-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvmc.py
150 lines (115 loc) · 5.58 KB
/
vmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import jax
import numpy as np
import flax
import flax.linen as nn
import netket as nk
nk.config.netket_experimental_fft_autocorrelation = True
import bnqs
from bnqs.sampler import LocalRule
import bnqs.models as models
from jax import config
config.update("jax_enable_x64", True)
# Check that the default jax backend is 'gpu'
print(jax.default_backend())
import optax
import os
import argparse
import json
parser = argparse.ArgumentParser()
parser.add_argument('--jobid', dest='jobid', help="Job id")
parser.add_argument('--parameters', dest='parameters', help="Python namespace containing simulation parameters")
args = parser.parse_args()
##
jobid = args.jobid
pars = json.load(open(args.parameters))
ld = os.path.dirname(args.parameters)
N = pars['N'] # Latteral dimension of the lattice (L in the main text)
n_dim = pars['n_dim'] # Number of spatial dimensions
extent = pars['extent'] # Latteral dimensions of the lattice along both axes, here (N, N)
n_sites = pars['n_sites'] # Number of lattice sites
pbc = pars['pbc'] # Whether to use PBCs, here (true, true)
n_particles = pars['n_particles'] # Number of particles (N in the main text)
U = pars['U'] # On-site interaction strength in units of J
kernel_size = pars['kernel_size'] # Size of the convolutional filters
features = pars['features'] # Number of channels per convolutional layer
depth = pars['depth'] # Number of layers
n_samples = pars['n_samples'] # Number of samples
chunk_size = pars['chunk_size'] # Chunk size
n_chains = pars['n_chains'] # Number of Markov chains
sweep_factor = pars['sweep_factor'] # sweep_size = sweep_factor * n_sweeps
n_sweeps = pars['n_sweeps'] # Number of Metropolis-Hastings steps per sample / sweep_factor
n_discard_per_chain = pars['n_discard_per_chain'] # Number of samples discarded at each step
n_burnin = pars['n_burnin'] # Number of burn-in samples for thermalizing the chains
n_iter_jastrow = pars['n_iter_jastrow'] # Number of optimization steps for bare Jastrow
lrate_jastrow = pars['lrate_jastrow'] # Learning rate for the Jastrow optimization
dshift_jastrow = pars['dshift_jastrow'] # Diagonal shift for the Jastrow optimization
n_iter = pars['n_iter'] # Number of optimization steps for the full network
lrate = pars['lrate'] # Learning rate for the full network optimization
dshift = pars['dshift'] # Diagonal shift for the full network optimization
ham_dtype = pars['ham_dtype'] # Data type of the Hamiltonian
sampler_dtype = pars['sampler_dtype'] # Data type of the configurations
model_dtype = pars['model_dtype'] # Data type of the parameters of the variatonal Ansatz
##
hi = nk.hilbert.Fock(n_particles=n_particles, N=n_sites)
g = nk.graph.Hypercube(N, n_dim=n_dim)
ha = nk.operator.BoseHubbard(hi, U=U, graph=g, dtype=ham_dtype)
model = models.SQJastrow(g, kernel_init=jax.nn.initializers.normal(np.sqrt(2/n_sites**3)), param_dtype=model_dtype)
rule = LocalRule.from_graph(g)
sampler = nk.sampler.MetropolisSampler(hi, rule, n_chains=n_chains, sweep_size=sweep_factor*n_sweeps, dtype=sampler_dtype)
vs = nk.vqs.MCState(sampler, model=model, n_samples=n_samples, seed=0, chunk_size=chunk_size, n_discard_per_chain=n_discard_per_chain)
print('Number of Jastrow parameters = ', vs.n_parameters)
prefix = 'Jastrow'
suffix = f'.{jobid}'
log_jastrow = nk.logging.JsonLog(os.path.join(ld, prefix+suffix), save_params_every=1)
model_parameters_fname = os.path.join(ld, 'vqs-'+prefix+suffix+'.mpack')
burnin = True
optimizer = optax.sgd(learning_rate=lrate_jastrow)
solver = nk.optimizer.solver.svd
preconditioner=nk.optimizer.SR(diag_shift=dshift_jastrow, solver=solver)
gs = nk.driver.VMC(ha, optimizer, variational_state=vs, preconditioner=preconditioner)
def cb(step, logged_data, driver):
acceptance = float(driver.state.sampler_state.acceptance)
logged_data["acceptance"] = acceptance
with open(model_parameters_fname, 'wb') as file:
file.write(flax.serialization.to_bytes(driver.state))
return True
if burnin:
print('Burn-in in progress...')
for _ in range(n_burnin):
vs.sample()
print('Thermalised!')
print('Run the Jastrow optimisation problem.\n Logger: '
f'jastrow.{jobid}'
)
gs.run(n_iter=n_iter_jastrow, out=log_jastrow, callback=cb)
e_stats = vs.expect(ha)
print('Jastrow: ', e_stats.mean, e_stats.error_of_mean)
jp = vs.parameters['Jastrow']
##
prefix = 'ResNetJastrow'
suffix = f'.{jobid}'
log = nk.logging.JsonLog(os.path.join(ld, prefix+suffix), save_params_every=1)
model_parameters_fname = os.path.join(ld, 'vqs-'+prefix+suffix+'.mpack')
def cb(step, logged_data, driver):
acceptance = float(driver.state.sampler_state.acceptance)
logged_data["acceptance"] = acceptance
with open(model_parameters_fname, 'wb') as file:
file.write(flax.serialization.to_bytes(driver.state))
return True
model = models.ResNetJastrow(g, depth * (features,), n_dim * (kernel_size,), param_dtype=model_dtype, output_activation=nn.gelu, kernel_init=jax.nn.initializers.normal(np.sqrt(2/n_sites**3)))
vs = nk.vqs.MCState(sampler, model=model, n_samples=n_samples, seed=0, chunk_size=chunk_size, n_discard_per_chain=n_discard_per_chain)
print('Number of parameters = ', vs.n_parameters)
params = vs.parameters
params['Jastrow'] = jp
vs.parameters = params
if burnin:
print('Burn-in in progress...')
for _ in range(n_burnin):
vs.sample()
print('Thermalised!')
optimizer = optax.sgd(learning_rate=lrate)
preconditioner = nk.optimizer.SR(diag_shift=dshift, solver=solver)
gs = nk.driver.VMC(ha, optimizer, variational_state=vs, preconditioner=preconditioner)
gs.run(n_iter=n_iter, out=log, callback=cb)
e_stats = vs.expect(ha)
print('ResNetJastrow: ', e_stats.mean, e_stats.error_of_mean)