-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTC_HebbClassification.py
44 lines (37 loc) · 1.2 KB
/
TC_HebbClassification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def tc_classifier(t, c):
xt = [[1, 1, 1], [-1, 1, -1], [-1, 1, -1]]
xc = [[1, 1, 1], [1, -1, -1], [1, 1, 1]]
bias = 0
weights = [[0 for j in range(3)] for i in range(3)]
yt = 1
yc = -1
# training
for test in range(2):
for i in range(len(xt)):
for j in range(len(xt[0])):
if test == 0:
weights[i][j] = weights[i][j] + yt * xt[i][j]
else:
weights[i][j] = weights[i][j] + yc * xc[i][j]
bias = bias + 1
weights.append(bias)
# testing
for test in range(2):
verify = 0
for i in range(len(xt)):
for j in range(len(xt[0])):
if test == 0:
verify = verify + weights[i][j] * t[i][j]
else:
verify = verify + weights[i][j] * c[i][j]
if verify + weights[i+1] > 0:
print("Entered matrix is T")
elif verify + weights[i+1] < 0:
print("Entered matrix is C")
else:
print('Not recognised')
t = [[1, 1, 1], [-1, 1, -1], [-1, 1, -1]]
c = [[1, 1, 1], [1, -1, -1], [1, 1, 1]]
print("Matrix 1: ", t)
print("Matrix 2: ", c)
tc_classifier(t, c)