diff --git a/ZAMachineLearning/ZAMachineLearning.py b/ZAMachineLearning/ZAMachineLearning.py index 7ac1032..342bb21 100644 --- a/ZAMachineLearning/ZAMachineLearning.py +++ b/ZAMachineLearning/ZAMachineLearning.py @@ -256,8 +256,8 @@ def main(): nodes = ['TT','DY','ZA'] channels = ['ElEl','MuMu'] data_dict = {} - strSelect = [] for node in nodes: + strSelect = [] list_sample = [] if opt.resolved: strSelect.extend(['resolved_{}_{}'.format(channel,node) for channel in channels]) @@ -290,9 +290,9 @@ def main(): data_node = data_node_era else: data_node = pd.concat([data_node,data_node_era],axis=0) - logging.info('{} Sample size for era {} : {}'.format(node,era,data_node_era.shape[0])) + logging.info('\t{} class in era {} : sample size = {}, weight sum = {:.3e} (with normalization = {:.3e})'.format(node,era,data_node_era.shape[0],data_node_era[parameters.weights].sum(),data_node_era['event_weight'].sum())) data_dict[node] = data_node - logging.info('{} Sample size for all eras : {}'.format(node,data_node.shape[0])) + logging.info('{} class for all eras : sample size = {}, weight sum = {:.3e} (with normalization = {:.3e})'.format(node,data_node.shape[0],data_node[parameters.weights].sum(),data_node['event_weight'].sum())) #logging.info('Current memory usage : %0.3f GB'%(pid.memory_info().rss/(1024**3)))