-
Notifications
You must be signed in to change notification settings - Fork 913
/
Copy pathtest_ukf.cpp
132 lines (110 loc) · 4.68 KB
/
test_ukf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
* Copyright (c) 2014, 2015, 2016 Charles River Analytics, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <limits>
#include <memory>
#include <vector>
#include "Eigen/Dense"
#include "gtest/gtest.h"
#include "rclcpp/rclcpp.hpp"
#include "robot_localization/filter_base.hpp"
#include "robot_localization/filter_common.hpp"
#include "robot_localization/ros_filter.hpp"
#include "robot_localization/ros_filter_types.hpp"
#include "robot_localization/ukf.hpp"
using robot_localization::STATE_SIZE;
using robot_localization::Ukf;
using robot_localization::RosUkf;
TEST(UkfTest, Measurements) {
rclcpp::NodeOptions options;
options.arguments({"ukf_test_node"});
std::shared_ptr<robot_localization::RosUkf> filter =
std::make_shared<robot_localization::RosUkf>(options);
filter->initialize();
double alpha = filter->declare_parameter("alpha", 0.001);
double kappa = filter->declare_parameter("kappa", 0.0);
double beta = filter->declare_parameter("beta", 2.0);
filter->getFilter().setConstants(alpha, kappa, beta);
// create the instance of the class and pass parameters
Eigen::MatrixXd initialCovar(15, 15);
initialCovar.setIdentity();
initialCovar *= 0.5;
filter->getFilter().setEstimateErrorCovariance(initialCovar);
EXPECT_EQ(filter->getFilter().getEstimateErrorCovariance(), initialCovar);
Eigen::VectorXd measurement(STATE_SIZE);
measurement.setIdentity();
for (size_t i = 0; i < STATE_SIZE; ++i) {
measurement[i] = i * 0.01 * STATE_SIZE;
}
Eigen::MatrixXd measurementCovariance(STATE_SIZE, STATE_SIZE);
measurementCovariance.setIdentity();
for (size_t i = 0; i < STATE_SIZE; ++i) {
measurementCovariance(i, i) = 1e-9;
}
std::vector<bool> updateVector(STATE_SIZE, true);
// Ensure that measurements are being placed in the queue correctly
rclcpp::Time time1(1000);
filter->robot_localization::RosUkf::enqueueMeasurement(
"odom0", measurement, measurementCovariance, updateVector,
std::numeric_limits<double>::max(), time1);
filter->robot_localization::RosUkf::integrateMeasurements(rclcpp::Time(1001));
EXPECT_EQ(filter->getFilter().getState(), measurement);
EXPECT_EQ(
filter->getFilter().getEstimateErrorCovariance(),
measurementCovariance);
filter->getFilter().setEstimateErrorCovariance(initialCovar);
// Now fuse another measurement and check the output.
// We know what the filter's state should be when
// this is complete, so we'll check the difference and
// make sure it's suitably small.
Eigen::VectorXd measurement2 = measurement;
measurement2 *= 2.0;
for (size_t i = 0; i < STATE_SIZE; ++i) {
measurementCovariance(i, i) = 1e-9;
}
rclcpp::Time time2(1002);
filter->robot_localization::RosUkf::enqueueMeasurement(
"odom0", measurement2, measurementCovariance, updateVector,
std::numeric_limits<double>::max(), time2);
filter->robot_localization::RosUkf::integrateMeasurements(rclcpp::Time(1003));
measurement = measurement2.eval() - filter->getFilter().getState();
for (size_t i = 0; i < STATE_SIZE; ++i) {
EXPECT_LT(::fabs(measurement[i]), 0.001);
}
}
int main(int argc, char ** argv)
{
rclcpp::init(argc, argv);
::testing::InitGoogleTest(&argc, argv);
int ret = RUN_ALL_TESTS();
rclcpp::shutdown();
return ret;
}