-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
74 lines (52 loc) · 1.38 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
title: "crisprScoreData"
output:
github_document:
toc: true
---
```{r, echo=FALSE, results="hide"}
options("knitr.graphics.auto_pdf"=TRUE)
```
Authors: Jean-Philippe Fortin
# Installation from Bioconductor
`crisprScoreData` can be installed from the Bioconductor devel
branch using the following commands in a fresh R session:
```{r, eval=FALSE}
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(version="devel")
BiocManager::install("crisprScoreData")
```
# Exploring the different data in crisprScoreData
We first load the `crisprScoreData` package:
```{r}
library(crisprScoreData)
```
This package contains several pre-trained models for different
on-target activity prediction algorithms to be used
in the package *crisprScore*.
We can access the file paths of the different
pre-trained models directly with named functions:
```{r}
# For DeepHF model:
DeepWt.hdf5()
DeepWt_T7.hdf5()
DeepWt_U6.hdf5()
esp_rnn_model.hdf5()
hf_rnn_model.hdf5()
# For Lindel model:
Model_weights.pkl()
```
Or we can access them using the *ExperimentHub* interface:
```{r}
eh <- ExperimentHub()
query(eh, "crisprScoreData")
eh[["EH6127"]]
```
For details on the source of these files, and on their construction
see `?crisprScoreData` and the scripts:
* `inst/scripts/make-metadata.R`
* `inst/scripts/make-data.Rmd`
```{r}
sessionInfo()
```