In addition, we also add an additional image semantic segmentation model to further improve the performance of semantic classes. In addition, we also add some additional operations to improve the robustness of the model. Extensive experiments on the VIPSeg dataset show that the proposed solution achieves state-of-the-art performance with 50.04% VPQ on the VIPSeg test set, which is 3rd place on the video panoptic segmentation track of the PVUW Challenge 2023. |
3rd P...3rd Place Solution for PVUW Challenge 2023: Video Panoptic Segmentation |
None |
Efficient Multi-Task Scene Analysis with RGB-D Transformers | 2023-06-08 | ShowScene analysis is essential for enabling autonomous systems, such as mobile robots, to operate in real-world environments. However, obtaining a comprehensive understanding of the scene requires solving multiple tasks, such as panoptic segmentation, instance orientation estimation, and scene classification. Solving these tasks given limited computing and battery capabilities on mobile platforms is challenging. To address this challenge, we introduce an efficient multi-task scene analysis approach, called EMSAFormer, that uses an RGB-D Transformer-based encoder to simultaneously perform the aforementioned tasks. Our approach builds upon the previously published EMSANet. However, we show that the dual CNN-based encoder of EMSANet can be replaced with a single Transformer-based encoder. To achieve this, we investigate how information from both RGB and depth data can be effectively incorporated in a single encoder. To accelerate inference on robotic hardware, we provide a custom NVIDIA TensorRT extension enabling highly optimization for our EMSAFormer approach. Through extensive experiments on the commonly used indoor datasets NYUv2, SUNRGB-D, and ScanNet, we show that our approach achieves state-of-the-art performance while still enabling inference with up to 39.1 FPS on an NVIDIA Jetson AGX Orin 32 GB. |
To be...To be published in IEEE International Joint Conference on Neural Networks (IJCNN) 2023 |
None |
1st Place Solution for PVUW Challenge 2023: Video Panoptic Segmentation | 2023-06-08 | ShowVideo panoptic segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. We believe that the decoupling strategy proposed by DVIS enables more effective utilization of temporal information for both "thing" and "stuff" objects. In this report, we successfully validated the effectiveness of the decoupling strategy in video panoptic segmentation. Finally, our method achieved a VPQ score of 51.4 and 53.7 in the development and test phases, respectively, and ultimately ranked 1st in the VPS track of the 2nd PVUW Challenge. The code is available at https://github.com/zhang-tao-whu/DVIS |
Code Link | |
Open-Vocabulary Universal Image Segmentation with MaskCLIP | 2023-06-08 | ShowIn this paper, we tackle an emerging computer vision task, open-vocabulary universal image segmentation, that aims to perform semantic/instance/panoptic segmentation (background semantic labeling + foreground instance segmentation) for arbitrary categories of text-based descriptions in inference time. We first build a baseline method by directly adopting pre-trained CLIP models without finetuning or distillation. We then develop MaskCLIP, a Transformer-based approach with a MaskCLIP Visual Encoder, which is an encoder-only module that seamlessly integrates mask tokens with a pre-trained ViT CLIP model for semantic/instance segmentation and class prediction. MaskCLIP learns to efficiently and effectively utilize pre-trained partial/dense CLIP features within the MaskCLIP Visual Encoder that avoids the time-consuming student-teacher training process. MaskCLIP outperforms previous methods for semantic/instance/panoptic segmentation on ADE20K and PASCAL datasets. We show qualitative illustrations for MaskCLIP with online custom categories. Project website: https://maskclip.github.io. |
ICML ...ICML 2023 Camera Ready |
None |
DFormer: Diffusion-guided Transformer for Universal Image Segmentation | 2023-06-08 | ShowThis paper introduces an approach, named DFormer, for universal image segmentation. The proposed DFormer views universal image segmentation task as a denoising process using a diffusion model. DFormer first adds various levels of Gaussian noise to ground-truth masks, and then learns a model to predict denoising masks from corrupted masks. Specifically, we take deep pixel-level features along with the noisy masks as inputs to generate mask features and attention masks, employing diffusion-based decoder to perform mask prediction gradually. At inference, our DFormer directly predicts the masks and corresponding categories from a set of randomly-generated masks. Extensive experiments reveal the merits of our proposed contributions on different image segmentation tasks: panoptic segmentation, instance segmentation, and semantic segmentation. Our DFormer outperforms the recent diffusion-based panoptic segmentation method Pix2Seq-D with a gain of 3.6% on MS COCO val2017 set. Further, DFormer achieves promising semantic segmentation performance outperforming the recent diffusion-based method by 2.2% on ADE20K val set. Our source code and models will be publicly on https://github.com/cp3wan/DFormer |
Proje...Project website: https://github.com/cp3wan/DFormer |
Code Link |
CoDEPS: Online Continual Learning for Depth Estimation and Panoptic Segmentation | 2023-05-31 | ShowOperating a robot in the open world requires a high level of robustness with respect to previously unseen environments. Optimally, the robot is able to adapt by itself to new conditions without human supervision, e.g., automatically adjusting its perception system to changing lighting conditions. In this work, we address the task of continual learning for deep learning-based monocular depth estimation and panoptic segmentation in new environments in an online manner. We introduce CoDEPS to perform continual learning involving multiple real-world domains while mitigating catastrophic forgetting by leveraging experience replay. In particular, we propose a novel domain-mixing strategy to generate pseudo-labels to adapt panoptic segmentation. Furthermore, we explicitly address the limited storage capacity of robotic systems by leveraging sampling strategies for constructing a fixed-size replay buffer based on rare semantic class sampling and image diversity. We perform extensive evaluations of CoDEPS on various real-world datasets demonstrating that it successfully adapts to unseen environments without sacrificing performance on previous domains while achieving state-of-the-art results. The code of our work is publicly available at http://codeps.cs.uni-freiburg.de. |
Accep...Accepted for "Robotics: Science and Systems (RSS) 2023" |
None |
SimpSON: Simplifying Photo Cleanup with Single-Click Distracting Object Segmentation Network | 2023-05-28 | ShowIn photo editing, it is common practice to remove visual distractions to improve the overall image quality and highlight the primary subject. However, manually selecting and removing these small and dense distracting regions can be a laborious and time-consuming task. In this paper, we propose an interactive distractor selection method that is optimized to achieve the task with just a single click. Our method surpasses the precision and recall achieved by the traditional method of running panoptic segmentation and then selecting the segments containing the clicks. We also showcase how a transformer-based module can be used to identify more distracting regions similar to the user's click position. Our experiments demonstrate that the model can effectively and accurately segment unknown distracting objects interactively and in groups. By significantly simplifying the photo cleaning and retouching process, our proposed model provides inspiration for exploring rare object segmentation and group selection with a single click. |
CVPR ...CVPR 2023. Project link: https://simpson-cvpr23.github.io |
None |
Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions with Large Language Model | 2023-05-24 | ShowFoundation models have made significant strides in various applications, including text-to-image generation, panoptic segmentation, and natural language processing. This paper presents Instruct2Act, a framework that utilizes Large Language Models to map multi-modal instructions to sequential actions for robotic manipulation tasks. Specifically, Instruct2Act employs the LLM model to generate Python programs that constitute a comprehensive perception, planning, and action loop for robotic tasks. In the perception section, pre-defined APIs are used to access multiple foundation models where the Segment Anything Model (SAM) accurately locates candidate objects, and CLIP classifies them. In this way, the framework leverages the expertise of foundation models and robotic abilities to convert complex high-level instructions into precise policy codes. Our approach is adjustable and flexible in accommodating various instruction modalities and input types and catering to specific task demands. We validated the practicality and efficiency of our approach by assessing it on robotic tasks in different scenarios within tabletop manipulation domains. Furthermore, our zero-shot method outperformed many state-of-the-art learning-based policies in several tasks. The code for our proposed approach is available at https://github.com/OpenGVLab/Instruct2Act, serving as a robust benchmark for high-level robotic instruction tasks with assorted modality inputs. |
Code Link | |
SAD: Segment Any RGBD | 2023-05-23 | ShowThe Segment Anything Model (SAM) has demonstrated its effectiveness in segmenting any part of 2D RGB images. However, SAM exhibits a stronger emphasis on texture information while paying less attention to geometry information when segmenting RGB images. To address this limitation, we propose the Segment Any RGBD (SAD) model, which is specifically designed to extract geometry information directly from images. Inspired by the natural ability of humans to identify objects through the visualization of depth maps, SAD utilizes SAM to segment the rendered depth map, thus providing cues with enhanced geometry information and mitigating the issue of over-segmentation. We further include the open-vocabulary semantic segmentation in our framework, so that the 3D panoptic segmentation is fulfilled. The project is available on https://github.com/Jun-CEN/SegmentAnyRGBD. |
Techn...Technical report of Segment Any RGBD. Project url: https://github.com/Jun-CEN/SegmentAnyRGBD |
Code Link |
TarViS: A Unified Approach for Target-based Video Segmentation | 2023-05-10 | ShowThe general domain of video segmentation is currently fragmented into different tasks spanning multiple benchmarks. Despite rapid progress in the state-of-the-art, current methods are overwhelmingly task-specific and cannot conceptually generalize to other tasks. Inspired by recent approaches with multi-task capability, we propose TarViS: a novel, unified network architecture that can be applied to any task that requires segmenting a set of arbitrarily defined 'targets' in video. Our approach is flexible with respect to how tasks define these targets, since it models the latter as abstract 'queries' which are then used to predict pixel-precise target masks. A single TarViS model can be trained jointly on a collection of datasets spanning different tasks, and can hot-swap between tasks during inference without any task-specific retraining. To demonstrate its effectiveness, we apply TarViS to four different tasks, namely Video Instance Segmentation (VIS), Video Panoptic Segmentation (VPS), Video Object Segmentation (VOS) and Point Exemplar-guided Tracking (PET). Our unified, jointly trained model achieves state-of-the-art performance on 5/7 benchmarks spanning these four tasks, and competitive performance on the remaining two. Code and model weights are available at: https://github.com/Ali2500/TarViS |
Accep...Accepted to CVPR'23 (Highlight). Code is available at: https://github.com/Ali2500/TarViS |
Code Link |
Asynchronous Events-based Panoptic Segmentation using Graph Mixer Neural Network | 2023-05-05 | ShowIn the context of robotic grasping, object segmentation encounters several difficulties when faced with dynamic conditions such as real-time operation, occlusion, low lighting, motion blur, and object size variability. In response to these challenges, we propose the Graph Mixer Neural Network that includes a novel collaborative contextual mixing layer, applied to 3D event graphs formed on asynchronous events. The proposed layer is designed to spread spatiotemporal correlation within an event graph at four nearest neighbor levels parallelly. We evaluate the effectiveness of our proposed method on the Event-based Segmentation (ESD) Dataset, which includes five unique image degradation challenges, including occlusion, blur, brightness, trajectory, scale variance, and segmentation of known and unknown objects. The results show that our proposed approach outperforms state-of-the-art methods in terms of mean intersection over the union and pixel accuracy. Code available at: https://github.com/sanket0707/GNN-Mixer.git |
9 pages, 6 figures | Code Link |
Ensembling Instance and Semantic Segmentation for Panoptic Segmentation | 2023-04-20 | ShowWe demonstrate our solution for the 2019 COCO panoptic segmentation task. Our method first performs instance segmentation and semantic segmentation separately, then combines the two to generate panoptic segmentation results. To enhance the performance, we add several expert models of Mask R-CNN in instance segmentation to tackle the data imbalance problem in the training data; also HTC model is adopted yielding our best instance segmentation results. In semantic segmentation, we trained several models with various backbones and use an ensemble strategy which further boosts the segmentation results. In the end, we analyze various combinations of instance and semantic segmentation, and report on their performance for the final panoptic segmentation results. Our best model achieves |
None | |
Panoptic SwiftNet: Pyramidal Fusion for Real-time Panoptic Segmentation | 2023-04-18 | ShowDense panoptic prediction is a key ingredient in many existing applications such as autonomous driving, automated warehouses or remote sensing. Many of these applications require fast inference over large input resolutions on affordable or even embedded hardware. We propose to achieve this goal by trading off backbone capacity for multi-scale feature extraction. In comparison with contemporaneous approaches to panoptic segmentation, the main novelties of our method are efficient scale-equivariant feature extraction, cross-scale upsampling through pyramidal fusion and boundary-aware learning of pixel-to-instance assignment. The proposed method is very well suited for remote sensing imagery due to the huge number of pixels in typical city-wide and region-wide datasets. We present panoptic experiments on Cityscapes, Vistas, COCO and the BSB-Aerial dataset. Our models outperform the state of the art on the BSB-Aerial dataset while being able to process more than a hundred 1MPx images per second on a RTX3090 GPU with FP16 precision and TensorRT optimization. |
Code ...Code available at: https://github.com/jsaric/panoptic-swiftnet |
Code Link |
ProPanDL: A Modular Architecture for Uncertainty-Aware Panoptic Segmentation | 2023-04-17 | ShowWe introduce ProPanDL, a family of networks capable of uncertainty-aware panoptic segmentation. Unlike existing segmentation methods, ProPanDL is capable of estimating full probability distributions for both the semantic and spatial aspects of panoptic segmentation. We implement and evaluate ProPanDL variants capable of estimating both parametric (Variance Network) and parameter-free (SampleNet) distributions quantifying pixel-wise spatial uncertainty. We couple these approaches with two methods (Temperature Scaling and Evidential Deep Learning) for semantic uncertainty estimation. To evaluate the uncertainty-aware panoptic segmentation task, we address limitations with existing approaches by proposing new metrics that enable separate evaluation of spatial and semantic uncertainty. We additionally propose the use of the energy score, a proper scoring rule, for more robust evaluation of spatial output distributions. Using these metrics, we conduct an extensive evaluation of ProPanDL variants. Our results demonstrate that ProPanDL is capable of estimating well-calibrated and meaningful output distributions while still retaining strong performance on the base panoptic segmentation task. |
None | |
Intra-Batch Supervision for Panoptic Segmentation on High-Resolution Images | 2023-04-17 | ShowUnified panoptic segmentation methods are achieving state-of-the-art results on several datasets. To achieve these results on high-resolution datasets, these methods apply crop-based training. In this work, we find that, although crop-based training is advantageous in general, it also has a harmful side-effect. Specifically, it limits the ability of unified networks to discriminate between large object instances, causing them to make predictions that are confused between multiple instances. To solve this, we propose Intra-Batch Supervision (IBS), which improves a network's ability to discriminate between instances by introducing additional supervision using multiple images from the same batch. We show that, with our IBS, we successfully address the confusion problem and consistently improve the performance of unified networks. For the high-resolution Cityscapes and Mapillary Vistas datasets, we achieve improvements of up to +2.5 on the Panoptic Quality for thing classes, and even more considerable gains of up to +5.8 on both the pixel accuracy and pixel precision, which we identify as better metrics to capture the confusion problem. |
WACV ...WACV 2023. Project page and code: https://ddegeus.github.io/intra-batch-supervision/ |
Code Link |
Video-kMaX: A Simple Unified Approach for Online and Near-Online Video Panoptic Segmentation | 2023-04-10 | ShowVideo Panoptic Segmentation (VPS) aims to achieve comprehensive pixel-level scene understanding by segmenting all pixels and associating objects in a video. Current solutions can be categorized into online and near-online approaches. Evolving over the time, each category has its own specialized designs, making it nontrivial to adapt models between different categories. To alleviate the discrepancy, in this work, we propose a unified approach for online and near-online VPS. The meta architecture of the proposed Video-kMaX consists of two components: within clip segmenter (for clip-level segmentation) and cross-clip associater (for association beyond clips). We propose clip-kMaX (clip k-means mask transformer) and HiLA-MB (Hierarchical Location-Aware Memory Buffer) to instantiate the segmenter and associater, respectively. Our general formulation includes the online scenario as a special case by adopting clip length of one. Without bells and whistles, Video-kMaX sets a new state-of-the-art on KITTI-STEP and VIPSeg for video panoptic segmentation, and VSPW for video semantic segmentation. Code will be made publicly available. |
None | |
SegGPT: Segmenting Everything In Context | 2023-04-06 | ShowWe present SegGPT, a generalist model for segmenting everything in context. We unify various segmentation tasks into a generalist in-context learning framework that accommodates different kinds of segmentation data by transforming them into the same format of images. The training of SegGPT is formulated as an in-context coloring problem with random color mapping for each data sample. The objective is to accomplish diverse tasks according to the context, rather than relying on specific colors. After training, SegGPT can perform arbitrary segmentation tasks in images or videos via in-context inference, such as object instance, stuff, part, contour, and text. SegGPT is evaluated on a broad range of tasks, including few-shot semantic segmentation, video object segmentation, semantic segmentation, and panoptic segmentation. Our results show strong capabilities in segmenting in-domain and out-of-domain targets, either qualitatively or quantitatively. |
Code ...Code and Demo: https://github.com/baaivision/Painter |
Code Link |
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models | 2023-04-05 | ShowWe present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies pre-trained text-image diffusion and discriminative models to perform open-vocabulary panoptic segmentation. Text-to-image diffusion models have the remarkable ability to generate high-quality images with diverse open-vocabulary language descriptions. This demonstrates that their internal representation space is highly correlated with open concepts in the real world. Text-image discriminative models like CLIP, on the other hand, are good at classifying images into open-vocabulary labels. We leverage the frozen internal representations of both these models to perform panoptic segmentation of any category in the wild. Our approach outperforms the previous state of the art by significant margins on both open-vocabulary panoptic and semantic segmentation tasks. In particular, with COCO training only, our method achieves 23.4 PQ and 30.0 mIoU on the ADE20K dataset, with 8.3 PQ and 7.9 mIoU absolute improvement over the previous state of the art. We open-source our code and models at https://github.com/NVlabs/ODISE . |
CVPR ...CVPR 2023 Highlight. Project page and code: https://jerryxu.net/ODISE |
Code Link |
FinnWoodlands Dataset | 2023-04-03 | ShowWhile the availability of large and diverse datasets has contributed to significant breakthroughs in autonomous driving and indoor applications, forestry applications are still lagging behind and new forest datasets would most certainly contribute to achieving significant progress in the development of data-driven methods for forest-like scenarios. This paper introduces a forest dataset called \textit{FinnWoodlands}, which consists of RGB stereo images, point clouds, and sparse depth maps, as well as ground truth manual annotations for semantic, instance, and panoptic segmentation. \textit{FinnWoodlands} comprises a total of 4226 objects manually annotated, out of which 2562 objects (60.6%) correspond to tree trunks classified into three different instance categories, namely "Spruce Tree", "Birch Tree", and "Pine Tree". Besides tree trunks, we also annotated "Obstacles" objects as instances as well as the semantic stuff classes "Lake", "Ground", and "Track". Our dataset can be used in forestry applications where a holistic representation of the environment is relevant. We provide an initial benchmark using three models for instance segmentation, panoptic segmentation, and depth completion, and illustrate the challenges that such unstructured scenarios introduce. |
Scand...Scandinavian Conference on Image Analysis 2023 |
None |
Unified Perception: Efficient Depth-Aware Video Panoptic Segmentation with Minimal Annotation Costs | 2023-04-02 | ShowDepth-aware video panoptic segmentation is a promising approach to camera based scene understanding. However, the current state-of-the-art methods require costly video annotations and use a complex training pipeline compared to their image-based equivalents. In this paper, we present a new approach titled Unified Perception that achieves state-of-the-art performance without requiring video-based training. Our method employs a simple two-stage cascaded tracking algorithm that (re)uses object embeddings computed in an image-based network. Experimental results on the Cityscapes-DVPS dataset demonstrate that our method achieves an overall DVPQ of 57.1, surpassing state-of-the-art methods. Furthermore, we show that our tracking strategies are effective for long-term object association on KITTI-STEP, achieving an STQ of 59.1 which exceeded the performance of state-of-the-art methods that employ the same backbone network. Code is available at: https://tue-mps.github.io/unipercept |
Code Link | |
FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation | 2023-03-30 | ShowRecently, open-vocabulary learning has emerged to accomplish segmentation for arbitrary categories of text-based descriptions, which popularizes the segmentation system to more general-purpose application scenarios. However, existing methods devote to designing specialized architectures or parameters for specific segmentation tasks. These customized design paradigms lead to fragmentation between various segmentation tasks, thus hindering the uniformity of segmentation models. Hence in this paper, we propose FreeSeg, a generic framework to accomplish Unified, Universal and Open-Vocabulary Image Segmentation. FreeSeg optimizes an all-in-one network via one-shot training and employs the same architecture and parameters to handle diverse segmentation tasks seamlessly in the inference procedure. Additionally, adaptive prompt learning facilitates the unified model to capture task-aware and category-sensitive concepts, improving model robustness in multi-task and varied scenarios. Extensive experimental results demonstrate that FreeSeg establishes new state-of-the-art results in performance and generalization on three segmentation tasks, which outperforms the best task-specific architectures by a large margin: 5.5% mIoU on semantic segmentation, 17.6% mAP on instance segmentation, 20.1% PQ on panoptic segmentation for the unseen class on COCO. |
Accep...Accepted by CVPR 2023; camera-ready version |
None |
PVO: Panoptic Visual Odometry | 2023-03-26 | ShowWe present PVO, a novel panoptic visual odometry framework to achieve more comprehensive modeling of the scene motion, geometry, and panoptic segmentation information. Our PVO models visual odometry (VO) and video panoptic segmentation (VPS) in a unified view, which makes the two tasks mutually beneficial. Specifically, we introduce a panoptic update module into the VO Module with the guidance of image panoptic segmentation. This Panoptic-Enhanced VO Module can alleviate the impact of dynamic objects in the camera pose estimation with a panoptic-aware dynamic mask. On the other hand, the VO-Enhanced VPS Module also improves the segmentation accuracy by fusing the panoptic segmentation result of the current frame on the fly to the adjacent frames, using geometric information such as camera pose, depth, and optical flow obtained from the VO Module. These two modules contribute to each other through recurrent iterative optimization. Extensive experiments demonstrate that PVO outperforms state-of-the-art methods in both visual odometry and video panoptic segmentation tasks. |
CVPR2...CVPR2023 Project page: https://zju3dv.github.io/pvo/ code: https://github.com/zju3dv/PVO |
Code Link |
You Only Segment Once: Towards Real-Time Panoptic Segmentation | 2023-03-26 | ShowIn this paper, we propose YOSO, a real-time panoptic segmentation framework. YOSO predicts masks via dynamic convolutions between panoptic kernels and image feature maps, in which you only need to segment once for both instance and semantic segmentation tasks. To reduce the computational overhead, we design a feature pyramid aggregator for the feature map extraction, and a separable dynamic decoder for the panoptic kernel generation. The aggregator re-parameterizes interpolation-first modules in a convolution-first way, which significantly speeds up the pipeline without any additional costs. The decoder performs multi-head cross-attention via separable dynamic convolution for better efficiency and accuracy. To the best of our knowledge, YOSO is the first real-time panoptic segmentation framework that delivers competitive performance compared to state-of-the-art models. Specifically, YOSO achieves 46.4 PQ, 45.6 FPS on COCO; 52.5 PQ, 22.6 FPS on Cityscapes; 38.0 PQ, 35.4 FPS on ADE20K; and 34.1 PQ, 7.1 FPS on Mapillary Vistas. Code is available at https://github.com/hujiecpp/YOSO. |
CVPR 2023 | Code Link |
FlexiViT: One Model for All Patch Sizes | 2023-03-23 | ShowVision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision |
Code ...Code and pre-trained models available at https://github.com/google-research/big_vision. All authors made significant technical contributions. CVPR 2023 |
Code Link |
Position-Guided Point Cloud Panoptic Segmentation Transformer | 2023-03-23 | ShowDEtection TRansformer (DETR) started a trend that uses a group of learnable queries for unified visual perception. This work begins by applying this appealing paradigm to LiDAR-based point cloud segmentation and obtains a simple yet effective baseline. Although the naive adaptation obtains fair results, the instance segmentation performance is noticeably inferior to previous works. By diving into the details, we observe that instances in the sparse point clouds are relatively small to the whole scene and often have similar geometry but lack distinctive appearance for segmentation, which are rare in the image domain. Considering instances in 3D are more featured by their positional information, we emphasize their roles during the modeling and design a robust Mixed-parameterized Positional Embedding (MPE) to guide the segmentation process. It is embedded into backbone features and later guides the mask prediction and query update processes iteratively, leading to Position-Aware Segmentation (PA-Seg) and Masked Focal Attention (MFA). All these designs impel the queries to attend to specific regions and identify various instances. The method, named Position-guided Point cloud Panoptic segmentation transFormer (P3Former), outperforms previous state-of-the-art methods by 3.4% and 1.2% PQ on SemanticKITTI and nuScenes benchmark, respectively. The source code and models are available at https://github.com/SmartBot-PJLab/P3Former . |
Proje...Project page: https://github.com/SmartBot-PJLab/P3Former |
Code Link |
UniDAformer: Unified Domain Adaptive Panoptic Segmentation Transformer via Hierarchical Mask Calibration | 2023-03-22 | ShowDomain adaptive panoptic segmentation aims to mitigate data annotation challenge by leveraging off-the-shelf annotated data in one or multiple related source domains. However, existing studies employ two separate networks for instance segmentation and semantic segmentation which lead to excessive network parameters as well as complicated and computationally intensive training and inference processes. We design UniDAformer, a unified domain adaptive panoptic segmentation transformer that is simple but can achieve domain adaptive instance segmentation and semantic segmentation simultaneously within a single network. UniDAformer introduces Hierarchical Mask Calibration (HMC) that rectifies inaccurate predictions at the level of regions, superpixels and pixels via online self-training on the fly. It has three unique features: 1) it enables unified domain adaptive panoptic adaptation; 2) it mitigates false predictions and improves domain adaptive panoptic segmentation effectively; 3) it is end-to-end trainable with a much simpler training and inference pipeline. Extensive experiments over multiple public benchmarks show that UniDAformer achieves superior domain adaptive panoptic segmentation as compared with the state-of-the-art. |
Accepted to CVPR2023 | None |
LidarMultiNet: Towards a Unified Multi-Task Network for LiDAR Perception | 2023-03-21 | ShowLiDAR-based 3D object detection, semantic segmentation, and panoptic segmentation are usually implemented in specialized networks with distinctive architectures that are difficult to adapt to each other. This paper presents LidarMultiNet, a LiDAR-based multi-task network that unifies these three major LiDAR perception tasks. Among its many benefits, a multi-task network can reduce the overall cost by sharing weights and computation among multiple tasks. However, it typically underperforms compared to independently combined single-task models. The proposed LidarMultiNet aims to bridge the performance gap between the multi-task network and multiple single-task networks. At the core of LidarMultiNet is a strong 3D voxel-based encoder-decoder architecture with a Global Context Pooling (GCP) module extracting global contextual features from a LiDAR frame. Task-specific heads are added on top of the network to perform the three LiDAR perception tasks. More tasks can be implemented simply by adding new task-specific heads while introducing little additional cost. A second stage is also proposed to refine the first-stage segmentation and generate accurate panoptic segmentation results. LidarMultiNet is extensively tested on both Waymo Open Dataset and nuScenes dataset, demonstrating for the first time that major LiDAR perception tasks can be unified in a single strong network that is trained end-to-end and achieves state-of-the-art performance. Notably, LidarMultiNet reaches the official 1st place in the Waymo Open Dataset 3D semantic segmentation challenge 2022 with the highest mIoU and the best accuracy for most of the 22 classes on the test set, using only LiDAR points as input. It also sets the new state-of-the-art for a single model on the Waymo 3D object detection benchmark and three nuScenes benchmarks. |
Accep...Accepted to AAAI 2023 (Oral). Full-length paper extending our previous technical report of the 1st place solution of the 2022 Waymo Open Dataset 3D Semantic Segmentation challenge, including evaluations on 5 major benchmarks. arXiv admin note: text overlap with arXiv:2206.11428 |
None |
A Simple Framework for Open-Vocabulary Segmentation and Detection | 2023-03-20 | ShowWe present OpenSeeD, a simple Open-vocabulary Segmentation and Detection framework that jointly learns from different segmentation and detection datasets. To bridge the gap of vocabulary and annotation granularity, we first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them. This gives us reasonably good results compared with the counterparts trained on segmentation task only. To further reconcile them, we locate two discrepancies: |
A Sim...A Simple Framework for Open-Vocabulary Segmentation and Detection |
None |
SCPNet: Semantic Scene Completion on Point Cloud | 2023-03-13 | ShowTraining deep models for semantic scene completion (SSC) is challenging due to the sparse and incomplete input, a large quantity of objects of diverse scales as well as the inherent label noise for moving objects. To address the above-mentioned problems, we propose the following three solutions: 1) Redesigning the completion sub-network. We design a novel completion sub-network, which consists of several Multi-Path Blocks (MPBs) to aggregate multi-scale features and is free from the lossy downsampling operations. 2) Distilling rich knowledge from the multi-frame model. We design a novel knowledge distillation objective, dubbed Dense-to-Sparse Knowledge Distillation (DSKD). It transfers the dense, relation-based semantic knowledge from the multi-frame teacher to the single-frame student, significantly improving the representation learning of the single-frame model. 3) Completion label rectification. We propose a simple yet effective label rectification strategy, which uses off-the-shelf panoptic segmentation labels to remove the traces of dynamic objects in completion labels, greatly improving the performance of deep models especially for those moving objects. Extensive experiments are conducted in two public SSC benchmarks, i.e., SemanticKITTI and SemanticPOSS. Our SCPNet ranks 1st on SemanticKITTI semantic scene completion challenge and surpasses the competitive S3CNet by 7.2 mIoU. SCPNet also outperforms previous completion algorithms on the SemanticPOSS dataset. Besides, our method also achieves competitive results on SemanticKITTI semantic segmentation tasks, showing that knowledge learned in the scene completion is beneficial to the segmentation task. |
CVPR 2023 | None |
Towards Universal Vision-language Omni-supervised Segmentation | 2023-03-12 | ShowExisting open-world universal segmentation approaches usually leverage CLIP and pre-computed proposal masks to treat open-world segmentation tasks as proposal classification. However, 1) these works cannot handle universal segmentation in an end-to-end manner, and 2) the limited scale of panoptic datasets restricts the open-world segmentation ability on things classes. In this paper, we present Vision-Language Omni-Supervised Segmentation (VLOSS). VLOSS starts from a Mask2Former universal segmentation framework with CLIP text encoder. To improve the open-world segmentation ability, we leverage omni-supervised data (i.e., panoptic segmentation data, object detection data, and image-text pairs data) into training, thus enriching the open-world segmentation ability and achieving better segmentation accuracy. To better improve the training efficiency and fully release the power of omni-supervised data, we propose several advanced techniques, i.e., FPN-style encoder, switchable training technique, and positive classification loss. Benefiting from the end-to-end training manner with proposed techniques, VLOSS can be applied to various open-world segmentation tasks without further adaptation. Experimental results on different open-world panoptic and instance segmentation benchmarks demonstrate the effectiveness of VLOSS. Notably, with fewer parameters, our VLOSS with Swin-Tiny backbone surpasses MaskCLIP by ~2% in terms of mask AP on LVIS v1 dataset. |
None | |
Nerflets: Local Radiance Fields for Efficient Structure-Aware 3D Scene Representation from 2D Supervision | 2023-03-10 | ShowWe address efficient and structure-aware 3D scene representation from images. Nerflets are our key contribution -- a set of local neural radiance fields that together represent a scene. Each nerflet maintains its own spatial position, orientation, and extent, within which it contributes to panoptic, density, and radiance reconstructions. By leveraging only photometric and inferred panoptic image supervision, we can directly and jointly optimize the parameters of a set of nerflets so as to form a decomposed representation of the scene, where each object instance is represented by a group of nerflets. During experiments with indoor and outdoor environments, we find that nerflets: (1) fit and approximate the scene more efficiently than traditional global NeRFs, (2) allow the extraction of panoptic and photometric renderings from arbitrary views, and (3) enable tasks rare for NeRFs, such as 3D panoptic segmentation and interactive editing. |
accep...accepted by CVPR 2023 |
None |
ElC-OIS: Ellipsoidal Clustering for Open-World Instance Segmentation on LiDAR Data | 2023-03-08 | ShowOpen-world Instance Segmentation (OIS) is a challenging task that aims to accurately segment every object instance appearing in the current observation, regardless of whether these instances have been labeled in the training set. This is important for safety-critical applications such as robust autonomous navigation. In this paper, we present a flexible and effective OIS framework for LiDAR point cloud that can accurately segment both known and unknown instances (i.e., seen and unseen instance categories during training). It first identifies points belonging to known classes and removes the background by leveraging close-set panoptic segmentation networks. Then, we propose a novel ellipsoidal clustering method that is more adapted to the characteristic of LiDAR scans and allows precise segmentation of unknown instances. Furthermore, a diffuse searching method is proposed to handle the common over-segmentation problem presented in the known instances. With the combination of these techniques, we are able to achieve accurate segmentation for both known and unknown instances. We evaluated our method on the SemanticKITTI open-world LiDAR instance segmentation dataset. The experimental results suggest that it outperforms current state-of-the-art methods, especially with a 10.0% improvement in association quality. The source code of our method will be publicly available at https://github.com/nubot-nudt/ElC-OIS. |
Code Link |