-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstorage_cmp_impl_soundness.v
993 lines (772 loc) · 41.5 KB
/
storage_cmp_impl_soundness.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
Require Import Arith.
Require Import Nat.
Require Import Bool.
Require Import bbv.Word.
Require Import Coq.NArith.NArith.
Require Import List.
Import ListNotations.
Require Import Coq.Logic.FunctionalExtensionality.
Require Import FORVES2.constants.
Import Constants.
Require Import FORVES2.program.
Import Program.
Require Import FORVES2.execution_state.
Import ExecutionState.
Require Import FORVES2.stack_operation_instructions.
Import StackOpInstrs.
Require Import FORVES2.misc.
Import Misc.
Require Import FORVES2.symbolic_state.
Import SymbolicState.
Require Import FORVES2.symbolic_state_eval.
Import SymbolicStateEval.
Require Import FORVES2.symbolic_state_eval_facts.
Import SymbolicStateEvalFacts.
Require Import FORVES2.valid_symbolic_state.
Import ValidSymbolicState.
Require Import FORVES2.valid_symbolic_state.
Import ValidSymbolicState.
Require Import FORVES2.symbolic_state_cmp.
Import SymbolicStateCmp.
Require Import FORVES2.storage_cmp_impl.
Import StorageCmpImpl.
Require Import FORVES2.eval_common.
Import EvalCommon.
Require Import FORVES2.concrete_interpreter.
Import ConcreteInterpreter.
Require Import FORVES2.constraints.
Import Constraints.
Require Import FORVES2.context.
Import Context.
Require Import FORVES2.context_facts.
Import ContextFacts.
Require Import FORVES2.symbolic_execution_soundness.
Import SymbolicExecutionSoundness.
Module StorageCmpImplSoundness.
Theorem trivial_storage_cmp_snd:
safe_sstorage_cmp_ext_wrt_sstack_value_cmp trivial_storage_cmp.
Proof.
unfold safe_sstorage_cmp_ext_wrt_sstack_value_cmp.
unfold safe_sstack_val_cmp_ext_1_d.
unfold safe_sstorage_cmp_ext_d.
unfold safe_sstorage_cmp.
unfold trivial_storage_cmp.
intros.
destruct sstrg1; destruct sstrg2; try discriminate.
exists strg.
auto.
Qed.
Theorem basic_storage_cmp_snd:
safe_sstorage_cmp_ext_wrt_sstack_value_cmp basic_storage_cmp.
Proof.
unfold safe_sstorage_cmp_ext_wrt_sstack_value_cmp.
intros d sstack_val_cmp H_sstack_val_cmp_snd.
unfold safe_sstorage_cmp_ext_d.
intros d' H_d'_le_d.
unfold safe_sstorage_cmp.
intros ctx sstrg1 sstrg2 maxidx1 sb1 maxidx2 sb2 ops H_valid_sb1 H_valid_sb2.
revert sstrg2.
revert sstrg1.
induction sstrg1 as [|u1 sstrg1' IHsstrg1'].
+ intros sstrg2 H_valid_sstrg1 H_valid_sstrg2 H_basic_strg_smp model mem strg exts H_is_model.
destruct sstrg2; try discriminate.
exists strg.
unfold eval_sstorage.
simpl.
split; reflexivity.
+ intros sstrg2 H_valid_sstrg1 H_valid_sstrg2 H_basic_strg_smp model mem strg exts H_is_model.
destruct sstrg2 as [|u2 sstrg2'] eqn:H_sstrg2.
++ simpl in H_basic_strg_smp.
destruct u1.
discriminate.
++ simpl in H_basic_strg_smp.
destruct u1 as [skey1 svalue1] eqn:E_u1.
destruct u2 as [skey2 svalue2] eqn:E_u2.
destruct (sstack_val_cmp d' ctx skey1 skey2 maxidx1 sb1 maxidx2 sb2 ops) eqn:E_cmp_skey1_skey2; try discriminate.
destruct (sstack_val_cmp d' ctx svalue1 svalue2 maxidx1 sb1 maxidx2 sb2 ops) eqn:E_cmp_svalue1_svalue2; try discriminate.
simpl in H_valid_sstrg1.
destruct H_valid_sstrg1 as [ [H_valid_skey1 H_valid_svalue1] H_valid_sstrg1'].
simpl in H_valid_sstrg2.
destruct H_valid_sstrg2 as [ [H_valid_skey2 H_valid_svalue2] H_valid_sstrg2'].
pose proof (IHsstrg1' sstrg2' H_valid_sstrg1' H_valid_sstrg2' H_basic_strg_smp model mem strg exts H_is_model) as IHsstrg1'_0.
destruct IHsstrg1'_0 as [strg' [IHsstrg1'_0 IHsstrg1'_1]].
unfold safe_sstack_val_cmp_ext_1_d in H_sstack_val_cmp_snd.
pose proof (H_sstack_val_cmp_snd d' H_d'_le_d) as H_sstack_val_cmp_snd_d'.
unfold safe_sstack_val_cmp in H_sstack_val_cmp_snd_d'.
pose proof(H_sstack_val_cmp_snd_d' ctx skey1 skey2 maxidx1 sb1 maxidx2 sb2 ops H_valid_skey1 H_valid_skey2 H_valid_sb1 H_valid_sb2 E_cmp_skey1_skey2 model mem strg exts H_is_model) as H_eval_skey1_skey2.
destruct H_eval_skey1_skey2 as [skey_1_2_v [H_eval_skey1 H_eval_skey2]].
pose proof(H_sstack_val_cmp_snd_d' ctx svalue1 svalue2 maxidx1 sb1 maxidx2 sb2 ops H_valid_svalue1 H_valid_svalue2 H_valid_sb1 H_valid_sb2 E_cmp_svalue1_svalue2 model mem strg exts H_is_model) as H_eval_svalue1_svalue2.
destruct H_eval_svalue1_svalue2 as [svalue_1_2_v [H_eval_svalue1 H_eval_svalue2]].
exists (fun key => if (key =? wordToN skey_1_2_v)%N then svalue_1_2_v else strg' key).
unfold eval_sstorage in IHsstrg1'_0.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx1 sb1 ops)) sstrg1') as [updates1|] eqn:H_mo_sstrg1'; try discriminate.
injection IHsstrg1'_0 as IHsstrg1'_0.
unfold eval_sstorage in IHsstrg1'_1.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx2 sb2 ops)) sstrg2') as [updates2|] eqn:H_mo_sstrg2'; try discriminate.
injection IHsstrg1'_1 as IHsstrg1'_1.
unfold eval_sstorage.
unfold map_option.
repeat rewrite <- map_option_ho.
unfold instantiate_storage_update at 1.
rewrite H_eval_skey1.
rewrite H_eval_svalue1.
unfold instantiate_storage_update at 2.
rewrite H_eval_skey2.
rewrite H_eval_svalue2.
rewrite H_mo_sstrg1'.
rewrite H_mo_sstrg2'.
unfold update_storage.
fold update_storage.
rewrite IHsstrg1'_0.
rewrite IHsstrg1'_1.
split; try reflexivity.
Qed.
Lemma f_v1_v2_neq:
forall (g : N -> EVMWord) (v1 v2:N) (w1 w2 : EVMWord),
(v1 =? v2)%N = false ->
forall x,
( (fun key : N => if (key =? v1)%N then w1 else if (key =? v2)%N then w2 else g key) x)
=
( (fun key : N => if (key =? v2)%N then w2 else if (key =? v1)%N then w1 else g key) x).
Proof.
intros g v1 v2 w1 w2 H_v1_neq_v2 x.
simpl.
destruct (x =? v1)%N eqn:E_x_v1; destruct (x =? v2)%N eqn:E_x_v2; try reflexivity.
rewrite N.eqb_eq in E_x_v1. rewrite E_x_v1 in E_x_v2. rewrite H_v1_neq_v2 in E_x_v2. discriminate.
Qed.
Lemma f_v1_v2_neq_fun:
forall (g : N -> EVMWord) (v1 v2:N) (w1 w2 : EVMWord),
(v1 =? v2)%N = false ->
(fun key : N => if (key =? v1)%N then w1 else if (key =? v2)%N then w2 else g key)
=
(fun key : N => if (key =? v2)%N then w2 else if (key =? v1)%N then w1 else g key).
Proof.
intros g v1 v2 w1 w2 H_v1_neq_v2.
apply functional_extensionality.
apply f_v1_v2_neq.
apply H_v1_neq_v2.
Qed.
Lemma swap_storage_update_snd:
forall ctx sstrg u1 u2 maxidx sb ops,
valid_sstorage maxidx sstrg ->
valid_sstorage_update maxidx u1 ->
valid_sstorage_update maxidx u2 ->
valid_bindings maxidx sb ops ->
swap_storage_update ctx u1 u2 maxidx sb = true ->
forall model mem strg exts,
is_model (ctx_cs ctx) model = true ->
exists strg' : storage,
eval_sstorage (u1::u2::sstrg) maxidx sb model mem strg exts ops = Some strg' /\
eval_sstorage (u2::u1::sstrg) maxidx sb model mem strg exts ops = Some strg'.
Proof.
intros ctx sstrg u1 u2 maxidx sb ops.
intros H_valid_sstrg H_valid_u1 H_valid_u2 H_valid_bs H_swap.
intros model mem strg exts H_is_model.
destruct u1 as [skey1 svalue1] eqn:E_u1.
destruct u2 as [skey2 svalue2] eqn:E_u2.
unfold swap_storage_update in H_swap.
destruct (follow_in_smap skey1 maxidx sb) eqn:E_follow_skey1; try discriminate.
destruct f; destruct smv; try discriminate.
destruct (follow_in_smap skey2 maxidx sb) eqn:E_follow_skey2; try discriminate.
destruct f; destruct smv; try discriminate.
destruct val eqn:E_v1; destruct val0 eqn:E_v2; try discriminate.
assert(H_swap' := H_swap).
rewrite N.ltb_lt in H_swap'.
pose proof (N.lt_neq (wordToN val2) (wordToN val1) H_swap') as H_swap_neq.
apply N.neq_sym in H_swap_neq.
rewrite <- N.eqb_neq in H_swap_neq.
assert(H_valid_u1' := H_valid_u1).
simpl in H_valid_u1'.
destruct H_valid_u1' as [H_valid_skey1 H_valid_svalue1].
assert(H_valid_u2' := H_valid_u2).
simpl in H_valid_u2'.
destruct H_valid_u2' as [H_valid_skey2 H_valid_svalue2].
pose proof (eval_sstack_val'_succ (S maxidx) skey1 model mem strg exts maxidx sb ops H_valid_skey1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey1.
destruct H_eval_skey1 as [skey1_v H_eval_skey1].
pose proof (eval_sstack_val'_succ (S maxidx) svalue1 model mem strg exts maxidx sb ops H_valid_svalue1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue1.
destruct H_eval_svalue1 as [svalue1_v H_eval_svalue1].
pose proof (eval_sstack_val'_succ (S maxidx) skey2 model mem strg exts maxidx sb ops H_valid_skey2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey2.
destruct H_eval_skey2 as [skey2_v H_eval_skey2].
pose proof (eval_sstack_val'_succ (S maxidx) svalue2 model mem strg exts maxidx sb ops H_valid_svalue2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue2.
destruct H_eval_svalue2 as [svalue2_v H_eval_svalue2].
unfold eval_sstorage.
unfold map_option at 1.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey1.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue1.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey2.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue2.
unfold eval_sstorage.
unfold map_option at 2.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey2.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue2.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey1.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue1.
pose proof (eval_sstorage_succ maxidx sb model mem strg exts ops sstrg H_valid_sstrg H_valid_bs) as H_eval_sstrg.
destruct H_eval_sstrg as [strg' H_eval_sstrg].
unfold eval_sstorage in H_eval_sstrg.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) sstrg) as [updates|] eqn:E_mo_eval_sstrg; try discriminate.
exists (fun key => if (key =? wordToN skey1_v)%N then svalue1_v else if (key =? wordToN skey2_v)%N then svalue2_v else strg' key).
simpl.
injection H_eval_sstrg as H_eval_sstrg.
rewrite H_eval_sstrg.
unfold sstore.
split; try reflexivity.
unfold eval_sstack_val' in H_eval_skey1.
fold eval_sstack_val' in H_eval_skey1.
rewrite E_follow_skey1 in H_eval_skey1.
injection H_eval_skey1 as H_eval_skey1.
unfold eval_sstack_val' in H_eval_skey2.
fold eval_sstack_val' in H_eval_skey2.
rewrite E_follow_skey2 in H_eval_skey2.
injection H_eval_skey2 as H_eval_skey2.
rewrite H_eval_skey1 in H_swap_neq.
rewrite H_eval_skey2 in H_swap_neq.
pose proof (f_v1_v2_neq_fun strg' (wordToN skey1_v) (wordToN skey2_v) svalue1_v svalue2_v H_swap_neq) as H_f_v1_v2_neq_fun.
rewrite H_f_v1_v2_neq_fun.
reflexivity.
(* val = var *)
pose proof (chk_lt_wrt_ctx_snd ctx (Val val1) (InVar var) H_swap model mem strg exts maxidx sb ops H_is_model) as H_chk_lt_wrt_ctx_snd.
destruct H_chk_lt_wrt_ctx_snd as [v1 [v2 [H_chk_lt_wrt_ctx_snd_1 [H_chk_lt_wrt_ctx_snd_2 H_chk_lt_wrt_ctx_snd_3]]]].
pose proof (eval_sstack_val_Val val1 model mem strg exts maxidx sb ops) as H_eval_val1.
rewrite H_eval_val1 in H_chk_lt_wrt_ctx_snd_1.
pose proof (eval_sstack_val_InVar var model mem strg exts maxidx sb ops) as H_eval_var.
rewrite H_eval_var in H_chk_lt_wrt_ctx_snd_2.
injection H_chk_lt_wrt_ctx_snd_1 as H_chk_lt_wrt_ctx_snd_1.
injection H_chk_lt_wrt_ctx_snd_2 as H_chk_lt_wrt_ctx_snd_2.
rewrite <- H_chk_lt_wrt_ctx_snd_1 in H_chk_lt_wrt_ctx_snd_3.
rewrite <- H_chk_lt_wrt_ctx_snd_2 in H_chk_lt_wrt_ctx_snd_3.
pose proof (N.lt_neq (wordToN val1) (wordToN (model var)) H_chk_lt_wrt_ctx_snd_3) as H_swap_neq.
apply N.neq_sym in H_swap_neq.
rewrite <- N.eqb_neq in H_swap_neq.
assert(H_valid_u1' := H_valid_u1).
simpl in H_valid_u1'.
destruct H_valid_u1' as [H_valid_skey1 H_valid_svalue1].
assert(H_valid_u2' := H_valid_u2).
simpl in H_valid_u2'.
destruct H_valid_u2' as [H_valid_skey2 H_valid_svalue2].
pose proof (eval_sstack_val'_succ (S maxidx) skey1 model mem strg exts maxidx sb ops H_valid_skey1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey1.
destruct H_eval_skey1 as [skey1_v H_eval_skey1].
pose proof (eval_sstack_val'_succ (S maxidx) svalue1 model mem strg exts maxidx sb ops H_valid_svalue1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue1.
destruct H_eval_svalue1 as [svalue1_v H_eval_svalue1].
pose proof (eval_sstack_val'_succ (S maxidx) skey2 model mem strg exts maxidx sb ops H_valid_skey2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey2.
destruct H_eval_skey2 as [skey2_v H_eval_skey2].
pose proof (eval_sstack_val'_succ (S maxidx) svalue2 model mem strg exts maxidx sb ops H_valid_svalue2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue2.
destruct H_eval_svalue2 as [svalue2_v H_eval_svalue2].
unfold eval_sstorage.
unfold map_option at 1.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey1.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue1.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey2.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue2.
unfold eval_sstorage.
unfold map_option at 2.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey2.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue2.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey1.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue1.
pose proof (eval_sstorage_succ maxidx sb model mem strg exts ops sstrg H_valid_sstrg H_valid_bs) as H_eval_sstrg.
destruct H_eval_sstrg as [strg' H_eval_sstrg].
unfold eval_sstorage in H_eval_sstrg.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) sstrg) as [updates|] eqn:E_mo_eval_sstrg; try discriminate.
exists (fun key => if (key =? wordToN skey1_v)%N then svalue1_v else if (key =? wordToN skey2_v)%N then svalue2_v else strg' key).
simpl.
injection H_eval_sstrg as H_eval_sstrg.
rewrite H_eval_sstrg.
unfold sstore.
split; try reflexivity.
unfold eval_sstack_val' in H_eval_skey1.
fold eval_sstack_val' in H_eval_skey1.
rewrite E_follow_skey1 in H_eval_skey1.
injection H_eval_skey1 as H_eval_skey1.
unfold eval_sstack_val' in H_eval_skey2.
fold eval_sstack_val' in H_eval_skey2.
rewrite E_follow_skey2 in H_eval_skey2.
injection H_eval_skey2 as H_eval_skey2.
rewrite H_eval_skey1 in H_swap_neq.
rewrite H_eval_skey2 in H_swap_neq.
pose proof (f_v1_v2_neq_fun strg' (wordToN skey2_v) (wordToN skey1_v) svalue2_v svalue1_v H_swap_neq) as H_f_v1_v2_neq_fun.
rewrite H_f_v1_v2_neq_fun.
reflexivity.
(* var = val *)
pose proof (chk_lt_wrt_ctx_snd ctx (InVar var) (Val val1) H_swap model mem strg exts maxidx sb ops H_is_model) as H_chk_lt_wrt_ctx_snd.
destruct H_chk_lt_wrt_ctx_snd as [v1 [v2 [H_chk_lt_wrt_ctx_snd_1 [H_chk_lt_wrt_ctx_snd_2 H_chk_lt_wrt_ctx_snd_3]]]].
pose proof (eval_sstack_val_Val val1 model mem strg exts maxidx sb ops) as H_eval_val1.
rewrite H_eval_val1 in H_chk_lt_wrt_ctx_snd_2.
pose proof (eval_sstack_val_InVar var model mem strg exts maxidx sb ops) as H_eval_var.
rewrite H_eval_var in H_chk_lt_wrt_ctx_snd_1.
injection H_chk_lt_wrt_ctx_snd_1 as H_chk_lt_wrt_ctx_snd_1.
injection H_chk_lt_wrt_ctx_snd_2 as H_chk_lt_wrt_ctx_snd_2.
rewrite <- H_chk_lt_wrt_ctx_snd_1 in H_chk_lt_wrt_ctx_snd_3.
rewrite <- H_chk_lt_wrt_ctx_snd_2 in H_chk_lt_wrt_ctx_snd_3.
pose proof (N.lt_neq (wordToN (model var)) (wordToN val1) H_chk_lt_wrt_ctx_snd_3) as H_swap_neq.
apply N.neq_sym in H_swap_neq.
rewrite <- N.eqb_neq in H_swap_neq.
assert(H_valid_u1' := H_valid_u1).
simpl in H_valid_u1'.
destruct H_valid_u1' as [H_valid_skey1 H_valid_svalue1].
assert(H_valid_u2' := H_valid_u2).
simpl in H_valid_u2'.
destruct H_valid_u2' as [H_valid_skey2 H_valid_svalue2].
pose proof (eval_sstack_val'_succ (S maxidx) skey1 model mem strg exts maxidx sb ops H_valid_skey1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey1.
destruct H_eval_skey1 as [skey1_v H_eval_skey1].
pose proof (eval_sstack_val'_succ (S maxidx) svalue1 model mem strg exts maxidx sb ops H_valid_svalue1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue1.
destruct H_eval_svalue1 as [svalue1_v H_eval_svalue1].
pose proof (eval_sstack_val'_succ (S maxidx) skey2 model mem strg exts maxidx sb ops H_valid_skey2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey2.
destruct H_eval_skey2 as [skey2_v H_eval_skey2].
pose proof (eval_sstack_val'_succ (S maxidx) svalue2 model mem strg exts maxidx sb ops H_valid_svalue2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue2.
destruct H_eval_svalue2 as [svalue2_v H_eval_svalue2].
unfold eval_sstorage.
unfold map_option at 1.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey1.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue1.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey2.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue2.
unfold eval_sstorage.
unfold map_option at 2.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey2.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue2.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey1.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue1.
pose proof (eval_sstorage_succ maxidx sb model mem strg exts ops sstrg H_valid_sstrg H_valid_bs) as H_eval_sstrg.
destruct H_eval_sstrg as [strg' H_eval_sstrg].
unfold eval_sstorage in H_eval_sstrg.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) sstrg) as [updates|] eqn:E_mo_eval_sstrg; try discriminate.
exists (fun key => if (key =? wordToN skey1_v)%N then svalue1_v else if (key =? wordToN skey2_v)%N then svalue2_v else strg' key).
simpl.
injection H_eval_sstrg as H_eval_sstrg.
rewrite H_eval_sstrg.
unfold sstore.
split; try reflexivity.
unfold eval_sstack_val' in H_eval_skey1.
fold eval_sstack_val' in H_eval_skey1.
rewrite E_follow_skey1 in H_eval_skey1.
injection H_eval_skey1 as H_eval_skey1.
unfold eval_sstack_val' in H_eval_skey2.
fold eval_sstack_val' in H_eval_skey2.
rewrite E_follow_skey2 in H_eval_skey2.
injection H_eval_skey2 as H_eval_skey2.
rewrite H_eval_skey1 in H_swap_neq.
rewrite H_eval_skey2 in H_swap_neq.
pose proof (f_v1_v2_neq_fun strg' (wordToN skey2_v) (wordToN skey1_v) svalue2_v svalue1_v H_swap_neq) as H_f_v1_v2_neq_fun.
rewrite H_f_v1_v2_neq_fun.
reflexivity.
(* var = var *)
pose proof (chk_lt_wrt_ctx_snd ctx (InVar var) (InVar var0) H_swap model mem strg exts maxidx sb ops H_is_model) as H_chk_lt_wrt_ctx_snd.
destruct H_chk_lt_wrt_ctx_snd as [v1 [v2 [H_chk_lt_wrt_ctx_snd_1 [H_chk_lt_wrt_ctx_snd_2 H_chk_lt_wrt_ctx_snd_3]]]].
pose proof (eval_sstack_val_InVar var0 model mem strg exts maxidx sb ops) as H_eval_var0.
rewrite H_eval_var0 in H_chk_lt_wrt_ctx_snd_2.
pose proof (eval_sstack_val_InVar var model mem strg exts maxidx sb ops) as H_eval_var.
rewrite H_eval_var in H_chk_lt_wrt_ctx_snd_1.
injection H_chk_lt_wrt_ctx_snd_1 as H_chk_lt_wrt_ctx_snd_1.
injection H_chk_lt_wrt_ctx_snd_2 as H_chk_lt_wrt_ctx_snd_2.
rewrite <- H_chk_lt_wrt_ctx_snd_1 in H_chk_lt_wrt_ctx_snd_3.
rewrite <- H_chk_lt_wrt_ctx_snd_2 in H_chk_lt_wrt_ctx_snd_3.
pose proof (N.lt_neq (wordToN (model var)) (wordToN (model var0)) H_chk_lt_wrt_ctx_snd_3) as H_swap_neq.
apply N.neq_sym in H_swap_neq.
rewrite <- N.eqb_neq in H_swap_neq.
assert(H_valid_u1' := H_valid_u1).
simpl in H_valid_u1'.
destruct H_valid_u1' as [H_valid_skey1 H_valid_svalue1].
assert(H_valid_u2' := H_valid_u2).
simpl in H_valid_u2'.
destruct H_valid_u2' as [H_valid_skey2 H_valid_svalue2].
pose proof (eval_sstack_val'_succ (S maxidx) skey1 model mem strg exts maxidx sb ops H_valid_skey1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey1.
destruct H_eval_skey1 as [skey1_v H_eval_skey1].
pose proof (eval_sstack_val'_succ (S maxidx) svalue1 model mem strg exts maxidx sb ops H_valid_svalue1 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue1.
destruct H_eval_svalue1 as [svalue1_v H_eval_svalue1].
pose proof (eval_sstack_val'_succ (S maxidx) skey2 model mem strg exts maxidx sb ops H_valid_skey2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_skey2.
destruct H_eval_skey2 as [skey2_v H_eval_skey2].
pose proof (eval_sstack_val'_succ (S maxidx) svalue2 model mem strg exts maxidx sb ops H_valid_svalue2 H_valid_bs (gt_Sn_n maxidx)) as H_eval_svalue2.
destruct H_eval_svalue2 as [svalue2_v H_eval_svalue2].
unfold eval_sstorage.
unfold map_option at 1.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey1.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue1.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite H_eval_skey2.
unfold eval_sstack_val at 1.
rewrite H_eval_svalue2.
unfold eval_sstorage.
unfold map_option at 2.
rewrite <- map_option_ho.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey2.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue2.
unfold instantiate_storage_update at 2.
unfold eval_sstack_val at 2.
rewrite H_eval_skey1.
unfold eval_sstack_val at 2.
rewrite H_eval_svalue1.
pose proof (eval_sstorage_succ maxidx sb model mem strg exts ops sstrg H_valid_sstrg H_valid_bs) as H_eval_sstrg.
destruct H_eval_sstrg as [strg' H_eval_sstrg].
unfold eval_sstorage in H_eval_sstrg.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) sstrg) as [updates|] eqn:E_mo_eval_sstrg; try discriminate.
exists (fun key => if (key =? wordToN skey1_v)%N then svalue1_v else if (key =? wordToN skey2_v)%N then svalue2_v else strg' key).
simpl.
injection H_eval_sstrg as H_eval_sstrg.
rewrite H_eval_sstrg.
unfold sstore.
split; try reflexivity.
unfold eval_sstack_val' in H_eval_skey1.
fold eval_sstack_val' in H_eval_skey1.
rewrite E_follow_skey1 in H_eval_skey1.
injection H_eval_skey1 as H_eval_skey1.
unfold eval_sstack_val' in H_eval_skey2.
fold eval_sstack_val' in H_eval_skey2.
rewrite E_follow_skey2 in H_eval_skey2.
injection H_eval_skey2 as H_eval_skey2.
rewrite H_eval_skey1 in H_swap_neq.
rewrite H_eval_skey2 in H_swap_neq.
pose proof (f_v1_v2_neq_fun strg' (wordToN skey2_v) (wordToN skey1_v) svalue2_v svalue1_v H_swap_neq) as H_f_v1_v2_neq_fun.
rewrite H_f_v1_v2_neq_fun.
reflexivity.
Qed.
Lemma reorder_updates'_valid:
forall ctx maxidx sb ops,
valid_bindings maxidx sb ops ->
forall d sstrg b sstrg_r,
valid_sstorage maxidx sstrg ->
reorder_updates' d ctx sstrg maxidx sb = (b,sstrg_r) ->
valid_sstorage maxidx sstrg_r.
Proof.
intros ctx maxidx sb ops H_valid_sb.
induction d as [|d'' IHd'].
+ intros sstrg b sstrg_r H_valid_sstrg H_reorder'.
simpl in H_reorder'.
injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
apply H_valid_sstrg.
+ intros sstrg b sstrg_r H_valid_sstrg H_reorder'.
simpl in H_reorder'.
destruct sstrg as [|u1 sstrg'] eqn:H_sstrg.
++ injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
simpl.
auto.
++ destruct sstrg' as [|u2 sstrg''] eqn:H_sstrg'.
+++ injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
simpl.
split; try auto.
apply H_valid_sstrg.
+++ destruct (swap_storage_update ctx u1 u2 maxidx sb) eqn:E_swap.
++++ destruct (reorder_updates' d'' ctx (u1 :: sstrg'')) eqn:E_reorder'_rec.
injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
simpl in H_valid_sstrg.
destruct H_valid_sstrg as [H_valid_u1 [H_valid_u2 H_valid_sstrg'']].
pose proof (IHd' (u1 :: sstrg'') b0 s (valid_sstorage_when_extended_with_valid_update maxidx u1 sstrg'' H_valid_u1 H_valid_sstrg'') E_reorder'_rec) as IHd'_0.
simpl.
split.
+++++ apply H_valid_u2.
+++++ apply IHd'_0.
++++ destruct (reorder_updates' d'' ctx (u2 :: sstrg'')) eqn:E_reorder'_rec.
injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
simpl in H_valid_sstrg.
destruct H_valid_sstrg as [H_valid_u1 [H_valid_u2 H_valid_sstrg'']].
pose proof (IHd' (u2 :: sstrg'') b0 s (valid_sstorage_when_extended_with_valid_update maxidx u2 sstrg'' H_valid_u2 H_valid_sstrg'') E_reorder'_rec) as IHd'_0.
simpl.
split.
+++++ apply H_valid_u1.
+++++ apply IHd'_0.
Qed.
Lemma reorder_updates'_snd:
forall ctx maxidx sb ops,
valid_bindings maxidx sb ops ->
forall d sstrg b sstrg_r,
valid_sstorage maxidx sstrg ->
reorder_updates' d ctx sstrg maxidx sb = (b,sstrg_r) ->
forall model mem strg exts,
is_model (ctx_cs ctx) model = true ->
exists strg' : storage,
eval_sstorage sstrg maxidx sb model mem strg exts ops = Some strg' /\
eval_sstorage sstrg_r maxidx sb model mem strg exts ops = Some strg'.
Proof.
intros ctx maxidx sb ops H_valid_sb.
induction d as [|d' IHd'].
+ intros sstrg b sstrg_r H_valid_sstrg H_reorder'.
intros model mem strg exts H_is_model.
simpl in H_reorder'.
injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
pose proof (eval_sstorage_succ maxidx sb model mem strg exts ops sstrg H_valid_sstrg H_valid_sb) as H_eval_sstrg.
destruct H_eval_sstrg as [strg' H_eval_sstrg].
exists strg'.
split; apply H_eval_sstrg.
+ intros sstrg b sstrg_r H_valid_sstrg H_reorder'.
intros model mem strg exts H_is_model.
simpl in H_reorder'.
destruct sstrg as [|u1 sstrg'] eqn:E_sstrg.
++ injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
exists strg.
unfold eval_sstorage.
simpl.
split; reflexivity.
++ destruct sstrg' as [|u2 sstrg''] eqn:E_sstrg'.
+++ injection H_reorder' as H_b H_sstrg_r.
rewrite <- H_sstrg_r.
destruct u1 as [skey1 svalue1] eqn:E_u1.
simpl in H_valid_sstrg.
destruct H_valid_sstrg as [[H_valid_skey1 H_valid_svalue1] _].
pose proof (eval_sstack_val'_succ (S maxidx) skey1 model mem strg exts maxidx sb ops H_valid_skey1 H_valid_sb (gt_Sn_n maxidx)) as E_eval_skey1.
destruct E_eval_skey1 as [skey1_v E_eval_skey1].
pose proof (eval_sstack_val'_succ (S maxidx) svalue1 model mem strg exts maxidx sb ops H_valid_svalue1 H_valid_sb (gt_Sn_n maxidx)) as E_eval_svalue1.
destruct E_eval_svalue1 as [svalue1_v E_eval_svalue1].
exists (fun key => if (key =? wordToN skey1_v)%N then svalue1_v else strg key).
unfold eval_sstorage.
unfold map_option.
unfold instantiate_storage_update.
unfold eval_sstack_val.
rewrite E_eval_skey1.
rewrite E_eval_svalue1.
unfold update_storage.
split; reflexivity.
+++ destruct (swap_storage_update ctx u1 u2 maxidx sb) eqn:E_swap.
++++ destruct (reorder_updates' d' ctx (u1 :: sstrg'') maxidx sb) as [b' sstrg_r'] eqn:E_reorder'_rec.
injection H_reorder' as E_b E_sstrg_r.
simpl in H_valid_sstrg.
destruct H_valid_sstrg as [H_valid_u1 [H_valid_u2 H_valid_sstrg'']].
pose proof (swap_storage_update_snd ctx sstrg'' u1 u2 maxidx sb ops H_valid_sstrg'' H_valid_u1 H_valid_u2 H_valid_sb E_swap model mem strg exts H_is_model) as H_swap_storage_update_snd.
destruct H_swap_storage_update_snd as [strg_aux [H_eval_u1_u2_sstrg'' H_eval_u2_u1_sstrg'' ]].
rewrite <- H_eval_u2_u1_sstrg'' in H_eval_u1_u2_sstrg''.
rewrite H_eval_u1_u2_sstrg''.
pose proof (IHd' (u1 :: sstrg'') b' sstrg_r' (valid_sstorage_when_extended_with_valid_update maxidx u1 sstrg'' H_valid_u1 H_valid_sstrg'') E_reorder'_rec model mem strg exts H_is_model) as IHd'_0.
destruct IHd'_0 as [strg' [H_eval_u1_sstrg'' H_eval_sstrg_r']].
rewrite <- E_sstrg_r.
unfold eval_sstorage in H_eval_u1_sstrg''.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) (u1 :: sstrg'')) as [updates1|] eqn:E_mo_1; try discriminate.
unfold eval_sstorage in H_eval_sstrg_r'.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) sstrg_r') as [updates2|] eqn:E_mo_2; try discriminate.
destruct u2 as [skey2 svalue2] eqn:E_u2.
simpl in H_valid_u2.
destruct H_valid_u2 as [H_valid_skey2 H_valid_svalue2].
pose proof (eval_sstack_val'_succ (S maxidx) skey2 model mem strg exts maxidx sb ops H_valid_skey2 H_valid_sb (gt_Sn_n maxidx)) as E_eval_skey2.
destruct E_eval_skey2 as [skey2_v E_eval_skey2].
pose proof (eval_sstack_val'_succ (S maxidx) svalue2 model mem strg exts maxidx sb ops H_valid_svalue2 H_valid_sb (gt_Sn_n maxidx)) as E_eval_svalue2.
destruct E_eval_svalue2 as [svalue2_v E_eval_svalue2].
unfold eval_sstorage.
unfold map_option.
repeat rewrite <- map_option_ho.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite E_eval_skey2.
unfold eval_sstack_val at 1.
rewrite E_eval_svalue2.
unfold instantiate_storage_update at 3.
unfold eval_sstack_val at 3.
rewrite E_eval_skey2.
unfold eval_sstack_val at 3.
rewrite E_eval_svalue2.
unfold map_option in E_mo_1.
destruct (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops) u1) as [elem_val|] eqn:E_elem_val; try discriminate.
repeat rewrite <- map_option_ho in E_mo_1.
rewrite E_mo_1.
rewrite E_mo_2.
unfold update_storage.
fold update_storage.
injection H_eval_u1_sstrg'' as H_eval_u1_sstrg''.
rewrite H_eval_u1_sstrg''.
injection H_eval_sstrg_r' as H_eval_sstrg_r'.
rewrite H_eval_sstrg_r'.
exists (update_storage' strg' (U_SSTORE EVMWord skey2_v svalue2_v)).
split; reflexivity.
++++ destruct (reorder_updates' d' ctx (u2 :: sstrg'') maxidx sb) as [b' sstrg_r'] eqn:E_reorder'_rec.
simpl in H_valid_sstrg.
destruct H_valid_sstrg as [H_valid_u1 [H_valid_u2 H_valid_sstrg'']].
pose proof (IHd' (u2 :: sstrg'') b' sstrg_r' (valid_sstorage_when_extended_with_valid_update maxidx u2 sstrg'' H_valid_u2 H_valid_sstrg'') E_reorder'_rec model mem strg exts H_is_model) as IHd'_0.
destruct IHd'_0 as [strg' [H_eval_u2_sstrg'' H_eval_sstrg_r']].
injection H_reorder' as H_b' H_sstrg_r'.
rewrite <- H_sstrg_r'.
unfold eval_sstorage in H_eval_u2_sstrg''.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) (u2 :: sstrg'')) as [updates1|] eqn:E_mo_1; try discriminate.
unfold eval_sstorage in H_eval_sstrg_r'.
destruct (map_option (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops)) sstrg_r') as [updates2|] eqn:E_mo_2; try discriminate.
destruct u1 as [skey1 svalue1] eqn:E_u1.
simpl in H_valid_u1.
destruct H_valid_u1 as [H_valid_skey1 H_valid_svalue1].
pose proof (eval_sstack_val'_succ (S maxidx) skey1 model mem strg exts maxidx sb ops H_valid_skey1 H_valid_sb (gt_Sn_n maxidx)) as E_eval_skey1.
destruct E_eval_skey1 as [skey1_v E_eval_skey1].
pose proof (eval_sstack_val'_succ (S maxidx) svalue1 model mem strg exts maxidx sb ops H_valid_svalue1 H_valid_sb (gt_Sn_n maxidx)) as E_eval_svalue1.
destruct E_eval_svalue1 as [svalue1_v E_eval_svalue1].
unfold eval_sstorage.
unfold map_option.
repeat rewrite <- map_option_ho.
unfold instantiate_storage_update at 1.
unfold eval_sstack_val at 1.
rewrite E_eval_skey1.
unfold eval_sstack_val at 1.
rewrite E_eval_svalue1.
unfold instantiate_storage_update at 3.
unfold eval_sstack_val at 3.
rewrite E_eval_skey1.
unfold eval_sstack_val at 3.
rewrite E_eval_svalue1.
unfold map_option in E_mo_1.
destruct (instantiate_storage_update (fun sv : sstack_val => eval_sstack_val sv model mem strg exts maxidx sb ops) u2) as [elem_val|] eqn:E_elem_val; try discriminate.
repeat rewrite <- map_option_ho in E_mo_1.
rewrite E_mo_1.
rewrite E_mo_2.
unfold update_storage.
fold update_storage.
injection H_eval_u2_sstrg'' as H_eval_u2_sstrg''.
rewrite H_eval_u2_sstrg''.
injection H_eval_sstrg_r' as H_eval_sstrg_r'.
rewrite H_eval_sstrg_r'.
exists (update_storage' strg' (U_SSTORE EVMWord skey1_v svalue1_v)).
split; reflexivity.
Qed.
Lemma reorder_storage_updates_valid:
forall ctx maxidx sb ops,
valid_bindings maxidx sb ops ->
forall d n sstrg sstrg_r,
valid_sstorage maxidx sstrg ->
reorder_storage_updates d n ctx sstrg maxidx sb = sstrg_r ->
valid_sstorage maxidx sstrg_r.
Proof.
intros ctx maxidx sb ops H_valid_sb.
induction d as [|d' IHd'].
+ intros n sstrg sstrg' H_valid_sstrg H_reorder.
simpl in H_reorder.
rewrite <- H_reorder.
apply H_valid_sstrg.
+ intros n sstrg sstrg_r H_valid_sstrg H_reorder.
unfold reorder_storage_updates in H_reorder.
fold reorder_storage_updates in H_reorder.
destruct (reorder_updates' n ctx sstrg maxidx sb) as [changed sstrg'] eqn:E_reorder_update'.
pose proof (reorder_updates'_valid ctx maxidx sb ops H_valid_sb n sstrg changed sstrg' H_valid_sstrg E_reorder_update') as H_valid_sstrg'.
destruct changed.
++ pose proof (IHd' n sstrg' sstrg_r H_valid_sstrg' H_reorder) as H_valid_sstrg_r.
apply H_valid_sstrg_r.
++ rewrite <- H_reorder.
apply H_valid_sstrg'.
Qed.
Lemma reorder_storage_updates_snd:
forall ctx maxidx sb ops,
valid_bindings maxidx sb ops ->
forall d n sstrg sstrg_r,
valid_sstorage maxidx sstrg ->
reorder_storage_updates d n ctx sstrg maxidx sb = sstrg_r ->
forall model mem strg exts,
is_model (ctx_cs ctx) model = true ->
exists strg' : storage,
eval_sstorage sstrg maxidx sb model mem strg exts ops = Some strg' /\
eval_sstorage sstrg_r maxidx sb model mem strg exts ops = Some strg'.
Proof.
intros ctx maxidx sb ops H_valid_sb.
induction d as [|d' IHd'].
+ intros n sstrg sstrg' H_valid_sstrg H_reorder stk mem strg exts H_is_model.
simpl in H_reorder.
rewrite <- H_reorder.
pose proof (eval_sstorage_succ maxidx sb stk mem strg exts ops sstrg H_valid_sstrg H_valid_sb) as H_eval_sstrg.
destruct H_eval_sstrg as [strg' H_eval_sstrg].
exists strg'.
split; apply H_eval_sstrg.
+ intros n sstrg sstrg' H_valid_sstrg H_reorder stk mem strg exts H_is_model.
simpl in H_reorder.
destruct (reorder_updates' n ctx sstrg maxidx sb) as [changed sstrg_r] eqn:E_reorder_updates'.
pose proof (reorder_updates'_snd ctx maxidx sb ops H_valid_sb n sstrg changed sstrg_r H_valid_sstrg E_reorder_updates' stk mem strg exts H_is_model) as H_reorder_updates'_snd.
destruct H_reorder_updates'_snd as [strg' [H_eval_sstrg H_eval_sstrg_r]].
destruct changed eqn:E_changed.
++ pose proof (reorder_updates'_valid ctx maxidx sb ops H_valid_sb n sstrg true sstrg_r H_valid_sstrg E_reorder_updates') as H_valid_sstrg_r.
pose proof (IHd' n sstrg_r sstrg' H_valid_sstrg_r H_reorder stk mem strg exts H_is_model) as IHd'_0.
destruct IHd'_0 as [strg'' [H_eval_sstrg_r_bis H_eval_sstrg']].
exists strg'.
rewrite H_eval_sstrg_r in H_eval_sstrg_r_bis.
injection H_eval_sstrg_r_bis as H_strg'_eq_strg''.
rewrite <- H_strg'_eq_strg'' in H_eval_sstrg'.
split.
+++ apply H_eval_sstrg.
+++ apply H_eval_sstrg'.
++ rewrite <- H_reorder.
exists strg'.
split.
+++ apply H_eval_sstrg.
+++ apply H_eval_sstrg_r.
Qed.
Theorem po_storage_cmp_snd:
safe_sstorage_cmp_ext_wrt_sstack_value_cmp po_storage_cmp.
Proof.
unfold safe_sstorage_cmp_ext_wrt_sstack_value_cmp.
unfold safe_sstorage_cmp_ext_d.
unfold safe_sstorage_cmp.
intros d sstack_val_cmp H_sstack_val_cmp_snd d' H_d'_le_d ctx sstrg1 sstrg2 maxidx1 sb1 maxidx2 sb2 ops H_valid_sb1 H_valid_sb2 H_valid_sstrg1 H_valid_sstrg2 H_po_cmp stk mem strg exts H_is_model.
unfold po_storage_cmp in H_po_cmp.
destruct (length sstrg1 =? length sstrg2); try discriminate.
remember (reorder_storage_updates (length sstrg1) (length sstrg1) ctx sstrg1 maxidx1 sb1) as sstrg1_r.
remember (reorder_storage_updates (length sstrg2) (length sstrg2) ctx sstrg2 maxidx2 sb2) as sstrg2_r.
pose proof (reorder_storage_updates_snd ctx maxidx1 sb1 ops H_valid_sb1 (length sstrg1) (length sstrg1) sstrg1 sstrg1_r H_valid_sstrg1 (eq_sym Heqsstrg1_r) stk mem strg exts H_is_model) as H_reorder_storage_updates_snd_sstrg1_r.
pose proof (reorder_storage_updates_valid ctx maxidx1 sb1 ops H_valid_sb1 (length sstrg1) (length sstrg1) sstrg1 sstrg1_r H_valid_sstrg1 (eq_sym Heqsstrg1_r)) as H_valid_sstrg1_r.
destruct H_reorder_storage_updates_snd_sstrg1_r as [strg1' [H_eval_sstrg1 H_eval_sstrg1_r]].
pose proof (reorder_storage_updates_snd ctx maxidx2 sb2 ops H_valid_sb2 (length sstrg2) (length sstrg2) sstrg2 sstrg2_r H_valid_sstrg2 (eq_sym Heqsstrg2_r) stk mem strg exts H_is_model) as H_reorder_storage_updates_snd_sstrg2_r.
pose proof (reorder_storage_updates_valid ctx maxidx2 sb2 ops H_valid_sb2 (length sstrg2) (length sstrg2) sstrg2 sstrg2_r H_valid_sstrg2 (eq_sym Heqsstrg2_r)) as H_valid_sstrg2_r.
destruct H_reorder_storage_updates_snd_sstrg2_r as [strg2' [H_eval_sstrg2 H_eval_sstrg2_r]].
pose proof (basic_storage_cmp_snd) as H_basic_storage_cmp_snd.
unfold safe_sstorage_cmp_ext_wrt_sstack_value_cmp in H_basic_storage_cmp_snd.
unfold safe_sstorage_cmp_ext_d in H_basic_storage_cmp_snd.
unfold safe_sstorage_cmp in H_basic_storage_cmp_snd.
pose proof (H_basic_storage_cmp_snd d sstack_val_cmp H_sstack_val_cmp_snd d' H_d'_le_d ctx sstrg1_r sstrg2_r maxidx1 sb1 maxidx2 sb2 ops H_valid_sb1 H_valid_sb2 H_valid_sstrg1_r H_valid_sstrg2_r H_po_cmp stk mem strg exts H_is_model) as H_basic_cmp_snd.
destruct H_basic_cmp_snd as [strg' [H_eval_sstrg1_r_bis H_eval_sstrg2_r_bis]].
exists strg1'.
split.
+ apply H_eval_sstrg1.
+ rewrite H_eval_sstrg2.
rewrite H_eval_sstrg2_r_bis in H_eval_sstrg2_r.
injection H_eval_sstrg2_r as H_eval_sstrg2_r.
rewrite H_eval_sstrg1_r_bis in H_eval_sstrg1_r.
injection H_eval_sstrg1_r as H_eval_sstrg1_r.
rewrite <- H_eval_sstrg2_r.
rewrite <- H_eval_sstrg1_r.
reflexivity.
Qed.
End StorageCmpImplSoundness.