forked from FFrankyy/FINDER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpkl2gml.py
54 lines (47 loc) · 1.95 KB
/
pkl2gml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pickle as cp
import networkx as nx
import os
from tqdm import tqdm
import random
data_test_path = 'E:/Ubuntu_home/Code/GRAPHDQN/Server version/Data&Solution/Synthesized_Data/gtype-barabasi_albert-nrange-'
data_test_name = ['15-20','30-50','50-100','100-200','200-300','300-400','400-500','500-600','1000-1200']
data_test_suffix = '-n_graph-1000-p-0.00-m-4.pkl'
save_dir_1 = 'E:/Ubuntu_home/Code/GRAPHDQN/Server version/Data&Solution/Synthesized_Data/gml_randomCost/'
n_test = 100
for i in range(len(data_test_name)):
print ('\ndata_test%d'%i)
data_test = data_test_path + data_test_name[i] + data_test_suffix
save_dir_2 = data_test_name[i]
save_dir = save_dir_1 + save_dir_2
if not os.path.exists(save_dir): #make dir
os.mkdir(save_dir)
f = open(data_test, 'rb')
for j in tqdm(range(n_test)):
g = cp.load(f)
### random weight
weights = {}
for node in g.nodes():
weights[node] = random.uniform(0, 1)
# ### degree weight
# degree = nx.degree(g)
# maxDegree = max(degree.values())
# weights = {}
# for node in g.nodes():
# weights[node] = degree[node] / maxDegree
nx.set_node_attributes(g, 'weight', weights)
save_dir_g = '%s/g_%d'%(save_dir,j)
nx.write_gml(g, save_dir_g)
# save_dir_11 = 'E:/Ubuntu_home/Code/GRAPHDQN/Server version/Data&Solution/Synthesized_Data/gml_randomCost/'
# n_test = 100
# for i in range(len(data_test_name)):
# print ('data_test%d'%i)
# data_test = data_test_path + data_test_name[i] + data_test_suffix
# save_dir_22 = data_test_name[i]
# save_dir = save_dir_11 + save_dir_22
# if not os.path.exists(save_dir): #make dir
# os.mkdir(save_dir)
# f = open(data_test, 'rb')
# for j in tqdm(range(n_test)):
# g = cp.load(f)
# save_dir_g = '%s/g_%d'%(save_dir,j)
# nx.write_gml(g, save_dir_g)