Skip to content

Latest commit

 

History

History
64 lines (53 loc) · 3.38 KB

README.md

File metadata and controls

64 lines (53 loc) · 3.38 KB

Cleaning / Normalizing / Training Vocabularies

The purpose of this extra cleaning on top of batch filtering is to maximize the amount of useful information in the bn-en dataset for a bilingual MT system. We do this by employing a variety of heuristics such as removing identical spans of foreign texts on both sides, applying transliteration when appropriate, thresholding allowed amount of foreign text in a sentence pair, etc. For more details, refer to the code. Additionally, the script generates sentencepiece vocabulary files required for tokenizing the parallel corpora.

Usage

$ python preprocessor.py -h
usage: preprocessor.py [-h] --input_dir PATH --output_dir PATH [--normalize]
                      [--bn_vocab_size BN_VOCAB_SIZE]
                      [--en_vocab_size EN_VOCAB_SIZE]
                      [--bn_model_type BN_MODEL_TYPE]
                      [--en_model_type EN_MODEL_TYPE]
                      [--bn_coverage BN_COVERAGE] [--en_coverage EN_COVERAGE]

optional arguments:
  -h, --help            show this help message and exit
  --input_dir PATH, -i PATH
                        Input directory
  --output_dir PATH, -o PATH
                        Output directory
  --normalize           Only normalize the files in input directory
  --bn_vocab_size BN_VOCAB_SIZE
                        bengali vocab size
  --en_vocab_size EN_VOCAB_SIZE
                        english vocab size
  --bn_model_type BN_MODEL_TYPE
                        bengali sentencepiece model type
  --en_model_type EN_MODEL_TYPE
                        english sentencepiece model type
  --bn_coverage BN_COVERAGE
                        bengali character coverage
  --en_coverage EN_COVERAGE
                        english character coverage
  • If the script is invoked with --normalize, it will only produce the normalized version of all .bn / .en files found in the input_dir in corresponding subdirectories of output_dir.

  • Otherwise, the script will recursively look for all filepairs (X.bn, X.en) inside input_dir, where X is any common file prefix, and produce the following files inside output_dir:

    • combined.bn / combined.en: filepairs obtained by cleaning all linepairs.
    • bn.model, bn.vocab / en.model, en.vocab: sentencepiece models

Removing Evaluation pairs

If you are training from scratch with new test / train datasets, you should remove all evaluation pairs (validation / test) first from the training dataset to prevent data leakage. To do so, run remove_evaluation_pairs.py.

Make sure all datasets are normalized before running the script.

Usage

$ python remove_evaluation_pairs.py -h
usage: remove_evaluation_pairs.py [-h] --input_dir PATH --output_dir PATH
                                  --src_lang SRC_LANG --tgt_lang TGT_LANG

optional arguments:
  -h, --help            show this help message and exit
  --input_dir PATH, -i PATH
                        Input directory
  --output_dir PATH, -o PATH
                        Output directory
  --src_lang SRC_LANG   Source language
  --tgt_lang TGT_LANG   Target language
  • The input directory must be structured as mentioned here. This script will remove all evaluation pairs from training pairs and write those to corpus.train.src_lang / corpus.train.tgt_lang inside output_dir.