-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·191 lines (148 loc) · 4.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python3
import time
from functools import partial
import equinox as eqx
import jax
import numpy as np
import optax
from jax.tree_util import tree_leaves, tree_map
from jaxtyping import Array
from scipy.sparse import load_npz
from args import args
from ham import GeneralSpinsModel, exact
from nets import ARNNDense, TwoBoOnlySkip
dtype = np.float32
def leaf_size_real_nonzero(x):
# Filter out equinox static fields
if not isinstance(x, Array):
return 0
# If some but not all elements are exactly float zero, that means they are masked
size = (x != 0).sum()
if size == 0:
size = x.size
if np.iscomplexobj(x):
size *= 2
return size
def tree_size_real_nonzero(tree):
return sum(tree_leaves(tree_map(leaf_size_real_nonzero, tree)))
def load_ham(ham_path):
J = load_npz(ham_path).toarray().astype(dtype)
N = J.shape[0]
assert J.shape == (N, N)
J = np.triu(J + J.T, k=1)
J = J[None, ...]
h = np.zeros((1, N), dtype=dtype)
ham = GeneralSpinsModel(batch_size=1, N=N, J=J, h=h, dtype=dtype)
return ham
def run_exact(ham, betas):
if ham.N > 24:
raise ValueError(f"Warning: N = {ham.N} is too large for exact enumeration")
for beta in betas:
start_time = time.time()
stats = exact(ham, beta)
used_time = time.time() - start_time
F = stats["free_energy"]
E = stats["energy"]
S = stats["entropy"]
M_abs = stats["|M|"]
print(
f"beta: {beta:.3g}",
f"F: {F:.8g}",
f"E: {E:.8g}",
f"S: {S:.8g}",
f"|M|: {M_abs:.8g}",
f"time: {used_time:.3f}",
)
@partial(jax.jit, static_argnames="optimizer")
def update(net, opt_state, key, ham, optimizer, beta):
key, key_sample = jax.random.split(key)
N = ham.N
ham_params = ham.J[0]
x, x_hat = net.sample(args.batch_size, N, ham_params, beta, key_sample)
log_q = net.get_log_p(x, x_hat)
energy = ham(x)
loss = log_q + beta * energy
params, static = eqx.partition(net, eqx.is_array)
def loss_fun(params):
net = eqx.combine(params, static)
return ((loss - loss.mean()) * net(x, ham_params, beta)).mean()
grads = jax.grad(loss_fun)(params)
updates, opt_state = optimizer.update(grads, opt_state, net)
net = eqx.apply_updates(net, updates)
E = energy / N
S = -log_q / N
F = E - S / beta
F_mean = F.mean()
F_std = F.std()
E_mean = E.mean()
E_min = E.min()
S_mean = S.mean()
M = x.mean(axis=1)
M_abs_mean = abs(M).mean()
return net, opt_state, key, F_mean, F_std, E_mean, E_min, S_mean, M_abs_mean
def train(net, opt_state, key, ham, optimizer, beta, n_steps):
for step in range(n_steps):
start_time = time.time()
net, opt_state, key, F, F_std, E, E_min, S, M_abs = update(
net, opt_state, key, ham, optimizer, beta
)
used_time = time.time() - start_time
print(
f"beta: {beta:.3g}",
f"step: {step}",
f"F: {F:.8g}",
f"F_std: {F_std:.8g}",
f"E: {E:.8g}",
f"E_min: {E_min:.8g}",
f"S: {S:.8g}",
f"|M|: {M_abs:.8g}",
f"time: {used_time:.3f}",
)
return net, opt_state, key
def run_vmc(ham, betas):
key = jax.random.PRNGKey(args.opt_seed)
key, key_net = jax.random.split(key)
if args.net_type == "twobo":
net = TwoBoOnlySkip(
N=ham.N,
J=ham.J[0],
param_dtype=dtype,
key=key_net,
weight_skip=args.weight_skip,
use_beta_skip=args.use_beta_skip,
)
elif args.net_type == "made":
net = ARNNDense(
N=ham.N,
n_ham_params=0,
layers=1,
features=1,
param_dtype=dtype,
key=key_net,
)
else:
raise ValueError(f"Unknown net_type: {args.net_type}")
n_params = tree_size_real_nonzero(net)
print("n_params:", n_params)
optimizer = optax.adam(learning_rate=args.lr)
opt_state = optimizer.init(eqx.filter(net, eqx.is_array))
net, opt_state, key = train(
net, opt_state, key, ham, optimizer, betas[0], args.warmup_steps
)
for beta in betas:
net, opt_state, key = train(
net, opt_state, key, ham, optimizer, beta, args.opt_steps
)
def main():
ham = load_ham(args.ham_path)
beta_start, beta_stop, beta_num = args.beta_range.split(",")
beta_start = float(beta_start)
beta_stop = float(beta_stop)
beta_num = int(beta_num)
betas = np.linspace(beta_start, beta_stop, beta_num)
if args.net_type == "exact":
run_exact(ham, betas)
else:
run_vmc(ham, betas)
if __name__ == "__main__":
main()