Skip to content

Latest commit

 

History

History
35 lines (33 loc) · 43.5 KB

Image-SuperResolution.md

File metadata and controls

35 lines (33 loc) · 43.5 KB

Image SuperResolution

Title Date Abstract Comment CodeRepository
Adversarial Diffusion Compression for Real-World Image Super-Resolution 2025-03-09
Show

Real-world image super-resolution (Real-ISR) aims to reconstruct high-resolution images from low-resolution inputs degraded by complex, unknown processes. While many Stable Diffusion (SD)-based Real-ISR methods have achieved remarkable success, their slow, multi-step inference hinders practical deployment. Recent SD-based one-step networks like OSEDiff and S3Diff alleviate this issue but still incur high computational costs due to their reliance on large pretrained SD models. This paper proposes a novel Real-ISR method, AdcSR, by distilling the one-step diffusion network OSEDiff into a streamlined diffusion-GAN model under our Adversarial Diffusion Compression (ADC) framework. We meticulously examine the modules of OSEDiff, categorizing them into two types: (1) Removable (VAE encoder, prompt extractor, text encoder, etc.) and (2) Prunable (denoising UNet and VAE decoder). Since direct removal and pruning can degrade the model's generation capability, we pretrain our pruned VAE decoder to restore its ability to decode images and employ adversarial distillation to compensate for performance loss. This ADC-based diffusion-GAN hybrid design effectively reduces complexity by 73% in inference time, 78% in computation, and 74% in parameters, while preserving the model's generation capability. Experiments manifest that our proposed AdcSR achieves competitive recovery quality on both synthetic and real-world datasets, offering up to 9.3× speedup over previous one-step diffusion-based methods.

Accepted ...

Accepted by CVPR 2025

Code Link
Quantum Implicit Neural Representations 2024-09-01
Show

Implicit neural representations have emerged as a powerful paradigm to represent signals such as images and sounds. This approach aims to utilize neural networks to parameterize the implicit function of the signal. However, when representing implicit functions, traditional neural networks such as ReLU-based multilayer perceptrons face challenges in accurately modeling high-frequency components of signals. Recent research has begun to explore the use of Fourier Neural Networks (FNNs) to overcome this limitation. In this paper, we propose Quantum Implicit Representation Network (QIREN), a novel quantum generalization of FNNs. Furthermore, through theoretical analysis, we demonstrate that QIREN possesses a quantum advantage over classical FNNs. Lastly, we conducted experiments in signal representation, image superresolution, and image generation tasks to show the superior performance of QIREN compared to state-of-the-art (SOTA) models. Our work not only incorporates quantum advantages into implicit neural representations but also uncovers a promising application direction for Quantum Neural Networks.

This ...

This paper was accepted by icml 2024

None
Report on the AAPM Grand Challenge on deep generative modeling for learning medical image statistics 2024-05-03
Show

The findings of the 2023 AAPM Grand Challenge on Deep Generative Modeling for Learning Medical Image Statistics are reported in this Special Report. The goal of this challenge was to promote the development of deep generative models (DGMs) for medical imaging and to emphasize the need for their domain-relevant assessment via the analysis of relevant image statistics. As part of this Grand Challenge, a training dataset was developed based on 3D anthropomorphic breast phantoms from the VICTRE virtual imaging toolbox. A two-stage evaluation procedure consisting of a preliminary check for memorization and image quality (based on the Frechet Inception distance (FID)), and a second stage evaluating the reproducibility of image statistics corresponding to domain-relevant radiomic features was developed. A summary measure was employed to rank the submissions. Additional analyses of submissions was performed to assess DGM performance specific to individual feature families, and to identify various artifacts. 58 submissions from 12 unique users were received for this Challenge. The top-ranked submission employed a conditional latent diffusion model, whereas the joint runners-up employed a generative adversarial network, followed by another network for image superresolution. We observed that the overall ranking of the top 9 submissions according to our evaluation method (i) did not match the FID-based ranking, and (ii) differed with respect to individual feature families. Another important finding from our additional analyses was that different DGMs demonstrated similar kinds of artifacts. This Grand Challenge highlighted the need for domain-specific evaluation to further DGM design as well as deployment. It also demonstrated that the specification of a DGM may differ depending on its intended use.

None
Exploring the Effect of Sparse Recovery on the Quality of Image Superresolution 2023-08-04
Show

Dictionary learning can be used for image superresolution by learning a pair of coupled dictionaries of image patches from high-resolution and low-resolution image pairs such that the corresponding pairs share the same sparse vector when represented by the coupled dictionaries. These dictionaries then can be used to to reconstruct the corresponding high-resolution patches from low-resolution input images based on sparse recovery. The idea is to recover the shared sparse vector using the low-resolution dictionary and then multiply it by the high-resolution dictionary to recover the corresponding high-resolution image patch. In this work, we study the effect of the sparse recovery algorithm that we use on the quality of the reconstructed images. We offer empirical experiments to search for the best sparse recovery algorithm that can be used for this purpose.

None
OPDN: Omnidirectional Position-aware Deformable Network for Omnidirectional Image Super-Resolution 2023-04-26
Show

360{\deg} omnidirectional images have gained research attention due to their immersive and interactive experience, particularly in AR/VR applications. However, they suffer from lower angular resolution due to being captured by fisheye lenses with the same sensor size for capturing planar images. To solve the above issues, we propose a two-stage framework for 360{\deg} omnidirectional image superresolution. The first stage employs two branches: model A, which incorporates omnidirectional position-aware deformable blocks (OPDB) and Fourier upsampling, and model B, which adds a spatial frequency fusion module (SFF) to model A. Model A aims to enhance the feature extraction ability of 360{\deg} image positional information, while Model B further focuses on the high-frequency information of 360{\deg} images. The second stage performs same-resolution enhancement based on the structure of model A with a pixel unshuffle operation. In addition, we collected data from YouTube to improve the fitting ability of the transformer, and created pseudo low-resolution images using a degradation network. Our proposed method achieves superior performance and wins the NTIRE 2023 challenge of 360{\deg} omnidirectional image super-resolution.

Accep...

Accepted to CVPRW 2023

None
Improving trajectory calculations using deep learning inspired single image superresolution 2022-06-07
Show

Lagrangian trajectory or particle dispersion models as well as semi-Lagrangian advection schemes require meteorological data such as wind, temperature and geopotential at the exact spatio-temporal locations of the particles that move independently from a regular grid. Traditionally, this high-resolution data has been obtained by interpolating the meteorological parameters from the gridded data of a meteorological model or reanalysis, e.g. using linear interpolation in space and time. However, interpolation errors are a large source of error for these models. Reducing them requires meteorological input fields with high space and time resolution, which may not always be available and can cause severe data storage and transfer problems. Here, we interpret this problem as a single image superresolution task. We interpret meteorological fields available at their native resolution as low-resolution images and train deep neural networks to up-scale them to higher resolution, thereby providing more accurate data for Lagrangian models. We train various versions of the state-of-the-art Enhanced Deep Residual Networks for Superresolution on low-resolution ERA5 reanalysis data with the goal to up-scale these data to arbitrary spatial resolution. We show that the resulting up-scaled wind fields have root-mean-squared errors half the size of the winds obtained with linear spatial interpolation at acceptable computational inference costs. In a test setup using the Lagrangian particle dispersion model FLEXPART and reduced-resolution wind fields, we demonstrate that absolute horizontal transport deviations of calculated trajectories from "ground-truth" trajectories calculated with undegraded 0.5{\deg} winds are reduced by at least 49.5% (21.8%) after 48 hours relative to trajectories using linear interpolation of the wind data when training on 2{\deg} to 1{\deg} (4{\deg} to 2{\deg}) resolution data.

None
Image Superresolution using Scale-Recurrent Dense Network 2022-01-28
Show

Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR). The boost in performance can be attributed to the presence of residual or dense connections within the intermediate layers of these networks. The efficient combination of such connections can reduce the number of parameters drastically while maintaining the restoration quality. In this paper, we propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs)) that allow extraction of abundant local features from the image. Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches. To further improve the performance of our network, we employ multiple residual connections in intermediate layers (referred to as Multi-Residual Dense Blocks), which improves gradient propagation in existing layers. Recent works have discovered that conventional loss functions can guide a network to produce results which have high PSNRs but are perceptually inferior. We mitigate this issue by utilizing a Generative Adversarial Network (GAN) based framework and deep feature (VGG) losses to train our network. We experimentally demonstrate that different weighted combinations of the VGG loss and the adversarial loss enable our network outputs to traverse along the perception-distortion curve. The proposed networks perform favorably against existing methods, both perceptually and objectively (PSNR-based) with fewer parameters.

None
DSRGAN: Detail Prior-Assisted Perceptual Single Image Super-Resolution via Generative Adversarial Networks 2021-12-25
Show

The generative adversarial network (GAN) is successfully applied to study the perceptual single image superresolution (SISR). However, the GAN often tends to generate images with high frequency details being inconsistent with the real ones. Inspired by conventional detail enhancement algorithms, we propose a novel prior knowledge, the detail prior, to assist the GAN in alleviating this problem and restoring more realistic details. The proposed method, named DSRGAN, includes a well designed detail extraction algorithm to capture the most important high frequency information from images. Then, two discriminators are utilized for supervision on image-domain and detail-domain restorations, respectively. The DSRGAN merges the restored detail into the final output via a detail enhancement manner. The special design of DSRGAN takes advantages from both the model-based conventional algorithm and the data-driven deep learning network. Experimental results demonstrate that the DSRGAN outperforms the state-of-the-art SISR methods on perceptual metrics and achieves comparable results in terms of fidelity metrics simultaneously. Following the DSRGAN, it is feasible to incorporate other conventional image processing algorithms into a deep learning network to form a model-based deep SISR.

None
Wasserstein Patch Prior for Image Superresolution 2021-12-17
Show

In this paper, we introduce a Wasserstein patch prior for superresolution of two- and three-dimensional images. Here, we assume that we have given (additionally to the low resolution observation) a reference image which has a similar patch distribution as the ground truth of the reconstruction. This assumption is e.g. fulfilled when working with texture images or material data. Then, the proposed regularizer penalizes the $W_2$-distance of the patch distribution of the reconstruction to the patch distribution of some reference image at different scales. We demonstrate the performance of the proposed regularizer by two- and three-dimensional numerical examples.

None
Pyramidal Dense Attention Networks for Lightweight Image Super-Resolution 2021-06-13
Show

Recently, deep convolutional neural network methods have achieved an excellent performance in image superresolution (SR), but they can not be easily applied to embedded devices due to large memory cost. To solve this problem, we propose a pyramidal dense attention network (PDAN) for lightweight image super-resolution in this paper. In our method, the proposed pyramidal dense learning can gradually increase the width of the densely connected layer inside a pyramidal dense block to extract deep features efficiently. Meanwhile, the adaptive group convolution that the number of groups grows linearly with dense convolutional layers is introduced to relieve the parameter explosion. Besides, we also present a novel joint attention to capture cross-dimension interaction between the spatial dimensions and channel dimension in an efficient way for providing rich discriminative feature representations. Extensive experimental results show that our method achieves superior performance in comparison with the state-of-the-art lightweight SR methods.

None
Real Image Super Resolution Via Heterogeneous Model Ensemble using GP-NAS 2021-01-22
Show

With advancement in deep neural network (DNN), recent state-of-the-art (SOTA) image superresolution (SR) methods have achieved impressive performance using deep residual network with dense skip connections. While these models perform well on benchmark dataset where low-resolution (LR) images are constructed from high-resolution (HR) references with known blur kernel, real image SR is more challenging when both images in the LR-HR pair are collected from real cameras. Based on existing dense residual networks, a Gaussian process based neural architecture search (GP-NAS) scheme is utilized to find candidate network architectures using a large search space by varying the number of dense residual blocks, the block size and the number of features. A suite of heterogeneous models with diverse network structure and hyperparameter are selected for model-ensemble to achieve outstanding performance in real image SR. The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.

This ...

This is a manuscript related to our algorithm that won the ECCV AIM 2020 Real Image Super-Resolution Challenge

None
Single Image Super-resolution with a Switch Guided Hybrid Network for Satellite Images 2020-11-29
Show

The major drawbacks with Satellite Images are low resolution, Low resolution makes it difficult to identify the objects present in Satellite images. We have experimented with several deep models available for Single Image Superresolution on the SpaceNet dataset and have evaluated the performance of each of them on the satellite image data. We will dive into the recent evolution of the deep models in the context of SISR over the past few years and will present a comparative study between these models. The entire Satellite image of an area is divided into equal-sized patches. Each patch will be used independently for training. These patches will differ in nature. Say, for example, the patches over urban areas have non-homogeneous backgrounds because of different types of objects like vehicles, buildings, roads, etc. On the other hand, patches over jungles will be more homogeneous in nature. Hence, different deep models will fit on different kinds of patches. In this study, we will try to explore this further with the help of a Switching Convolution Network. The idea is to train a switch classifier that will automatically classify a patch into one category of models best suited for it.

None
Sub-Pixel Back-Projection Network For Lightweight Single Image Super-Resolution 2020-08-03
Show

Convolutional neural network (CNN)-based methods have achieved great success for single-image superresolution (SISR). However, most models attempt to improve reconstruction accuracy while increasing the requirement of number of model parameters. To tackle this problem, in this paper, we study reducing the number of parameters and computational cost of CNN-based SISR methods while maintaining the accuracy of super-resolution reconstruction performance. To this end, we introduce a novel network architecture for SISR, which strikes a good trade-off between reconstruction quality and low computational complexity. Specifically, we propose an iterative back-projection architecture using sub-pixel convolution instead of deconvolution layers. We evaluate the performance of computational and reconstruction accuracy for our proposed model with extensive quantitative and qualitative evaluations. Experimental results reveal that our proposed method uses fewer parameters and reduces the computational cost while maintaining reconstruction accuracy against state-of-the-art SISR methods over well-known four SR benchmark datasets. Code is available at "https://github.com/supratikbanerjee/SubPixel-BackProjection_SuperResolution".

To ap...

To appear in IMVIP 2020

Code Link
Nested Scale Editing for Conditional Image Synthesis 2020-06-03
Show

We propose an image synthesis approach that provides stratified navigation in the latent code space. With a tiny amount of partial or very low-resolution image, our approach can consistently out-perform state-of-the-art counterparts in terms of generating the closest sampled image to the ground truth. We achieve this through scale-independent editing while expanding scale-specific diversity. Scale-independence is achieved with a nested scale disentanglement loss. Scale-specific diversity is created by incorporating a progressive diversification constraint. We introduce semantic persistency across the scales by sharing common latent codes. Together they provide better control of the image synthesis process. We evaluate the effectiveness of our proposed approach through various tasks, including image outpainting, image superresolution, and cross-domain image translation.

None
When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey 2020-05-25
Show

With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems.

None
Blind Quality Assessment for Image Superresolution Using Deep Two-Stream Convolutional Networks 2020-04-13
Show

Numerous image superresolution (SR) algorithms have been proposed for reconstructing high-resolution (HR) images from input images with lower spatial resolutions. However, effectively evaluating the perceptual quality of SR images remains a challenging research problem. In this paper, we propose a no-reference/blind deep neural network-based SR image quality assessor (DeepSRQ). To learn more discriminative feature representations of various distorted SR images, the proposed DeepSRQ is a two-stream convolutional network including two subcomponents for distorted structure and texture SR images. Different from traditional image distortions, the artifacts of SR images cause both image structure and texture quality degradation. Therefore, we choose the two-stream scheme that captures different properties of SR inputs instead of directly learning features from one image stream. Considering the human visual system (HVS) characteristics, the structure stream focuses on extracting features in structural degradations, while the texture stream focuses on the change in textural distributions. In addition, to augment the training data and ensure the category balance, we propose a stride-based adaptive cropping approach for further improvement. Experimental results on three publicly available SR image quality databases demonstrate the effectiveness and generalization ability of our proposed DeepSRQ method compared with state-of-the-art image quality assessment algorithms.

None
Reducing the Representation Error of GAN Image Priors Using the Deep Decoder 2020-01-23
Show

Generative models, such as GANs, learn an explicit low-dimensional representation of a particular class of images, and so they may be used as natural image priors for solving inverse problems such as image restoration and compressive sensing. GAN priors have demonstrated impressive performance on these tasks, but they can exhibit substantial representation error for both in-distribution and out-of-distribution images, because of the mismatch between the learned, approximate image distribution and the data generating distribution. In this paper, we demonstrate a method for reducing the representation error of GAN priors by modeling images as the linear combination of a GAN prior with a Deep Decoder. The deep decoder is an underparameterized and most importantly unlearned natural signal model similar to the Deep Image Prior. No knowledge of the specific inverse problem is needed in the training of the GAN underlying our method. For compressive sensing and image superresolution, our hybrid model exhibits consistently higher PSNRs than both the GAN priors and Deep Decoder separately, both on in-distribution and out-of-distribution images. This model provides a method for extensibly and cheaply leveraging both the benefits of learned and unlearned image recovery priors in inverse problems.

None
Attention-Aware Linear Depthwise Convolution for Single Image Super-Resolution 2019-11-29
Show

Although deep convolutional neural networks (CNNs) have obtained outstanding performance in image superresolution (SR), their computational cost increases geometrically as CNN models get deeper and wider. Meanwhile, the features of intermediate layers are treated equally across the channel, thus hindering the representational capability of CNNs. In this paper, we propose an attention-aware linear depthwise network to address the problems for single image SR, named ALDNet. Specifically, linear depthwise convolution allows CNN-based SR models to preserve useful information for reconstructing a super-resolved image while reducing computational burden. Furthermore, we design an attention-aware branch that enhances the representation ability of depthwise convolution layers by making full use of depthwise filter interdependency. Experiments on publicly available benchmark datasets show that ALDNet achieves superior performance to traditional depthwise separable convolutions in terms of quantitative measurements and visual quality.

9 pages, 8 figures None
Toward Real-World Single Image Super-Resolution: A New Benchmark and A New Model 2019-04-01
Show

Most of the existing learning-based single image superresolution (SISR) methods are trained and evaluated on simulated datasets, where the low-resolution (LR) images are generated by applying a simple and uniform degradation (i.e., bicubic downsampling) to their high-resolution (HR) counterparts. However, the degradations in real-world LR images are far more complicated. As a consequence, the SISR models trained on simulated data become less effective when applied to practical scenarios. In this paper, we build a real-world super-resolution (RealSR) dataset where paired LR-HR images on the same scene are captured by adjusting the focal length of a digital camera. An image registration algorithm is developed to progressively align the image pairs at different resolutions. Considering that the degradation kernels are naturally non-uniform in our dataset, we present a Laplacian pyramid based kernel prediction network (LP-KPN), which efficiently learns per-pixel kernels to recover the HR image. Our extensive experiments demonstrate that SISR models trained on our RealSR dataset deliver better visual quality with sharper edges and finer textures on real-world scenes than those trained on simulated datasets. Though our RealSR dataset is built by using only two cameras (Canon 5D3 and Nikon D810), the trained model generalizes well to other camera devices such as Sony a7II and mobile phones.

None
Deep Laplacian Pyramid Network for Text Images Super-Resolution 2018-11-26
Show

Convolutional neural networks have recently demonstrated interesting results for single image super-resolution. However, these networks were trained to deal with super-resolution problem on natural images. In this paper, we adapt a deep network, which was proposed for natural images superresolution, to single text image super-resolution. To evaluate the network, we present our database for single text image super-resolution. Moreover, we propose to combine Gradient Difference Loss (GDL) with L1/L2 loss to enhance edges in super-resolution image. Quantitative and qualitative evaluations on our dataset show that adding the GDL improves the super-resolution results.

paper, 6 pages None
Image Super-Resolution via Deterministic-Stochastic Synthesis and Local Statistical Rectification 2018-09-18
Show

Single image superresolution has been a popular research topic in the last two decades and has recently received a new wave of interest due to deep neural networks. In this paper, we approach this problem from a different perspective. With respect to a downsampled low resolution image, we model a high resolution image as a combination of two components, a deterministic component and a stochastic component. The deterministic component can be recovered from the low-frequency signals in the downsampled image. The stochastic component, on the other hand, contains the signals that have little correlation with the low resolution image. We adopt two complementary methods for generating these two components. While generative adversarial networks are used for the stochastic component, deterministic component reconstruction is formulated as a regression problem solved using deep neural networks. Since the deterministic component exhibits clearer local orientations, we design novel loss functions tailored for such properties for training the deep regression network. These two methods are first applied to the entire input image to produce two distinct high-resolution images. Afterwards, these two images are fused together using another deep neural network that also performs local statistical rectification, which tries to make the local statistics of the fused image match the same local statistics of the groundtruth image. Quantitative results and a user study indicate that the proposed method outperforms existing state-of-the-art algorithms with a clear margin.

to ap...

to appear in SIGGRAPH Asia 2018

None
Deep MR Image Super-Resolution Using Structural Priors 2018-09-10
Show

High resolution magnetic resonance (MR) images are desired for accurate diagnostics. In practice, image resolution is restricted by factors like hardware, cost and processing constraints. Recently, deep learning methods have been shown to produce compelling state of the art results for image super-resolution. Paying particular attention to desired hi-resolution MR image structure, we propose a new regularized network that exploits image priors, namely a low-rank structure and a sharpness prior to enhance deep MR image superresolution. Our contributions are then incorporating these priors in an analytically tractable fashion in the learning of a convolutional neural network (CNN) that accomplishes the super-resolution task. This is particularly challenging for the low rank prior, since the rank is not a differentiable function of the image matrix (and hence the network parameters), an issue we address by pursuing differentiable approximations of the rank. Sharpness is emphasized by the variance of the Laplacian which we show can be implemented by a fixed {\em feedback} layer at the output of the network. Experiments performed on two publicly available MR brain image databases exhibit promising results particularly when training imagery is limited.

Accep...

Accepted to IEEE ICIP 2018

None
Superresolution of Noisy Remotely Sensed Images Through Directional Representations 2018-09-04
Show

We develop an algorithm for single-image superresolution of remotely sensed data, based on the discrete shearlet transform. The shearlet transform extracts directional features of signals, and is known to provide near-optimally sparse representations for a broad class of images. This often leads to superior performance in edge detection and image representation when compared to isotropic frames. We justify the use of shearlets mathematically, before presenting a denoising single-image superresolution algorithm that combines the shearlet transform with sparse mixing estimators (SME). Our algorithm is compared with a variety of single-image superresolution methods, including wavelet SME superresolution. Our numerical results demonstrate competitive performance in terms of PSNR and SSIM.

5 pag...

5 pages (double column). IEEE copyright added

None
Recurrent Generative Adversarial Networks for Proximal Learning and Automated Compressive Image Recovery 2017-11-27
Show

Recovering images from undersampled linear measurements typically leads to an ill-posed linear inverse problem, that asks for proper statistical priors. Building effective priors is however challenged by the low train and test overhead dictated by real-time tasks; and the need for retrieving visually "plausible" and physically "feasible" images with minimal hallucination. To cope with these challenges, we design a cascaded network architecture that unrolls the proximal gradient iterations by permeating benefits from generative residual networks (ResNet) to modeling the proximal operator. A mixture of pixel-wise and perceptual costs is then deployed to train proximals. The overall architecture resembles back-and-forth projection onto the intersection of feasible and plausible images. Extensive computational experiments are examined for a global task of reconstructing MR images of pediatric patients, and a more local task of superresolving CelebA faces, that are insightful to design efficient architectures. Our observations indicate that for MRI reconstruction, a recurrent ResNet with a single residual block effectively learns the proximal. This simple architecture appears to significantly outperform the alternative deep ResNet architecture by 2dB SNR, and the conventional compressed-sensing MRI by 4dB SNR with 100x faster inference. For image superresolution, our preliminary results indicate that modeling the denoising proximal demands deep ResNets.

11 pages, 11 figures None
Graphcut Texture Synthesis for Single-Image Superresolution 2017-06-21
Show

Texture synthesis has proven successful at imitating a wide variety of textures. Adding additional constraints (in the form of a low-resolution version of the texture to be synthesized) makes it possible to use texture synthesis methods for texture superresolution.

NYU M...

NYU Master's Thesis from 2006

None
A convex formulation for hyperspectral image superresolution via subspace-based regularization 2014-11-14
Show

Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the non-quadratic and non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally "live" in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of experiments with simulated and real-life data.

IEEE ...

IEEE Trans. Geosci. Remote Sens., to be published

None
Hyperspectral image superresolution: An edge-preserving convex formulation 2014-06-10
Show

Hyperspectral remote sensing images (HSIs) are characterized by having a low spatial resolution and a high spectral resolution, whereas multispectral images (MSIs) are characterized by low spectral and high spatial resolutions. These complementary characteristics have stimulated active research in the inference of images with high spatial and spectral resolutions from HSI-MSI pairs. In this paper, we formulate this data fusion problem as the minimization of a convex objective function containing two data-fitting terms and an edge-preserving regularizer. The data-fitting terms are quadratic and account for blur, different spatial resolutions, and additive noise; the regularizer, a form of vector Total Variation, promotes aligned discontinuities across the reconstructed hyperspectral bands. The optimization described above is rather hard, owing to its non-diagonalizable linear operators, to the non-quadratic and non-smooth nature of the regularizer, and to the very large size of the image to be inferred. We tackle these difficulties by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA)---an instance of the Alternating Direction Method of Multipliers (ADMM)---to this optimization problem. By using a convenient variable splitting and by exploiting the fact that HSIs generally "live" in a low-dimensional subspace, we obtain an effective algorithm that yields state-of-the-art results, as illustrated by experiments.

Inter...

International Conference on Image Processing (ICIP), 2014 - accepted

None
Ensemble Sparse Models for Image Analysis 2013-02-27
Show

Sparse representations with learned dictionaries have been successful in several image analysis applications. In this paper, we propose and analyze the framework of ensemble sparse models, and demonstrate their utility in image restoration and unsupervised clustering. The proposed ensemble model approximates the data as a linear combination of approximations from multiple \textit{weak} sparse models. Theoretical analysis of the ensemble model reveals that even in the worst-case, the ensemble can perform better than any of its constituent individual models. The dictionaries corresponding to the individual sparse models are obtained using either random example selection or boosted approaches. Boosted approaches learn one dictionary per round such that the dictionary learned in a particular round is optimized for the training examples having high reconstruction error in the previous round. Results with compressed recovery show that the ensemble representations lead to a better performance compared to using a single dictionary obtained with the conventional alternating minimization approach. The proposed ensemble models are also used for single image superresolution, and we show that they perform comparably to the recent approaches. In unsupervised clustering, experiments show that the proposed model performs better than baseline approaches in several standard datasets.

None
Accurate and robust image superresolution by neural processing of local image representations 2005-10-03
Show

Image superresolution involves the processing of an image sequence to generate a still image with higher resolution. Classical approaches, such as bayesian MAP methods, require iterative minimization procedures, with high computational costs. Recently, the authors proposed a method to tackle this problem, based on the use of a hybrid MLP-PNN architecture. In this paper, we present a novel superresolution method, based on an evolution of this concept, to incorporate the use of local image models. A neural processing stage receives as input the value of model coefficients on local windows. The data dimensionality is firstly reduced by application of PCA. An MLP, trained on synthetic sequences with various amounts of noise, estimates the high-resolution image data. The effect of varying the dimension of the network input space is examined, showing a complex, structured behavior. Quantitative results are presented showing the accuracy and robustness of the proposed method.

6 pag...

6 pages with 3 figures. ICANN 2005

None
A hybrid MLP-PNN architecture for fast image superresolution 2005-03-22
Show

Image superresolution methods process an input image sequence of a scene to obtain a still image with increased resolution. Classical approaches to this problem involve complex iterative minimization procedures, typically with high computational costs. In this paper is proposed a novel algorithm for super-resolution that enables a substantial decrease in computer load. First, a probabilistic neural network architecture is used to perform a scattered-point interpolation of the image sequence data. The network kernel function is optimally determined for this problem by a multi-layer perceptron trained on synthetic data. Network parameters dependence on sequence noise level is quantitatively analyzed. This super-sampled image is spatially filtered to correct finite pixel size effects, to yield the final high-resolution estimate. Results on a real outdoor sequence are presented, showing the quality of the proposed method.

8 pag...

8 pages with 4 figures. ICANN/ICONIP 2003

None