diff --git a/cosipy/phase_resolved_analysis/__init__.py b/cosipy/phase_resolved_analysis/__init__.py new file mode 100644 index 00000000..bd5241fb --- /dev/null +++ b/cosipy/phase_resolved_analysis/__init__.py @@ -0,0 +1,2 @@ +from .pulse_profile.py import PulsarAnalyzer +__all__ = ["PulsarAnalyzer"] diff --git a/cosipy/phase_resolved_analysis/pulse_profile.py b/cosipy/phase_resolved_analysis/pulse_profile.py new file mode 100644 index 00000000..d4cf519a --- /dev/null +++ b/cosipy/phase_resolved_analysis/pulse_profile.py @@ -0,0 +1,191 @@ +#!/usr/bin/env python3 +from __future__ import annotations +from dataclasses import dataclass +from pathlib import Path +import numpy as np +import matplotlib.pyplot as plt +from astropy.io import fits +import yaml +from cosipy.util import fetch_wasabi_file + + +@dataclass +class _Cfg: + wasabi_key: str + local_fits: str + time_col: str + period: float + nbins_profile: int + nbins_phase: int + nbins_time: int + n_segments_stat: int + fig_size: tuple[float, float] + save_path: str | None + dpi: int + tight_layout: bool + + +class PulsarAnalyzer: + """Minimal Crab pulsar analyzer using Z²₂ test and cosipy utilities.""" + + def __init__(self, cfg: _Cfg): + self.cfg = cfg + self._t = None + self._ph = None + + + @staticmethod + def from_yaml(path: str) -> "PulsarAnalyzer": + with open(path, "r") as f: + d = yaml.safe_load(f) or {} + fs = d.get("fig_size", [12, 9]) + d["fig_size"] = (float(fs[0]), float(fs[1])) + if isinstance(d.get("save_path"), str) and not d["save_path"].strip(): + d["save_path"] = None + cfg = _Cfg(**d) + return PulsarAnalyzer(cfg) + + + def ensure_fits(self) -> None: + """ + Ensure the FITS file exists locally. + - Use local .fits or .fits.gz if present. + - Otherwise fetch from Wasabi. + """ + if not self.cfg.wasabi_key: + raise ValueError("No wasabi_key specified in config.") + + local = Path(self.cfg.local_fits) + local.parent.mkdir(parents=True, exist_ok=True) + + # Determine both possible names + if local.suffix == ".gz": + local_gz = local + local_plain = local.with_suffix("") + else: + local_plain = local + local_gz = local.with_suffix(local.suffix + ".gz") + + # Prefer an existing file (plain or gz) + if local.exists(): + print(f"File already exists, using local copy: {local}") + self.cfg.local_fits = str(local) + return + if local_gz.exists(): + print(f"Compressed local copy found, using: {local_gz}") + self.cfg.local_fits = str(local_gz) + return + + # Neither exists — fetch new file + target = local_gz if str(self.cfg.wasabi_key).endswith(".gz") else local_plain + try: + fetch_wasabi_file(self.cfg.wasabi_key, output=str(target)) + print(f"Fetched from Wasabi: {target}") + self.cfg.local_fits = str(target) + except RuntimeError as e: + if "already exists" in str(e): + print(f"File already exists, using local copy: {target}") + self.cfg.local_fits = str(target) + else: + raise + + def read_times(self) -> np.ndarray: + self.ensure_fits() + with fits.open(self.cfg.local_fits, memmap=True) as hdul: + t = np.asarray(hdul[1].data[self.cfg.time_col], dtype=np.float64) + t = np.sort(t[np.isfinite(t)]) + if t.size == 0: + raise RuntimeError("No finite times found in FITS file.") + self._t = t + print(f"Loaded {t.size} events from {self.cfg.local_fits}") + return t + + + @staticmethod + def fold_phases(t: np.ndarray, P: float) -> np.ndarray: + return (t / P) % 1.0 + + @staticmethod + def z2_2(phases: np.ndarray) -> float: + """Z²₂ statistic (two harmonics for pulsars with two peaks).""" + N = phases.size + if N == 0: + return np.nan + twopi = 2 * np.pi + Z2 = 0.0 + for k in (1, 2): + ang = twopi * k * phases + c, s = np.cos(ang).sum(), np.sin(ang).sum() + Z2 += (2.0 / N) * (c * c + s * s) + return float(Z2) + + def significance(self) -> float: + if self._t is None: + self.read_times() + if self._ph is None: + self._ph = self.fold_phases(self._t, self.cfg.period) + Z2 = self.z2_2(self._ph) + print(f"Z²₂ = {Z2:.3f}") + return Z2 + + def make_three_panel_figure(self) -> plt.Figure: + if self._t is None: + self.read_times() + if self._ph is None: + self._ph = self.fold_phases(self._t, self.cfg.period) + + c = self.cfg + t, ph = self._t, self._ph + ts = t - t.min() + + # Profile + hist, edges = np.histogram(ph, bins=c.nbins_profile, range=(0, 1)) + centers = 0.5 * (edges[1:] + edges[:-1]) + + # Phaseogram + phase_edges = np.linspace(0, 1, c.nbins_phase + 1) + time_edges = np.linspace(ts.min(), ts.max(), c.nbins_time + 1) + H2D, _, _ = np.histogram2d(ph, ts, bins=[phase_edges, time_edges]) + H2D = H2D.T + + # Cumulative Z²₂ + idx = np.linspace(0, t.size, c.n_segments_stat + 1, dtype=int)[1:] + Z_series = [self.z2_2(ph[:i]) for i in idx] + T_series = [ts[i - 1] for i in idx] + + fig = plt.figure(figsize=c.fig_size) + gs = fig.add_gridspec(2, 2, width_ratios=[1, 1.3], wspace=0.3, hspace=0.35) + + ax1 = fig.add_subplot(gs[0, 0]) + ax1.step(np.r_[centers, centers + 1], np.r_[hist, hist], where="mid", color="purple") + ax1.set_xlim(0, 2) + ax1.set_xlabel("Pulse phase") + ax1.set_ylabel("Counts") + + ax2 = fig.add_subplot(gs[1, 0]) + ax2.plot(T_series, Z_series, ".-", lw=1.5, ms=4, color="purple") + ax2.set_xlabel("Time since MET start (s)") + ax2.set_ylabel("Z²₂") + ax2.grid(alpha=0.25) + + ax3 = fig.add_subplot(gs[:, 1]) + pc = ax3.pcolormesh(phase_edges, time_edges, H2D, shading="auto") + ax3.set_xlim(0, 1) + ax3.set_xlabel("Pulse phase") + ax3.set_ylabel("Time since MET start (s)") + fig.colorbar(pc, ax=ax3, pad=0.01, label="Counts/bin") + + if c.tight_layout: + fig.tight_layout() + return fig + + + def run(self, show=False) -> plt.Figure: + fig = self.make_three_panel_figure() + if self.cfg.save_path: + Path(self.cfg.save_path).parent.mkdir(parents=True, exist_ok=True) + fig.savefig(self.cfg.save_path, dpi=self.cfg.dpi) + print(f"Saved to {self.cfg.save_path}") + if show: + plt.show() + return fig diff --git a/docs/tutorials/phase_resolved_analysis/README.md b/docs/tutorials/phase_resolved_analysis/README.md new file mode 100644 index 00000000..4bb2b8ac --- /dev/null +++ b/docs/tutorials/phase_resolved_analysis/README.md @@ -0,0 +1,36 @@ +# Phase Analysis Tools +This subpackage provides utilities for phase-resolved pulsar analysis in **cosipy**. + +## `PulsarAnalyzer` + +### Overview +`PulsarAnalyzer` is a minimal tool to: +- Read **unbinned FITS** event lists (from Wasabi or local storage) +- Fold photon **arrival times** with a known pulsar period +- Compute the **Z²₂ test statistic** (useful for multi-peaked pulsars like the Crab) +- Generate a **three-panel diagnostic figure**: + 1. Folded pulse profile + 2. Z²₂ statistic vs. time + 3. Phaseogram (time vs. phase) + +This tool supports direct integration with COSIpy’s **Wasabi data utilities**, enabling automatic data fetching and reproducible configuration through YAML. + +--- + +## ⚙️ Configuration (via `config.yaml`) +Example configuration file: + +```yaml +wasabi_key: "COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz" +local_fits: "dc2/Crab_DC2_3months_unbinned_data.fits.gz" +time_col: "TimeTags" +period: 0.0333924123 +nbins_profile: 100 +nbins_phase: 64 +nbins_time: 128 +n_segments_stat: 20 +fig_size: [12, 9] +title_prefix: "Crab Pulsar" +save_path: "crab_three_panel.png" +dpi: 150 +tight_layout: true diff --git a/docs/tutorials/phase_resolved_analysis/pulse_profile.ipynb b/docs/tutorials/phase_resolved_analysis/pulse_profile.ipynb new file mode 100644 index 00000000..7594c6ef --- /dev/null +++ b/docs/tutorials/phase_resolved_analysis/pulse_profile.ipynb @@ -0,0 +1,366 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
14:39:07 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m14:39:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=897255;file:///home/abhi/.local/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=312207;file:///home/abhi/.local/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=142862;file:///home/abhi/.local/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=538648;file:///home/abhi/.local/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/abhi/.local/lib/python3.10/site-packages/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n", + " warnings.warn(msg, NumbaDeprecationWarning)\n" + ] + }, + { + "data": { + "text/html": [ + "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=778501;file:///home/abhi/.local/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=752159;file:///home/abhi/.local/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/abhi/.local/lib/python3.10/site-packages/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n", + " warnings.warn(msg, NumbaDeprecationWarning)\n" + ] + }, + { + "data": { + "text/html": [ + "
         INFO      Starting 3ML!                                                                     __init__.py:39\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=305400;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=521906;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=785059;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=926998;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:41\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=738227;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=430201;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=379809;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=37207;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
14:39:07 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m14:39:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=713345;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=422407;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=660830;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=284608;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=534830;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=889604;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=83645;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=413962;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=209561;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=450335;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=927480;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=253616;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=600615;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=941504;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847491;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=869088;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=714979;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777774;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=360205;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=332495;file:///home/abhi/.local/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File already exists, using local copy: dc2/Crab_DC2_3months_unbinned_data.fits.gz\n" + ] + } + ], + "source": [ + "from pathlib import Path\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# Define the local data directory (created if it doesn't exist)\n", + "data_path = Path(\"./dc2\")\n", + "data_path.mkdir(exist_ok=True)\n", + "\n", + "# Define both the Wasabi key (remote path) and local file path\n", + "# We'll work directly with the gzipped FITS file\n", + "local_gz = data_path / \"Crab_DC2_3months_unbinned_data.fits.gz\"\n", + "wasabi_key = \"COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\"\n", + "\n", + "# Check if the file already exists locally — if yes, reuse it.\n", + "# Otherwise, download it from the Wasabi cloud storage.\n", + "if local_gz.exists():\n", + " print(f\"File already exists, using local copy: {local_gz}\")\n", + "else:\n", + " fetch_wasabi_file(wasabi_key, output=str(local_gz))\n", + " print(f\"Fetched from Wasabi: {local_gz}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File already exists, using local copy: dc2/Crab_DC2_3months_unbinned_data.fits.gz\n", + "Loaded 7775226 events from dc2/Crab_DC2_3months_unbinned_data.fits.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved to crab_three_panel.png\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEIAAAMPCAYAAADRo3BFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e3xU1b0//r/2nltukwuTCwGEoiAkooKilKrFeEEpBaWg4imteEGrQK1+PLX2KD0Vj9b2qx5bqOKt1MtPLvpQ0BawehJRqlUUxSYEomgETMiFXGYy99n790fMmCHvJUzIZHJ5PR+PPCRrVtZee+8148yatd5vzTRNE0REREREREREg4Ce7A4QEREREREREfUWToQQERERERER0aDBiRAiIiIiIiIiGjQ4EUJEREREREREgwYnQoiIiIiIiIho0OBECBERERERERENGpwIISIiIiIiIqJBgxMhRERERERERDRocCKEiIiIiIiIiAYNToQQERERERER0aBhTXYHiIiIiPoKr9eLNWvWoKKiArt27YLb7cYdd9yBGTNmHFO727dvxzPPPIM9e/bAMAwcd9xxuPLKK3H++ef3UM+JiIjoaHEihIiIiOhrLS0tWL16NQoKCjBmzBjs2LHjmNv8+9//jvvvvx+TJ0/GokWLYLFY8OWXX6Kurq4HekxERETx4kQIERER0ddcLhdeeukluFwuVFZW4vrrrz+m9mpqavDQQw/hRz/6EW6++eYe6iUREREdC06EEBEREX3NbrfD5XIdVd13330Xzz77LPbs2QNN03DqqafixhtvxOjRo6N1NmzYAMMwcO211wJo33qTmpoKTdMS0n8iIiI6MgZLJSIiIorTli1bcPvttyM1NRU33HADrrrqKnzxxRdYvHgxampqovU++OADjBw5Eu+++y7mzp2Liy++GD/84Q/xxBNPwDCMJJ4BERHR4MUVIURERERx8Hq9ePjhh/HDH/4Q//mf/xktv/jii7FgwQI8++yz0fL9+/dD13X87ne/w5VXXokTTjgBW7duxdNPP41IJIIbbrghWadBREQ0aHEihIiIiCgO27dvh8fjwfnnn4/m5uZoua7rKCoqwocffhgt8/l8MAwDN9xwA3784x8DAM4991y43W688MIL+MlPfoK0tLTePgUiIqJBjRMhRERERHHYv38/AOAXv/iF+Hh6enr03w6HAz6fDxdccEFMnfPPPx//+te/sGfPHkycODFRXSUiIiIBJ0KIiIiI4tAR2+POO+/EkCFDujxusVii/3a5XNi/fz9ycnJi6nT87na7E9hTIiIiknAihIiIiCgOw4cPBwBkZ2dj8uTJ31p33Lhx2L9/PxoaGjBs2LBoeUNDQ7QNIiIi6l3MGkNEREQUhzPPPBPp6el49tlnEQ6HuzzeOW7IeeedBwD429/+Fi0zDAObNm1CZmYmxo0bl/D+EhERUSyuCCEiIiLq5MUXX4TH40FjYyMAYNu2bairqwMAzJ07FxkZGbj11lvxP//zP7j22mtx/vnnIzs7GwcPHsS7776LCRMm4JZbbgEAnH322Tj99NPx7LPPorm5GWPGjMFbb72FnTt34rbbboPdbk/aeRIREQ1WmmmaZrI70ZnX68WaNWtQUVGBXbt2we1244477sCMGTOidQzDwJYtW/Dmm2+iqqoKbrcbhYWFOO+88zB//nw4HI4u7b766qtYs2YNamtrkZeXh3nz5mHu3Lld6tXX12PFihV4//33YRgGJk2ahKVLl8YsZ01km0RERJRcl19+OWpra8XH1q5di8LCQgDAjh078Nxzz6GiogLBYBB5eXk45ZRT8KMf/ShmpYfX68UTTzyB//u//4Pb7cZxxx2H//iP/8D06dN75XyIiIgoVp+bCKmpqcEVV1yBgoICDBs2DDt27OgyEeL1enHxxRfjpJNOwtSpU5GTk4Py8nJs3rwZp556Kv73f/8XmqZF62/YsAEPPPAApk2bhjPPPBM7d+7Eli1bYlLZdbR73XXXoa2tDVdccQWsVivWrVsH0zTx1FNPISsrK6FtEhEREREREVFi9bmtMS6XCy+99BJcLhcqKytx/fXXd6ljs9mwcuVKnHzyydGyWbNmYejQoXjqqafwwQcfRIOXBQIBPPHEE5g6dSqWL18erWsYBp5++mnMnj0bTqcTAPDyyy9j//79WLVqFYqKigAAU6ZMwcKFC7F27dpoXxLRJhERERERERElXp8Llmq32+Fyub61js1mi5kE6XDOOecAAKqrq6NlH374IVpaWnDppZfG1J0zZw58Ph/eeeedaFlZWRnGjx8fnbAAgFGjRuG0005DaWlpQtskIiIiIiIiosTrcytCjsWhQ4cAIGa7SVVVFQBg/PjxMXXHjRsHXdexZ88eTJ8+HYZhYO/evfjBD37Qpd2ioiK8//778Hq9SEtLS0ibkoaGhmigNqB9JYrP58Opp56KlJSUo7kkREREdAR+vx/V1dUYNWoU//9KREQ4ePBgTAawZMrOzkZBQUGyuzHgDKiJkOeffx7p6emYMmVKtKyxsREWiwU5OTkxdW02GzIzM6MTDa2trQgGg+JqlI6yhoYGjBw5MiFtSjZu3IjVq1d3KX/88ceZbo+IiKiHVFdXY9GiRdAdZ0PTY2N32VoC4t+YFnlRrWbIodf0ymqxXMvJlttP7xr4HQC0NkV/UuX6Zor8Vk8/5BbLocpiEwzK5anyxJFpVSw6jsjXR3O3yfVT5PNS8vnl/mRmyMdtbpXbSZe/pDJt8vU0VPdLEYovOES+bqrxFsxR1G+V74s/X64fsWti+aHx8v3yj+iaHrq9IbkdpCvqt8nXzbnHIpZrigiGmiGXO5rlP1Cdb/an8jgJDLHJB1D0x5sn998SjK8/9ja5vm+IXD+lSdG+4uniz5HbMRSnG5afLsrrEBolX09HWkgsdznl5/tZ+XvF8oAhj593Do4Wy71v5Inl2XsjYvnbL94W8/vBgwfxkwVz4Q/0jc0TKSkpeOaZZzgZ0sMGzETIM888g+3bt+PWW2+NxucA2ldRWK3yadrtdgQCgWg9oH0yQ6rXuU4i2pTMnj0bZ511VvT36upq3HPPPcr6RERERERE1H3Nzc3wB3T819JmjBqumNzrJdUHrPifP2WjubmZEyE9bEBMhLzxxht44oknMHPmzC5xOxwOB8JheQAHg8Foqt2O/4ZCXWcug19/C9K5bk+3KcnNzUVubq7ycSIiIiIiIup5xw0PYczx8qqW3mKoluHQMesb632Owfvvv497770XU6dOxf/7f/+vy+MulwuRSARNTU0x5aFQCK2trdEtKpmZmbDb7TExOTp0lHVMSiSiTSIiIiIiIiJKvH49EVJRUYE777wT48aNw29/+1txu8rYsWMBAJWVlTHllZWVMAwj+riu6zj++OO71Os4zrBhw6JBTRPRJhERERERERElXr/dGvPFF1/g9ttvx9ChQ3H//fcrt5icdtppyMzMxIYNGzB16tRo+YYNG5CSkhJTNm3aNKxatQqVlZXRjDBffvklduzYgSuuuCKhbRIREVFyhVN1wBYb/NDU5PcXjnqvWG6kyNEHjbFyYHTdp4gVpsnBDSMFWWK5MnhrUA4OGMnLjqs/vhOGiuWWgBy90tYiB08MO+XraVcEFTVtcjBKI1UR5VGTozxaapvE8sjIfLl+o0duX/EVYtgpB5nVw4rrowhyGsqUr4/FL9/HlrHyF2oZB+T2myYp2lfEwrW0ytffOV6+njmp8vPii4phYrmhiM1rlYePMhioLl8ehBTtHyqWg8la/PI4DGUogpy6FfXTFc9fRX8cinagy+20jJHLbS1yM0qKmLfBYYoBofoKPSI/YLfJoQRGZMgdPTltn1h+ov2gWL7HLT9/D+XJwVLDXylOWMEwDURMRYTeXmIk+fgDWZ+cCHnxxRfh8Xii20e2bduGuro6AMDcuXOh6zpuu+02uN1uzJ8/H++8807M3w8bNgwTJkwA0B6D49prr8VDDz2EZcuW4cwzz8THH3+M1157DYsWLUJmZmb07+bMmYNXX30Vt99+O+bPnw+LxYJ169YhJycH8+fPj9ZLRJtERERERERElHh9ciJk7dq1qK2tjf6+detWbN26FQAwffp0AIhOjKxatarL31988cXRiRCgfTLCarVi7dq12LZtG/Lz87FkyRJcdtllMX+XlpaGhx9+GCtWrMDTTz8NwzAwadIkLFmyBNnZ2TF1E9EmERERERERESVWn5wIWbdu3RHrdEyMHK1Zs2Zh1qxZR6yXn5+Pu+++O2ltEhERERERUXIZMJOetSXZxx/I+nWwVCIiIiIiIiKieHAihIiIiIiIiIgGjT65NYaIiIiot4VTdJiO2O+I0r7yiXWV2UwccrmuWN1spMtpMCIp8ls006bIDhOSMwvYDymyt+TI2UYQlPufur9Vrh+RTyySlSqW2+rkbCyh3HSxXFdkS9ECimw4iqwrUGXJ8crZMcxURXoPBYuiP8FMObtNikfOzqOH4ntr7miR73vELo+T1Hr5fvmHyNk0wjly1o/sFPl5kWKV61vy5fqRRvm+q6iyzLTly/1XZZNJOSRfh2Cm3E56rXydPcMV17khvuvcViC3o8qS42iUyyNyMhzldVNxfCn/Qciper7L9/2kvFqxPMcuZxdqCGeK5Sq5jjaxvDJVvl+mJb6sMSZMGEhu1haTW2MShhMhRNRt5evLUbasDAF3AA6nAyXLS1A8rzjZ3SI6Kh3jFwDHLhEREdEgwokQIuq2smVlaKhsAAC44UbpXaX8MEn9Rufxy7FLREREnUVgImImd0VGhCtCEoYxQoio2wLuwLf+TtSXdR6vHLtEREREgwcnQoiIiIiIiIho0ODWGCKKW0dsBU+NHPSOqC/j+CUVe1sEOCzoZSBHjlZo9SmiMCpYqw+K5eYQOTigpcEtlgdHDhHL7YogpGhqkfsj11YHE9wv99839USxPLVaPm5wqFMstzXLwTQ1vxyE0bTLZ2D7vE4sR6oiimSLIgisVXGF0uUgsxZDDqiY1iiXh10ZYrmtUQ7+6BshjxNT8ZVmIFsOequqr8uXGZn/loO9ugvl50XIUAQRjsgHTmmQj2sqhqGmGOYpTYqAlpoiiGpI3m5gUSwO9ObJ/U+vkY8bSpOPqymus71N7o+mOK1wiuoCycWGYjhb5FjK8A6TX9/0gHwdLK3yAd6pOl4sz8uVn3dTxuwVy89P+1Is/9Nn54nlqbVyP8OK4LMq7cFSk7s1hcFSE4cTIUQUt86xFYj6G45fIiIiosGNW2OIKG4d8RQ0XUPu+Nwk94YoPp3HLxERERENPpwIIaJuyyjMwOJdi+EcLi91JurLMgozOHaJiIhIFIHZJ34oMTgRQkRERERERESDBmOEEBEREQGA+fVPJzZPSKxqcQfjatoodInlWkBu38xIFctt9XK0SNMqf7elZctBNhGUj2sMUaySGjtSLE7dJwdF1RTt2xX917xylMpIntx/3aOI8hhRBLFVbIUzXTlyfxqb5HbavHJ9n+K7RYddLLYekoOiRjLkoK4p9XIw2eAQub69Wf4WOTBEDn5q9cv1W78jn1dzqxw0NhJQhuEVS1XBQFVBP3XF7Q1ky/1UxG5F5pdyQzZdbidVEfQWpnxepqIdVVDXtqFyR8OKGL92OZYyIopgoA75aYqg4uUhfZ/cn5Ac4xfBEfLroRmSr4PVIl+H/99XZ4rlH2XJrz9pNvm4IcXTN/VQfEGuGSx1YOOKECIiIiIiIiIaNDgRQkRERERERESDBrfGEBEREREREXUSMYGIYvtTb/aBEoMrQoiIiIiIiIho0OBECBERERERERENGtwaQ0RERATAUe+HbsZm81Blf9D9iqwxTXJ6Bt/EUWJ56o6DYnnk+GFiuanLWUgsbjmLimlTpM1wyNlDLIcU6SjccrYXVT8th1rl/mTK2XCQJqe7sBxolOtb5PsSGZkvV2+Qz0vzyP2EVfEW2S5ffyMnXSzXm+TsMGaqIsuPYhm+YZfvo+Og3H7QJWd1sXrlrBkRh3y+EUXWEphyWpf8fHn81+0dIpYHFUmKLHISIWV2G8Mq9ydrX1gs9xTK55t+UK7vz5GvfyRFPm56reI62+X6unxYOPfL2VW8BfL4sSuywxjy0x2a4rhheTgrs/xobvl62ofKWZZ0Tb6P+Sny68xwh5wGxpEnn8ALo4aL5ZnVqjRFMhNAfH/R87gzJnG4IoSIiIiIiIiIBg2uCCEiIiIiIiLqJAITkSSvyUj28QcyrgghIiIiIiIiokGDEyFERERERERENGhwawwRERERgLDTDk2LjQ5p2OTghnLITABZcjBQPSQvbzaH5orlWkgOtmg5JAcTDH7HJZZbW+QgqlpQESWxTQ5uiOwsuR2/op3MDLFYrz0k17fIwSjNLDlqo9YiBwlVMRXBWDWffH3glI8bcSqCvSqEh2aL5dZGRfDZDDk6qWmVv7sMFMj99OXKb/FNizyeVavvQ1lyqEibXb7vwYgiOK+CRRFz2N4qd8iqCKIadsj1A1lyf/SwXN/nUgSlVfQnLD9NEchUBDN1K4KfDpXbsXnl+5XaKLcTVgRvDWbK5f48+bhWxctAYKh83zW/fL5Bt/y8a9Dl6/nD4Z+I5eUeOSjznmY5OLIqaGy8u0wME4gkeWeKwZ0xCcMVIUREREREREQ0aHAihIiIiIiIiIgGDW6NISIiIiIiIurE+Pon2X2gxOCKECIiIiIiIiIaNDgRQkRERERERESDBrfGEBEREQEIZVgAW+xbI8ehkFxZkX0jmCXnk3HUy2kYVNlbNL/iuA6bWKz7FekrNEWWEEWWltCJw+VmwvICbeuX9WK56ZGzumhOOZsMHMo8PDJdPi9VP8NZcjYWZMtZYGx1brHc0iLfx0hWmly/TU5zoqqvK8aD3yVnhzEVt1dTZJow4vwK1NqqyFbjke9XKCB/tNAMuaOBHPm4hlWub1Ek+bG7FVmZFElsVNlnDEX9tqHydbB65ePqiqejt0A+QKr8NEJAke3FqrgObcMUA0JBlR1Gdd20VMXrVbp8HVJS5dex7HSfWF5gbRXL62yZYrmheAJoiv0k7lHy66eKAQ0RxHdNe5qR5OMPZFwRQkRERERERESDBleEEBEREREREXVimO0/ye4DJQYnQojoqJWvL0fZsjJ4ajzJ7gpR3Dh+iYiIiAjg1hgiikPZsjI0VDbA/Hp62uF0xDzuPuBGxQsVyega0RF92/j11Hiwsmglxy8RERHRIMAVIUR01ALu9uhimq7BdaILJctLALR/oHSjPbBc6V2lKJ5XnLQ+EqlI47f0rlK44YZpmGiobOD4HeRMDTg8Lp0vTw4Kmf6VHI3PcVCOPmiky+34h8nBQ1P2yyuXjFRFsD9FPL1wpkN+QLHe2toiR5E00uTjho/LE8stLfJ5mYogs6qgrkaafN2CI7LE8pSv5CCnZobcjqkIuoqAHOQxki8HbTR1+btFwyIfV2+Vo11GFMFbI3ZFUMiIfB8jNrm+qfgK1JunCP47RI76mZcnB7VMtcvXbT/kqKhag3y+mhyTUxkkNJwq9z8sx6SFpghmalEEUQ0rYu2mNMnlqutpb5Xvl9+lqC8PZ3jzFc8XVZBTxfaKYJb8gOEKyn8QVgSNTZfvu67L7Y/POSiWuw35Qp/j3C2WN4fk8bM1L18szzggFisZQB8IlkqJwokQIopbRmEGFu9aHP29ZHkJ1l+2HsA3HzaJ+qrDx2/pXaVo3NMI0zA5fomIiIgGAW6NIaJjVjyvGM7hzmR3gyhuxfOKsXjXYmQUKlJ6EhEREdGA0+dWhHi9XqxZswYVFRXYtWsX3G437rjjDsyYMSOmXkVFBTZv3oyKigp89tlniEQi2Lp1q7LdV199FWvWrEFtbS3y8vIwb948zJ07t0u9+vp6rFixAu+//z4Mw8CkSZOwdOlSDBs2rFfaJCIiIiIiouSKQEv61phkH38g63MrQlpaWrB69WpUV1djzJgxynrvvvsuXn31VWiadsQJhQ0bNuD3v/89Ro8ejZtvvhkTJkzAww8/jOeeey6mntfrxc0334yPPvoICxYswDXXXIOqqiosXboULS0tCW+TiIiIiIiIiBKrz60IcblceOmll+ByuVBZWYnrr79erHfppZfixz/+MRwOBx566CHs27dPrBcIBPDEE09g6tSpWL58OQBg1qxZMAwDTz/9NGbPng2ns31J/8svv4z9+/dj1apVKCoqAgBMmTIFCxcuxNq1a6N9SUSbRERElFx6xOwSVdDqVURVNOUggFpErq+3ycEH9TT5rZjpkKMe6oognqqgmdav5KCrplOOIhnJVASvDKrOS46rEyqQt5vpQTn0n8Ujt2OpOSSW2yy5YnkkQw4Oa9+viGqpCNKKFDnIaUQRNNbW0Ca3oxgnobx0sVx1fWxu+fobDvk7TUer3I4/R66f2iD3M5gtj8MWrzxOAmF5PBvNimC1quCecjFCil2Muvy0QHqtfF6tI+UjpNXJ183qk+tb/HL91Eb5OquCnGqKiJiG4pNaRL78SJVjkKJthFyuhxRBdVvlca4H5PohxVfrIZ/czmcZ8vN3TFq9WJ6dIgeh/qxVbsfmVgSTtSmixiqYpgbDTO6KDDPJxx/I+tyKELvdDpfLdcR6Q4YMgcOhiITeyYcffoiWlhZceumlMeVz5syBz+fDO++8Ey0rKyvD+PHjoxMWADBq1CicdtppKC0tTWibRERERERERJR4fW4ipKdVVVUBAMaPHx9TPm7cOOi6jj179gAADMPA3r17u9QDgKKiIhw4cABerzdhbUoaGhqwe/fu6E91dfXRnjYRERERERERCfrc1pie1tjYCIvFgpyc2PzlNpsNmZmZaGxsBAC0trYiGAyKq1E6yhoaGjBy5MiEtCnZuHEjVq9eHd8JExERERER0TFhsNSBbcBPhAQCAVit8mna7XYEAoFoPaB9MkOq17lOItqUzJ49G2eddVb09+rqatxzzz3K+kRERERERET07Qb8RIjD4UA4HBYfCwaD0TgjHf8NhbpGWwoGgzF1EtGmJDc3F7m5chAgIiIiIiIiIorfgJ8IcblciEQiaGpqitnKEgqF0NraGt2ikpmZCbvdHt3W0llHWcekRCLaJCIiouQydQ3QY5chhzLktBYplTVyI4oVo5ohZ/1wBOUvVmCJbzm05lWsMA0rst6osszUu8Vy06pI76Fg3ydnaTFT5CwSWliVNkPup6XVJ1dPl79giuQ65XYa5aw6qmwvul++nqEhchYee02rXP6lnA0nPCxHLNcV10dT9NNMk++X1SfXd4+QwwZa/GIx/G3yfRybJ2f92PVZtty+fBuhKZ4WaQ2KrEN+RRYnRZKQ3H/LD7QVyM9fm1c+biBLvm7BLPn5m9KouF+qqI2Kl4G0r+QHdMXz2tEo1/cOl+vbD8kdiqQqLmib4vUhTZHtKM5MKPXhTLG8tlku1xXdTKtVDCwFAxoiSQ6paXBrTMIM+ImQsWPHAgAqKysxderUaHllZSUMw4g+rus6jj/+eFRWVnZpo6KiAsOGDUNaWlrC2iQiIiIiIiLqLq/XizVr1qCiogK7du2C2+3GHXfcgRkzZsTUu/fee7F58+Yufz9y5Eg8++yzMWWGYWDNmjV4+eWXcejQIYwYMQILFizABRdc0OXvv/jiC6xYsQKffPIJrFYrpk6diiVLliA7O7tHz7MnDPiJkNNOOw2ZmZnYsGFDzKTFhg0bkJKSElM2bdo0rFq1CpWVldFML19++SV27NiBK664IqFtEhEREREREXVXS0sLVq9ejYKCAowZMwY7duxQ1rXb7fjlL38ZU5aent6l3uOPP47nnnsOs2bNwvjx4/H222/j7rvvhqZpOP/886P16urqsHTpUmRkZGDRokXw+XxYs2YN9u7di1WrVolxM5OpT06EvPjii/B4PNHtI9u2bUNdXR0AYO7cucjIyEBtbS22bNkCANi9ezcA4K9//SsAYOjQobjooosAtMfguPbaa/HQQw9h2bJlOPPMM/Hxxx/jtddew6JFi5CZ+c2Sqjlz5uDVV1/F7bffjvnz58NisWDdunXIycnB/Pnzo/US0SYRERERERH1DQa0uLfxJKIP8XC5XHjppZfgcrlQWVmJ66+/XlnXYrFg+vTp39pefX091q5dizlz5uCWW24BAPzwhz/E0qVL8ec//xnnnnsuLJb2rVHPPvss/H4/nnjiCRQUFAAAioqKcOutt2LTpk2YPXt2XOeSaH1yImTt2rWora2N/r5161Zs3boVADB9+nRkZGSgpqYGTz75ZMzfdfw+ceLE6EQI0D4ZYbVasXbtWmzbtg35+flYsmQJLrvsspi/T0tLw8MPP4wVK1bg6aefhmEYmDRpkricJxFtEhEREREREXWH3W6Pxqs8GpFIBH6/X1wJAgBvv/02wuEw5syZEy3TNA2XXnop7r77bpSXl+OUU04BALz55pv43ve+F50EAYDJkyfjuOOOQ2lpKSdCjsa6deuOWGfSpEnRyZGjMWvWLMyaNeuI9fLz83H33XcnrU0iIiJKDovfgKZHDiuTg/1Fhg4Ry1XBK/X6Zrm+KpipIqafaZeDEprpKfIfpMnBQ7VmRZDQVLkd1Xkh2DUzXncYGfJxlTEkG1vk+rocbFRTBqVVBIXMlmO4WWvkIKdGthyM1VBd/4j8FtxaJwdXVQWZNR2qpebycX1D5PHjaJZbCatC2UXk67a3Uf4ApiuGSUQxbG2K4aniHimfl6Z4eqXXysFP7W2KoKhO+XwzFME3U5p7ZhWBp1A+L+X1dMjHNexyfVurXF913+0tivry8EdalhwNN8suR+ENmfL5vtk6Tm4/JSiWR9rk/kRS4wt82h4stW+sCKmuro4pd7lcx5x0w+/3Y8aMGfD7/XA6nTj//PPxs5/9LCaGZVVVFVJTUzFq1KiYvy0qKoo+fsopp6C+vh5NTU0YN67rvSoqKsK77757TH1NhD45EUJEREREREREwD333BPz+8KFC3HNNdd0uz2Xy4Urr7wSJ554IkzTxL/+9S+8/PLL+Oyzz/Dwww/D+nUGtMbGRuTk5EDTtC5/DwANDQ3Rep3LD6/b2tqKYDAIu10xK5cEnAghIiIiIiIi6qPuvPPOmFUZ8Wx/kdxwww0xv59//vk47rjj8Pjjj+PNN9+MBkENBAJikNOOCY1AIBDz3yPV7UsTIclNjExERERERETUx0RMvU/8AMCoUaMwbty46M+xbouRXH755dB1Hdu3b4+WORwOhEJd92IFg8Ho453/ezR1+wpOhBARERERERENYg6HA5mZmWht/SZWkcvlwqFDh2AeFieqYytMx4RMxwqVjvLD62ZmZvap1SAAJ0KIiIiIiIiIBjWv14uWlpaYzKZjxoyB3+/vEqy1oqIi+jgA5OXlITs7G7t37+7S7q5du6L1+hLGCCEiIiICoJntP51ZvHJWCEtN12+9AMB0ZYnlkaFyNhNockYC3SNnVYAuf4elhRTpMVoV6Tdscb4FVGSHMXIyxHK9Vs6uonnkdA7m8Dz5uAFFeowMOdWj1tAstz8kU25HkQ3HosgOg4CcpUJvk7O3BIfJ48HWqLgOiiwzoWxFVp2QnOUk6JTvb+oheZy0Fcj1TcUwGXFcg1juDcrf+AYUyW3sTXK5rkqmpMiKYlVkCdEj8v315crPI0eLfD0tQbmdiD2+75SDGXL/Q+ly+eGvRx0MxfVUXTc9IJeH5KcvLIqXn7bjFc9HRT+9bnncfg4569b3XHvF8lPT94nlr/vkbDKqlzc9rOioggkNRpLXDZgJyFoTCAQQiURissMAwF//+leYpokpU6ZEy84++2ysWLECL730Em655Zb2PpkmNmzYgLy8PEyYMCFad9q0adi8eTMOHjwYTaH7wQcfYN++fbj88st7/DyOFSdCiIiIiIiIiAaAF198ER6PJ7pNZdu2bairqwMAzJ07F263G9deey0uuOACjBw5EgDw3nvv4d1338WUKVNw9tlnR9vKz8/HZZddhueffx7hcBhFRUV46623sHPnTtx1112wWL5JebxgwQKUlZXhF7/4BebNmwefz4fnn38exx9/PGbMmNGLV+DocCKEiIiIiIiIqJMINEQSsCIj3j7Ea+3ataitrY3+vnXrVmzduhUAMH36dGRkZOB73/se3n//fWzevBmGYWD48OG4/vrrMX/+fOiHrTy84YYb4HQ6sXHjRmzevBkjRozAnXfeiQsvvDCmXkFBAf74xz9ixYoVWLVqFaxWK6ZOnYrFixf3ufggACdCiOgola8vh/uAO9ndIIpb+fpylC0rg6dGsUWAiIiIaIBYt27dEevceeedR92erutYsGABFixYcMS6o0ePxgMPPHDUbScTJ0KI6KiULSuL/tvh7Fvpr4i+TdmyMjRUfrOfneOXiIiIaHDjRAgRHZWA+5tIWyXLS5LYE6L4dIxdTdfgOtHF8UtKoTQdsFliyqweOVCeUSAHPzVS5CiG1tpmub4zTSzX3F6x3MySoxv6R8hBOVP2+MRyWOW3gIYiWKeu6I/eJK+0UgWNNa2KwIOKoLFmhhxsMZydKpbb9sr9DA2Rr7Nt5+dyf4Zky/3Jdsr1FUFXrR45uKpKJF2xfFxXBNM0FMEfFavpQ+ny9VcFkTRsckM1jfL9tdoU0ToL5OibRot8HyOqVfSmYpxYxGI4DsrnZSqGYShVbt/mVdxfr3y+h8bJrwMpTXI7KU1ykFb/EEVHFbc9oIoJrPjEZ2uVy0OKYa75FeMnJJebuYoorQr7/PLr6ohMOXjx2Px6sfxzi/w6GXbEF/jUMHVEVIOllxhJPv5AxokQIoqLc7gTxfOKk90NorhlFGZg8a7Fye4GERERESUZp5iIiIiIiIiIaNDgihAiIiIiIiKiTgwARpKzxsibpqgncEUIEREREREREQ0anAghIiIiIiIiokGDW2OIiIiIAFhCZpfsH4ZDTkfhLZSzmWRUt4nlkTw5nYOpypZik7MnWBRZWrRIulgeHuYSy/VgWCw37Kq3hnLWFRUtrGhfkRVFlf3EsMnX2dokZ4cx8uTrZm0LieWR4u+I5ZYWRdYemzwetM8PiOXhk0eL5briOht2uX1DlW1HMT5DaXL9oFMeb355mCDikO/LuMI6sfyrVnmcB+rl8aNIAgPPKPm42ZXyH1h9cv1gpiLbjiK5jTKbTLrcjmGT76PdLbejpHgdUPUzMEQut8jJeWCRX5YQzJbLDVXWnnS5Q5pDzo5kBOXxefYIOVvTmU65XFdsEMlNkU9MkQsKhpzMR8mAjogqRU8vMbhuIWF4ZYmIiIiIiIho0OCKECIiIiIiIqJODFNHxEzyihDVMiU6ZpwIISIion7r3nvvxebNm5WPv/jii8jLy+vFHhEREVFfx4kQIiIi6rdmz56NyZMnx5SZpokHHngAQ4cO5SQIERERdcGJECIiIuq3JkyYgAkTJsSU7dy5E36/HxdeeGFcbYVTdMAWuwzZtMjR9dJq5KiEpkUR9DAkBxm0HJKDnxoup1geKswSy61eORio7pWDGIaGyMErLT65Hc2QgxVGMhxiOUz5uqmCgdqrG+V2LPKy8HC+HJRT9yv6rwgOqymCkJrW+N4ihyZ8R+5PQBHtUhEkNJwhHzfskP/A3iq3Y/PK98s/RL7+loDcjqbYFeAOyvc9P0Mez81WeTxrptyfzE8VQV1VQUIDcn2bHPMWpiIYqOp89aDiAUWxo1W+/t58ebz5UhXNK8aJqjwkx0xW1tfkpwvCGfK4tdUogh2Pke97JCSfb0VzgVhelF4jluda5YFuKE4sonhZCmTHt83EgJb0YKWG6sWCjhk3HREREdGA8vrrr0PTNFxwwQXJ7goRERH1QVwRQnSUyteXo2xZGQLuABxOB0qWl6B4XnGyu0V0VDh+abAIh8MoLS3FhAkTUFhYmOzuEBERUR/EiRCio1S2rAwNlQ0AADfcKL2rlB8kqd/g+KXB4r333kNLS8u3botpaGhAY+M3WzGqq6t7o2tERNSPGKaGiGpfUS/2gRKDEyFERyngDnzr70R9GccvDRavv/46rFYrSkpKlHU2btyI1atX916niIiIqE/hRAgRERENCF6vF2+//TbOPPNMZGXJQUWB9kwzZ511VvT36upq3HPPPbC3RqDpsUE1ba2qKJLyt3R6m1xfC8jBOhFSBDndXyeXZ8pBJ02H/JZOGaTVL/fHsr9BLIcpR4W0mPJ1Nu1yf3RFMFY45OCqCCn66ZaD1WphOUilaVMECW1wy8dVnK+ZKgeLtCmCsZqKYKyq4K2KGJ5IbfaJ5aGCDLHcUAR7tcixc2GRLyf8LnmcN7rlqJxWi3z9HVny80L/XL7vuiLGrHN/fEFLVcFPfbnyeaUdVPS/Sb5fvny5/6E0uX1Hi9yhlENyecQut9M6Wi5PlV82oIhJC0NRnrZffsB7ojyAtBo5+HL6SPn5ZdXk6/yF3yWW52YoogIrqIL/DtmlGOgKEehQDMVeE2FIz4ThRAjREXTEVvDUyBGxifoyjl8aTN5+++2jyhaTm5uL3NzcXuoVERER9TWcCCE6gs6xFQYjfpDu3zh+y+E+oPjGlwacf/zjH0hNTY1Z7UFERER0OK61ITqCjlgKmq4hd/zg+wax44O0abQv23Q4FcnZqU/i+C2L/ptjd2Brbm7G9u3b8f3vfx8pKSnJ7g4REfVzJjQYpp7UHxMMlpoonAghOkoZhRlYvGsxnMPl/dkD1eEfpEuWqwMQUt812McvAI7dAe6NN95AJBI54rYYIiIiIm6NIaKj0vFBmqg/cg53Ml3wAPf6668jJycHp59+erK7QkRERH0cJ0KIiIio33vkkUeOuQ09YkAzYrMZqLKcmLq8qDaSmSqWa4Yi60qjojM+RXaDiCKHQUSR/kGR3UaZLSVFsYVM0Y7WrIgflSVnFTHjzA4DxXU2LfL5aj5FVosW+XzNvBy5fpsiK41Hzt4SGSq3Y6lXZLsIy+erK7LtQJF9xuKT23E0KxZ9m3L7/hy5vip7i8MuHzfVJj9f3DXyakSLYtV/SH4aKbOopDbKzy+rV85OYvHL4yecqni+BBVZhwLycW1hudw3RG5HlU0mokgjZIszbJvNI7evyj6j3I0RVIwr1X0Myee7vzFbLD+vYI9YXu4bIZZ/7h4id0fxcuIZHt8W2fasMYrUQ70kwq0xCcOtMUREREREREQ0aHAihIh6lKfGg5VFK1HxQkWyu0IUN45fIiIiAgDD1BBJ8o9hckVIonAihIh6REdGDtMw0VDZgNK7SpPcI6Kjx/FLRERENHj0yRghXq8Xa9asQUVFBXbt2gW324077rgDM2bM6FL3iy++wIoVK/DJJ5/AarVi6tSpWLJkCbKzs2PqGYaBNWvW4OWXX8ahQ4cwYsQILFiwABdccEGfapOovypZXoLSu0rRuKcRpmHGZOsg6us4fomIiIgGjz45EdLS0oLVq1ejoKAAY8aMwY4dO8R6dXV1WLp0KTIyMrBo0SL4fD6sWbMGe/fuxapVq2CzfROQ6/HHH8dzzz2HWbNmYfz48Xj77bdx9913Q9M0nH/++X2mTaL+qnheMYrnFePBEQ/CfUARhI+oj+L4JQBAxISmxQbG07zypJimCGZqjMoXy1VBM830FLmdIXKw0UiK/NbNvvuAWA5FUFFlUFRVcNJUOWpj6Dg5SKj9C0UU2P0H5fLsTLncL19/XRG8VdVPzSZfN1XwUyjqIyAHYzX1OPvTIgcV1RvlcRIamSu3owjKGciS+28JyfUNRVBOXe4mmvdlieVNVrl9PagIQqqYc7YojhtRvGVWlZsZiiCziiCnjlY5uGogU27HqmgnkC7XV11nb4GifZ/cfsohRTDWXPk6Gza5PE3xdAxky+WOg/K4CoxUBCnW5X6eOqxGLP+4VQ6KOiP3E7H8lbYJYrkqvqgR5ydfAxqMJAcrlUck9YQ+ORHicrnw0ksvweVyobKyEtdff71Y79lnn4Xf78cTTzyBgoICAEBRURFuvfVWbNq0CbNnzwYA1NfXY+3atZgzZw5uueUWAMAPf/hDLF26FH/+859x7rnnwvL1G4VktklEREREREREidUnY4TY7Xa4XK4j1nvzzTfxve99Lzq5AACTJ0/Gcccdh9LSb/Z3v/322wiHw5gzZ060TNM0XHrppaivr0d5eXmfaJOIiIiIiIiIEqtPToQcjfr6ejQ1NWHcuHFdHisqKkJVVVX096qqKqSmpmLUqFFd6nU83hfaJCIiIiIiouQzTB2RJP8YZr/9uN7n9cmtMUejsbF976m0csTlcqG1tRXBYBB2ux2NjY3IycmBdth+0o6/bWho6BNtHq6hoSH69wBQXV0tXQoiIiIiIiIiOkr9diIkEGiPriQFGu2YVAgEArDb7QgEAkes1xfaPNzGjRuxevXqLuVERERERERE1D39diLE4WiPdh4KdQ0rHQwGY+o4HI6jrpfMNg83e/ZsnHXWWdHfq6urcc8994h1iYiI6NjoIQM6IjFl4Tw5m4m1Xm5DMxRZOZxpYrmpyAJjOdgi97FVzipifGeYXH9/naI/crYXLRKRy31yVgiLT5EGw1C0Uyhn1UFYro+gIn2IRV4urgXCiv7IuRciuU65+Tr5OiOouA5tcrky5YOi/2ZWhlyuqB9yylmBbB75erYNk8ebo0Uet8EsRcaMNLl9q10ujwQVWYfkyw9Ncd0cTXI/VVlmVLsKbF65Hc8w+Xqm18odUj3fI3b5uqU0ye0YVrl+RPH0CmXI9e2qYatIyqRqP6JIKqUMquCTr1tIkX1pX2u2WH6SS84m0xyRXz8dNvn57k0Vi5XZZFTas8YkV7KPP5D124mQjq0mnbeOdGhsbERmZmZ0lYXL5cKOHTtgmmbMVpaOv83Nze0TbR4uNzc32g4lR/n6cqbSpH6L45eIiIiIqKt+G30lLy8P2dnZ2L17d5fHdu3ahTFjxkR/HzNmDPx+f5cYGxUVFdHH+0Kb1PeULSuL/tvhVE2PE/VNHL9ERERE3WOYWh8IlhrnMhY6av12IgQApk2bhn/+8584ePBgtOyDDz7Avn37UFJSEi07++yzYbVa8dJLL0XLTNPEhg0bkJeXhwkTJvSJNqnvCbgD0X+XLB9c96p8fTlWFq2Ep8aT7K5QN3H8cvwSERERUVd9dmvMiy++CI/HE91Ssm3bNtTVte9znTt3LjIyMrBgwQKUlZXhF7/4BebNmwefz4fnn38exx9/PGbMmBFtKz8/H5dddhmef/55hMNhFBUV4a233sLOnTtx1113wWL5Zl9bMtukvss53IniecXJ7kavKltWhobKhujvXFHQf3H8cvwSERER0Tf67ETI2rVrUVtbG/1969at2Lp1KwBg+vTpyMjIQEFBAf74xz9ixYoVWLVqFaxWK6ZOnYrFixd3ibtxww03wOl0YuPGjdi8eTNGjBiBO++8ExdeeGFMvWS3SdRXdKwm0HQNrhNdg25FAfVvHL/UHeEMGzQ99v/L1jY5GJ+RqYrGJ9MUwTr1Q21y+1npcjsZKWK5aVUs8s3Jksst8nJrrS3O4KR+RXBSRSB4+PxisakKJps+RG5HQXd75QfCcj+1sHxfzEy5P1pKfO/bgkPlaKC2Q/JbcE3RT2urfN0Mm9zPltFyP1Oa5fN1HyffX1+BXD8t0yeWZ6XJ/axxu8Ryq2rRXpwRIgOKoK5WRVBUf6F8vlbF8FHxDZGDhKqCcgad8gMW+bLBVHxSS/9KvkCe4fJ56YpYvqq9AWGnfN00xdMdFrm+KnhuW0Aen0XptWK5U5cv0HCnHFR6V5r8umH1y/1UiUBHJN4Iqz0sAhMMmZoYfXYiZN26dUdVb/To0XjggQeOWE/XdSxYsAALFizo020S9TUZhRlYvGtxsrtB1C0cv0RERER0uH4dI4SIiIiIiIiIKB59dkUIERERERERUTKYppb0rC1mfLt5KA5cEULUTZ4aD1YWrUTFCxXJ7gpR3Dh+iYiIiGiw4ooQojg5nA644YZpmGiobEDpXaWDLiMH9V8cv0RqwQwLYIt9a2RrlaMMGqlysL+IQw6eaFEFG3XYxHLTLrejheXgg4ZD8ZYuWw6mGUmR66veGGoh+bh6QA6uGsmSjwvI5UaKKuik4ttYxdekpuL6q+iqYK+K4LbBAjn4qWGT76/joBwNVHU9vSfkKNqRg5OqpB+Uz6tltHyHw4rbZTrldoZkyFFFHRa5vsUpj5NQptwfm1vuT0gRbFT1pb1VcdnsLYrxoxg+huKJoQpmqgfl9oOZckcdiliYITlmMoJOebyp+mkoYhcb8ssPbK1yPwND5furZ8j312GX608ZVi2Wew35dTWkuDFWXXHhFAPC5pGfdyoRaIgked1AhIFSE4YrQojiVLK8BLnjc6Hp7S+yHdkpiPoDjl8iIiIiGuw4EUIUp+J5xVi8azEyCjOS3RWiuHH8EhEREdFgx60xRERERERERJ2Y0GGYyV03wFipicMVIUREREREREQ0aHR7IuSzzz7D3/72N7S1tUXLAoEAHnjgAfzoRz/ClVdeiQ0bNvRIJ4mIiIiIiIiIekK3t8Y8/fTT+OSTT/CDH/wgWvbYY49h48aNSE1NRUtLCx566CEMGzYMZ5xxRo90loiIiChRLCEDMI8uQn9giJzdwOKX/95a1yqWmymKtA1t8oJoTZHNxBJSZD/x+cViPTtTrq/4ikyLKBZotyqyoqTK5xV0yelJLIrsLRaPIqCzIpuMaVNk7WmR04dEMlPEct0rZwsydfm4qv6Hs1Pl+m1y+6n75HQpoSFyO0qK62OTbxfCiubtX8nj3Bwut1/TIo+rcJv8kUNXZGmJKLKcqLLbWOTLCUezXK7a7aApkoroiqeXzSM/L8Kp8vXJ/EJ+/kbscv2wQy63Kp4WQdXTWk7qohRKl89L9ymyX2XK9b0+efwc9MnZl05MOyiWF9haxPJNPjnrneFQZAWKcwlAe9YYRUqiXpLs4w9k3V4RsmvXLkyaNAna1y+04XAYmzZtQlFRETZs2IC1a9ciOzsbL7zwQo91logSr3x9OVYWrYSnRvFuiagP4/glIiIioiPp9kRIS0sL8vPzo79XVlaira0Nl1xyCRwOB3Jzc3HWWWfh008/7ZGOElHvKFtWhobKBphG+2y6w6n4WoaoD+L4JSIiIqIj6fbWGIvFglDom3VWH330ETRNw6RJk6JlWVlZaGmRlzIRUd8UcLevt9R0Da4TXShZXpLkHhEdPY5fIiIi6gmmqSU/a4zJvDGJ0u2JkKFDh2LHjh3R30tLS1FYWIihQ4dGy+rr65GVlXVsPSSipMgozMDiXYuT3Q2ibuH4JSIiIiKVbk+ETJ8+HY888ghuuOEG2Gw2fPbZZ/jJT34SU2fv3r0YMWLEMXeSiIiIKNH0oAktHBvMMJgtb69Kq5aDnxoOOUhoJDtdPmZAjmKoBRTREAOKqJBOuX1DcVwtJEeFNO2Kt4ZBOVqklpkhl4floJA2t9x/y96v5OO6cuRy1bekiuCtpiI4rO6Wr3NEEeTUURPffdfCiuumCD4bzpGjgdrq5fMy0uXxGUmV+5/SrAgGrMnfersVwUn9YXmcRAxFMM2IHPDRcUhu3yLH+IXNK183VbDUiByrE2n18vgPpcv9D2QqAlYqiu0e+Tqrgu1qiuGc0hTfagBV0FVD8bQ2FMFqLX65nWCG4rzc8oVOHSIHKc6wyc+7L/wusbwhJL/OtHjlca4r+u/LVZywAoOlDmzdXuvzox/9COeeey52796NTz75BFOmTMGCBQuij3/++ef49NNPcdppp/VIR4mIiIiIiIiIjlW3V4TY7Xb89re/RVtbGzRNQ1pa7JRxTk4OnnzyyZitMkREREREREREydTtiZCPPvoIhYWFKCgoEB/Pzs5GIBDAp59+iokTJ3b3MERERERERES9yjR1BksdwLp9Z3/xi19g06ZN31pny5Yt+MUvftHdQxARERERERER9ahuT4QczeyUaZrQNAZ4ISIiIiIiIqK+odtbY47G/v37kZ4uRysnIiIi6kss/gh0xGb5sLbI6StMPb7vkiz7DsoPWFXpHBTZGXKz4zquaVVk8fDJ2WqgK46raEfVT1W5pUXOImEWyNkitMYWsTwyMl9u/1Cz3B/VdVBkw7HWKNqxyfdL9yvSlii+EDRtcvYKS5vcjio7jO6X+x+xKY6r+H4yrMgOo8pm0tSkeH+v+v7TkB+IpMjVUxrlA6uyxoRTFVlpWhQnoCi2euVxq0Xk8aM6rur6a4qnSyArvvphOVmKkq54uptxfhK0eOXrEBkiH0D1tfn2fSPF8gnDasTykWlyeqFUu3zcoOLpaPXFmYXH1BBJ8taYiKkYBHTM4hr+v/vd72J+f+utt1BbW9ulXiQSQV1dHXbu3IkpU6YcWw+JiIiIiIiIiHpIXBMhnWOCaJqGTz/9FJ9++qlYV9M0jB8/HkuWLDm2HhJRryhfX46yZWXw1HiS3RWiuHH8EhERUU8yocFQLnPqvT5QYsQ1EbJ27VoA7bE/5s+fj8suuwzz5s3rUk/XdTidTqSmxrlui4iSpmxZGRoqG6K/O5zyMlyivojjl4iIiAY7r9eLNWvWoKKiArt27YLb7cYdd9yBGTNmKP8mHA7j6quvRnV1NW688UZceeWVMY8bhoE1a9bg5ZdfxqFDhzBixAgsWLAAF1xwQZe2vvjiC6xYsQKffPIJrFYrpk6diiVLliA7O7unT/WYxTURMnTo0Oi/f/WrX+HEE0+MKSOi/ivgDgAANF2D60QXSpaXJLlHREeP45eIiIgGu5aWFqxevRoFBQUYM2YMduzYccS/efHFF1FXV6d8/PHHH8dzzz2HWbNmYfz48Xj77bdx9913Q9M0nH/++dF6dXV1WLp0KTIyMrBo0SL4fD6sWbMGe/fuxapVq2Cz2XrkHHtKt4OlftusEhH1XxmFGVi8a3Gyu0HULRy/dCwMuwWmHvvWyLavTayrpShWHSmCOSJDEVwyLAe7NDMy5OO2yNu/DFemWK7v/lJuJ02xateVJddvVGw7c9jlclV2QYscJFQLydchPKpAbqYtoOiP4r6E5YCDoTz5OquClpp2+a2z5aAiqGuufF9C2XI/ba2K81LwD5XHlb01Ih/XKV9/VTxIQ/G5RVPUt9rl+xgKyuerydURSZG3A4TT5HKbRx5vQaeivuIErAF5nASy5PqpjfJ11iJyfwyb3I5pkftp9YrF0BXXLSA/fZVBbFPqFe3IsYthyKcLeOVxFWqRn1+jT9kvlmdY5fGfapGDojYckttPkWMyI7VeceEUIqbeB4Klxnd8l8uFl156CS6XC5WVlbj++uu/tX5TUxP++te/4j/+4z/w5JNPdnm8vr4ea9euxZw5c3DLLbcAAH74wx9i6dKl+POf/4xzzz0Xlq9f15999ln4/X488cQTKChof+0uKirCrbfeik2bNmH27NlxnUuiHXPWmIqKClRWVsLj8cAQIoRrmoarrrrqWA9DRERERERERAp2ux0ul2ImS7Bq1Socd9xxuPDCC8WJkLfffhvhcBhz5syJlmmahksvvRR33303ysvLccoppwAA3nzzTXzve9+LToIAwOTJk3HcccehtLR04EyEtLa24te//jX+/e9/w1TN+oMTIURERERERETdVV1dHfO7y+VCbm7uMbVZUVGBzZs3Y8WKFdAUqb6rqqqQmpqKUaNGxZQXFRVFHz/llFNQX1+PpqYmjBs3rksbRUVFePfdd4+pr4nQ7YmQjiAoEydOxMUXX4z8/PzoshgiIiIiIiKi/sqEBsPsG1lj7rnnnpjyhQsX4pprrul+u6aJhx9+GOeddx4mTJiAmpoasV5jYyNycnK6TJR0rDppaGiI1utcfnjd1tZWBINB2O2K7ZRJ0O2JkHfeeQdFRUX43//9X+UMEhERERERERF135133hmzKiOe7S+STZs2Ye/evbj77ru/tV4gEBCDnHZMaAQCgZj/HqnugJgICQQCOPXUUzkJQkRERANCOE0HbLGrW62FQ8S6lhZFND67IrCd6v1S9VdicWSY4rhyLEfoPjmYIHKy5XIFrcktlps5Trm+IggpDjXL7eTlyO145OCkquusheWojYYi2Cus8n2xfSFHi4wMlz9kWFRBYy1y+3pAvi8pO2vF8vCY4WK5FpGvs/2QHFwykJsit6O4XYZiUbdhk7e/p6TK9ysSka+DpU0RnFTxNHK0KIKNKvoZVgRXVdEVMXVD6YpgsormVcdVBUWN2OX6Fr/cvkpYEetYV7wM+OWXE2iq6AbqqAfycQOK882Sg5O2KYLnOpxy/SFWOWh17hD5+dgWkS9QOC2+wKMRaIggycFSv14RMmrUKHHbSXe0tbXhsccew5VXXhkTz0PicDgQCnUdWMFgMPp45/8eTd2+ott3dsyYMaitlV/EiQYT9wE3Kl6oSHY3jkn5+nK4D8hvfmlg4/glIiIiGjzWrFmDUCiE8847DzU1NaipqUF9ffuksMfjQU1NTXRCw+Vy4dChQ11ignZshemIU9KxQqWj/PC6mZmZfWo1CHAMEyELFy7Etm3bUF5e3pP9Ieo3HM5vZjVL7ypNYk+OXdmysui/O58XDVwcv0RERESDz8GDB+F2u/HTn/4UV1xxBa644gosWbIEAPDMM8/giiuuwBdffAGgffGD3+/vEqy1oqIi+jgA5OXlITs7G7t37+5yvF27dkXr9SXd3hpz6NAhfPe738XPf/5zXHjhhRg7dizS0+Vc5hdffHG3O0iUDOXry1G2rAyeGsUSWAAly0uw/rL1AICAW16a2l907n/J8pIk9oR6AscvERER0bExzT4QLDUBx587dy7OOeecmLKmpib8f//f/4cZM2bg7LPPRmFhIQDg7LPPxooVK/DSSy/hlltu+bpPJjZs2IC8vDxMmDAh2sa0adOwefNmHDx4MLrl5oMPPsC+fftw+eWX9/h5HKtuT4Tcd9990DQNpmli06ZN2LRpU5d4IaZpQtM0ToRQv1O2rAwNlQ3R36VvmYvnFcM53DmgluQ7hztRPK842d2gY8TxS0RERDQ4vfjii/B4PNFtKtu2bUNdXR2A9kmQcePGdYk30pE15jvf+U7MJEl+fj4uu+wyPP/88wiHwygqKsJbb72FnTt34q677orJGrtgwQKUlZXhF7/4BebNmwefz4fnn38exx9/PGbMmJHo045btydCfvWrX/VkP4j6lI5vmDVdg+tEF79lpn6F45eIiIhocFq7dm1MLM+tW7di69atAIDp06cjIyMjrvZuuOEGOJ1ObNy4EZs3b8aIESNw55134sILL4ypV1BQgD/+8Y9YsWIFVq1aBavViqlTp2Lx4sV9Lj4IcAwTIX1xVoeop2UUZmDxrsXJ7gZRt3D8EsXH3hqGpsVGvI+kym+VIqmKLCqK7B6WgJzlxJKdKZbrfkX6B4u8TDqSIsfHMbPTxHKrIvuJ4VKcV0jufyhXzs6gKY6rGYq0Jaly/1XHVTFtirQiiuuGDLmfpq6or8gOE1Gdr1/OghEaP0Ist9fJ9yVQKI8Ti09uX3W+nkL5+qiyyURS5PQhbS1yVprhhU1i+YEc+foAqv4oxrkiDJSq/zY52QgMxScgu0c+X3+O3J9wqmKcKLKuhFWXQVHfly+XO5rlctV1CGXLD6TWyuO57XjF64/ivuip8jjUPF1TqQJAul3ekjsiRR4/hTa53OmQ0+00FMoX1NeoeH1QMKDDSHLWmO4cf926dXH/TWFhYXSy5HC6rmPBggVYsGDBEdsZPXo0HnjggbiPnwzdngjpC3bv3o3HH38c//73v2GaJk466STceOONGDt2bJe6n3zyCR599FHs2bMH6enpKCkpwaJFi5CWFvuKFAwG8eSTT+K1116D2+3GCSecgOuuuw5nnHFGr7RJRERERERERInT7SmugwcPHvVPIuzevRuLFy/GV199hYULF2LhwoXYv38/fv7zn+PLL7+MqVtVVYVbbrkFfr8fS5YswcyZM/HKK6/gN7/5TZd277vvPqxbtw4XXnghfv7zn0PXdfzyl7/Ezp07E94mERERERERESVWt1eEXH755V2Co0o0TUNpac+nZnzyySfhcDjwyCOPICsrCwBw4YUX4sc//jEee+wx3HPPPdG6jz32GJxOJ/74xz9GM9sUFhbi97//Pd577z2ceeaZANrTAL3xxhu48cYbceWVVwIALrroIixcuBCPPPIIHnnkkYS2SURERERERMlnmEAkyVljDMW2KTp23V4RctFFF4k/Z511FoYOHQrTNHHqqadi+vTpPdnfqJ07d2Ly5MnRSRAAyM3NxcSJE/HOO+/A6/UCANra2rB9+3ZMnz49Jr3vRRddhNTU1JhJmjfffBMWiwWzZ8+OljkcDsycORPl5eXR1S2JaJMoGcrXl2Nl0cpvTbNK1Fdx/BIRERFRd3R7Rcivf/1r5WOmaWLNmjV4/vnncfvtt3f3EN8qFAqJ0WdTUlIQCoXw+eef46STTsLevXsRiUS6pAiy2WwYO3YsqqqqomVVVVUYMWJEzOQGABQVFQEAPv30UxQUFCSkTaJkOJo0q0R9Fccv9bSwwwLNEhtMT1N8HWcJKKISKqiCb0byssVyLaIIEqpYjav7g/JxHXKwQtMqBw3U2+QghqYi+KbFKwdVDA6Rg6g6DrSK5RFFME3LPsUXRjlZYnEgTw7iafXK11P3qK6nfF6mVf4O0bDJ5ZawXG5rlKN4qoKihjPk+xXMlt/KBzMU33Uqvtw2VAkddHn85+fL9zHFKl83PagY/2ly+wFFcFKbYt7bIg9bGIrYmFbF07d1lHzdrD65ftgh99Ou6KfNLZ9vRNFOar3cji4/3eF3yeUZe+Xz8g6T+2NtUgSJzpMPbLXLz6/Jp34ulhum3J8si3yhf+w8JJa/5WwUy/e3HieWq17PVQxTg5H0FSHJPf5AlpAwuJqm4corr8To0aPx5z//ORGHwHHHHYeKigpEOr1RCIVCqKioAADU17e/cnTkT3a5ur4yuFwuNDR88ya6sbFRWQ9AtG4i2pQ0NDRg9+7d0Z/q6mplXaLu6JxmNXd8LtOsUr/C8UtERERE3ZHQrDHjxo3Dq6++mpC258yZgwceeAD3338//uM//gOGYeDpp5+OTlIEg+0zloFA+xtlm63rNyJ2uz1ar6Ouql7nthLRpmTjxo1YvXq18nGinsI0q9SfcfwSERERUTwSOhFy4MCBmBUbPemSSy5BXV0dnn/+eWzevBkAMH78eFx55ZV45plnkJraviTT4WhfKh0KdV2qFwwGY7bXOBwOZb3ObSWiTcns2bNx1llnRX+vrq6OCQJLREREREREPc8wdeU2nt7sAyVGj0+EGIaB+vp6bN68Gdu2bcNpp53W04eIWrRoEebPn4/PP/8c6enpOOGEE/DYY48BaN86A3yzBaVjpUhnjY2NyM3Njf7ucrmiW2oOrwcgWjcRbUpyc3O/9XEiIiIiIiIiik+3J0KmTZv2relzTdOE0+nE4sWJXa7sdDpxyimnRH/fvn078vLyMHLkSADA6NGjYbFYsHv3bpx33nnReqFQCFVVVSgp+WZP+ZgxY7Bjxw60tbXFBDftiDsyZsyYhLVJRERERERERInX7YmQU089VZwI0TQNTqcT48ePxw9+8APk5OQcUwfj8cYbb6CyshI33XQTdL19GVFGRgYmT56M1157DVdddRXS0tqjkm/ZsgU+ny9m0uLcc8/FmjVrsHHjRlx55ZUA2rew/P3vf0dxcXE0u0si2iQiIqLksoQNaEZsOgktJKeXUGX9UDFSeyirkeJLKK1WDr4eGTNcbscmZ3UxFdlPrM1yNgdVlpkUt18+riFfT2udnIUkfHyhXL9BTsuR+mWLWK6F5eOG8p1iue3zOrEcqYqsNE1e+bhBeYt4qEA+rlWRhcfaJmfrMOyKtCimPN5sXsX4MeT7HkmR2y88Wb5f3rCcpcjIDIvlaVVyupoURS4BU/HJRZVYI6VJvu+qLE42xdPa1iZnG9EMRdYYt2K8pSmyLwXl9sMpihNTna+cXAXeoXJ56kG5obaRirQ6XkU2mWb5vr9vjhTLs5zy68mYdPl593iL/DpQ2ZIvluvycIMlEGfWGGiIqC52LzGSfPyBrNsTIX/84x97sh9x++ijj/DXv/4VZ5xxBjIzM1FRUYFNmzZhypQpmDdvXkzd6667DosXL8bSpUsxe/Zs1NXVYe3atTjjjDMwZcqUaL3i4mKUlJTgscceQ3NzM4YPH47Nmzejtra2SxrgRLRJRERERERERImV0GCpiZSXlwdd1/H888/D5/Nh6NChuPbaa3HFFVfAao09rXHjxuHBBx/Eo48+ij/96U9IS0vDzJkzccMNN3Rp99e//jUKCgqwZcsWeDweHH/88bj//vsxceLEhLdJNJB4ajxYWbQSJctLUDyvONndIYoLxy8REdHgZpiAoVpu1It9oMTokYmQTz75BFVVVfB6vUhLS8PYsWNx8skn90TTSsOHD8cDDzxw1PVPOeUU/PnPfz5iPYfDgZtuugk33XRTUtok6g3l68tRtqwMnhp5afGxcDgdcMMN0zDRUNmA0rtK+UGSehTHLxEREREdi2OaCPnkk0/wu9/9DgcOHADQHiC1I27IiBEj8Ktf/QoTJkw49l4SUY8qW1aGhspvNuA6nD20dx1AyfISlN5VisY9jTANEwG3vH+cqLs4fomIiIjoWHR7IuTzzz/HbbfdBr/fj8mTJ2PSpElwuVw4dOgQduzYgffffx+33XYbHn30UXznO9/pwS4T0bHq+HCn6RpcJ7pQsrzkCH9x9IrnFaN4XjEeHPEg3AfcPdYuUQeOX0qUiE2HZokNGplySA7qF8mUg42qgnjquhwE00iVgwxqiuCJplUOaqm55OD0lk8+k+sXysHaDaccDNRIk4Na6orgp5pPDu4JjyIapakIRunKkOtH5CCkmioYoqKfFkUQUtMt30djuEss1z2K4LCqoJyf1Yrl4e/I90ULyeel++XrYFHUh6I8YpfHVTBHvm47v5CD8OYMke+vrgimqSuGSTBLLk9plPtvkZ9eCKXL55VRI0fTDDrlj0a2NkXwUMjtBzLlcj0s99/qU9wvRbEvXx5XGQfkP7A3y/XDaXL7aQcU5+VSBHVNVwSlPSi/To4cXiOWf+kbEle5wyLfR7scyxea6jYqmNBhmPK16C2mYozRsev2RMjq1asRCoXw+9//PiY4KAD8+Mc/xr/+9S/ccccdWL16Nf77v//7WPtJRAmQUZiBxbsSm+KaKFE4fomIiIioO7o9xfTRRx/h3HPP7TIJ0mHKlCk499xzsWPHjm53joiIiIiIiIioJ3V7RUhbWxsKC+Wczh0KCwvR1qZYAklERERERETUBxnQYCDJWWOSfPyBrNsrQlwuF8rLy7+1TkVFBVwueS8l0UDSkWqz4oWKZHeFKG4cv9Tf7d69G7/61a8wc+ZMXHjhhbjqqqvwwgsvJLtbRERE1Ed1eyLkrLPOwkcffYQnnngCgUBsVP1AIICnnnoKO3bswNlnn33MnSTqqzqyVXROtdmXla8vx8qilQlJO0r9D8cvDQTvvfcebrrpJjQ3N+Oqq67Cz3/+c0ydOhX19fXJ7hoRERH1Ud3eGnPVVVfhnXfewbPPPouNGzeiqKgIOTk5aGpqQmVlJZqbmzFs2DBcddVVPdlfoj6lv6XaTGTaUep/OH6pv2tra8O9996L7373u1i+fDl0/Rij61sA0xq7DNlwyNkuLB75+WI65LdWqnZ0r5w2I5wjp3Ow1bSI5QjK7RjjR8vHDchpNvTmOLc0K665kSX33yiQ04FYD8nHtdQ2ycdVZJkxs51yuSLbjl7XLNcfIWdvsez9Su6PU5HdxlCk/UiXr4+lVc5SBEW2i0i2nJUDEVXWIXmZvS4n34CjQb5uoaFytpqWVsV5+eTjGnIyItgU892q7DCmYveAprj+zcfLz9PML+XzUiUOMSxyucMt37BQmtzRQJZ8gNRGuZ1wqtxORH6ZUX71rcoCo7pfquugReT6lgJ5PO/Ye5xYPmXMF2K5objB7oCc5SqiGlfK7D8yw9QQUQ2uXqI6dzp23X7HkJWVhUceeQQXX3wxfD4f3n33XWzatAnvvvsuvF4vZsyYgUceeQSZmZk92V+iPqV4XjEW71qMjELFG6A+pnPa0dzxuT2adpT6H45f6u9ef/11HDp0CIsWLYKu6/D5fDAUaVKJiIiIOnR7RQgAZGdn41e/+hVuu+02VFdXw+v1Ii0tDaNGjYLVekxNE1ECMe0o9Wccv9Rh+/btSE9PR0NDA/7rv/4L+/btQ2pqKqZPn44lS5bA4eCqISIi6h7D1GColsH0Yh8oMeKerXj66afh9/txzTXXRCc7rFYrTjjhhGidUCiExx9/HKmpqViwYEHP9ZYowcrXl6NsWRljEFC/xPFLg83+/fsRiUTw61//GjNnzsT111+Pjz76CC+++CI8Hg9+85vfiH/X0NCAxsbG6O/V1dW91WUiIiLqA+KaCNm+fTueeuop/OxnP/vWFR82mw2ZmZl45JFHUFxcjNNOO+2YO0rUGxiDgPozjl8abHw+H/x+Py655BLcfPPNAIBp06YhFAph48aNuOaaa3DccV33om/cuBGrV6/u5d4SERFRXxHXRMiWLVvgdDrxox/96Ih158yZg2effRabNm3iRAj1G51jELhOdDEGAfUrHL802HRsfTn//PNjyi+44AJs3LgR5eXl4kTI7NmzcdZZZ0V/r66uxj333AP7oSB0+GPqan5FFElFLBLTLr+10oNyO6YqiGpQDtoIqyI6I+TogKqgqKp+hrOyxXJLmxyMVdWOpeaQWA6XInacxyuXKxi52WK56nxhKJa3K4Kuah45yKMxcqh83P11cv3heXL9xla5P4pgu6G8dLFcU8RitXrl8eYrkCfIw3LMSQSz5AMYQXkc2tPk6x+2ye2ogn6mKpI+aYoQQKbiE42jWf4DR7Oqfbmf3lz5AHaP3L6qn3a3IjhpUP4DVTBWXTHMAzny9QzJwweptXL9YLZc37DL/ddDcjthn/z6NnRos1g+bchusTxgyO08Uf89sVw1HnTFdVZp3xrDYKkDVVwTIf/+979x+umnw25XhOLtxG63Y/Lkyfjkk0+63TmiZBmIMQjK15fDfcCd7G5QLxho45dbfkjF5XLh888/x5AhQ2LKc3JyAABut/yal5ubi9zc3IT3j4iIiPqmuKK/NDQ0YNiwYUddv7CwMGYPLhElT9mysui/uWWC+pOOLT/m19/UcfxSh3HjxgEA6utjvz5uaGjfIpadnd3bXSIiIqJ+IK6JEF3XEQ4rlogKwuEwdEV+eSLqXR3bJgBwywT1K0ybSyolJe1j4W9/+1tM+d/+9jdYLBZMmjQpGd0iIqIBwIQGI8k/Jrg1JlHi2hrTsQT1aH3++edcekrUxziHO1E8rzjZ3SCK20Db8kPH7sQTT8QPfvAD/P3vf0ckEsHEiRPx0UcfobS0FAsWLOB7ECIiIhLFNRFyyimn4B//+AdqampQWFj4rXVramrw4Ycf4qKLLjqmDhIRERGp3HbbbSgoKMCmTZvw1ltvoaCgAEuWLMHll18ed1uGTQe02OiE4Wx5K5atVQ4eqqIKwhhyynHXUiprxHLTKUc9DA3LEsvjDQ6oDIpqk6M2aiE5qGt4hDwJZd3fIJabLrn/plVeWWyogtLWN4nlWnqa3H52hlgOTfEtrCK4qjFUPl/VdYsMzYmr/UiqfL6GXe6nqcvlhuKdv6lYwG3zyO0E5JixSlpEbscqx6RFOFUu9w+R28n6XB7nrSPl65/SpApaqgjqKg8fpDTL5f4cxbiVY34i4yv5eeTPUYwfxfWB4uluU4SICyuCqFr8crkekK9/JF9+3Rha0CKWp9rk+v9okL+om5m3Uyw/MVeOqvtJjiIoc5wYLHVgi2siZM6cOdi0aROWLVuGP/zhD8q9ty0tLfjNb36DSCSCSy65pCf6SURERNSF1WrF1VdfjauvvjrZXSEiIqJ+Iq6JkHHjxuGyyy7D+vXr8dOf/hSXXHIJJk2ahLy89tRgDQ0N+OCDD/DKK6+gubkZl19+eTSQGRERERERERFRssU1EQIAixcvht1ux/PPP49nnnkGzzzzTMzjpmlC13UsWLAA1113XY91lKg/8NR4sLJoJUqWl/SZOBxMPUpHq6+OX6Z9JiIiot5mQoOh2jfWi32gxIh7IkTTNFx//fWYOXMm/v73v+Pf//43Dh06BAAYMmQITj75ZMyYMQPDhw/v8c4S9VUOpwNuuGEaJhoqG1B6V2mf+SDZkXq0A1OP0uH6+vjtwLFLRERERD0h7omQDsOHD8eiRYt6si9E/VbJ8hKU3lWKxj2NMA0zJlVtsnVOPeo60cXUo9RFfxi/ANM+ExEREVHP6PZECBF9o3heMYrnFePBEQ/22WX8TD1KKv1h/DLtM/WGQI4NsMVmcbG1yWkYgllythebJySWGzZ5eXXKvma5M9b43qLZmuU0D+GsFLFc94Xjal+VjUILyOdr8cnlqvMKZyqy89S2iuWmS872YuY45XKHIl2HguGQ+6nMqqPIbmMqss/oQfn6q66DRXG/9LB83Lah8vjUw4qsKIrsIcFsub4zU0734g/I1zk8TJ5gN62Kfgbl62ZrE4vhGS5fB6tiXl9XDP+gU27HomgnmCH3M6S4ngFFsqBghpwdJrVBcb8c8nEtiqedV5HlR3UdAvnxvT7YU+X6tXVyNqgLiirF8pPSvxLLbZqcVafJL6fPiaTI1819nDzeVJg1ZmBL7qYnIiIiIiIiIqJexIkQIiIiIiIiIho0uDWGiIiIiIiIqBMDGowkZ21J9vEHMq4IISIiIiIiIqJBgytCiIiIiABYwiaA2CB7WkQOumfzKoJdpslvrVL2t4jlRoYczDRcmCmWmxb520FrixzEUw/I/bQ0y1Enw/nyca0HGsVyw6XopyJ4KNLlYKDWJq9YHiqUgy3a6uTAzqqgqKEc+Tobin7aFNfTtMlBLZX3pdEj17fL7cCQgzla2+QomG0j5aicjlY5uGQ4RT7ftFq5O/48efy31MvBasefIAe7rPx0mFhu8yi+7VYUh+TDwi4/vZRMxeXXFEGB02vl51HzCfF9lEqvkcuDivMKp8kXwlTE/k2tke+XHpLbaRsut5NSI59XRJHFPuSQx5sjXX4ebT94nFh+RfG/xPL6iPw6o2ny+dqb5XGeekjup4rZB4KlmgyWmjCcCCEaoMrXl6NsWRk8NfKbMKK+jOOXiIiIiBKFW2OIEsBT48HKopWoeKEiaX0oW1aGhsoGmEb7bLnDqZjGJzoMxy8RERERDWScCCHqQR0f1kzDRENlA0rvKu31PpSvL8fKopVo3NO+jFnTNeSOz0XJ8pJe7wv1Lxy/RERERO0MEzC+3h6TvJ9kX4WBixMhRD2oZHkJcsfnQtPb9/MF3IFe78Ph36S7TnRh8a7FKJ5X3Ot9of6F45eIiIiIBgNOhBD1oOJ5xVi8azEyChVRr3pBx4dXfpNO8eL4JSIiIqLBgMFSiQaQ8vXlcB9oj6SfUZiBxbsWJ7lHREfn8OCoHL+UDBafAU2LHFYmZ4vQQ3L2gZS6VrnxsFxf98tZFayGnA3ESJWziug+xQouiyo9hpyJQPfJ/TGynXL9Q4qAxqYi/UaKIt6PX+6/nqqor1gvrin67/jcJzfjTJOPG5CztCAin5epuC9Ghtx/I0VO+2GvkcdPZIg8HuzN8vjUTPn6hB1yP4NyUg6kNMjfmTrPlLMI1brlcaKF5HY0ufuw+OXy9IPy9Q9kyu2bik86jha5nVC63E44VZFdSDH8LUH5+vvy5Oed84DcH3+24riKlxl/TpzZYerlct9Quf+RdMXz2i1f6IBiW0dhlnwC77SNlf9A4cChbLHconj6+nPiWwPArDEDG1eEEOGbuAQ9naGit4NOli0ri/6bwSUHj0SNX/cBd6+OXQZHJSIiIqLewIkQIvT8h7BkBZ3sHNOBWwoGj0SNXwC9Pna5JYaIiIj6AgPJDpSqwQBXhCRKv94as2/fPjz55JP45JNP0NraioKCAlxwwQWYP38+UlJSovU++eQTPProo9izZw/S09NRUlKCRYsWIS0tdjlkMBjEk08+iddeew1utxsnnHACrrvuOpxxxhldjp2INil5On8Ic53oOuYPYSXLS1B6Vyka9zTCNMxeDzrpHO7sM8ElO1bFlCwv6TN9GmgSMX7XX7Y+pu3e0te2xHSsiuHYJSIiIho4+u2KkIMHD+KGG25ARUUF5syZg6VLl+Kkk07CU089hd/+9rfRelVVVbjlllvg9/uxZMkSzJw5E6+88gp+85vfdGnzvvvuw7p163DhhRfi5z//OXRdxy9/+Uvs3Lkzpl4i2qS+oeND2LF+6OkLQSeTrS+kYh1senL8OofL+7wHi2SsiiEiIiKi3tFvV4S89tpr8Hg8WLlyJUaPHg0AmD17NgzDwJYtW+B2u+F0OvHYY4/B6XTij3/8I9LT2wNNFRYW4ve//z3ee+89nHnmmQCAiooKvPHGG7jxxhtx5ZVXAgAuuugiLFy4EI888ggeeeSR6LET0SZRd3QEmOz41r6nY0Qci2SviqG+r/P47UtjF0juqhhKnkCWFbDFBrFMrZODA1qbvXIjiqCopiLopyqopV57SCw3RhXI5emK9sNy/zVPm3xcnxylMjB2qFhuU3ylph9yyw8ogo2qgqgqg37myZO1lhb5vmiKqI16m3y+piKYqeaVg67CLgel1X3yeNAiivPKlb9AMS3y8njV9QllyG/xw2lyO45msRjeYXL79XVZYrluV4x/uyI4aYZ83azy8IQ3XxG8db98XBVvrnzcjFo5emtbvlzfElIEFXXI1znrc7mfqmCvKU2K66a4j+FUuTxzr1gMU/H89SiCoqYclK+Dv0A+r2yXfCO9ITlo735/jlieZ5dfT1IcclRUQxFs1xLn/84NaNCSvDWFW2MSp9+uCGlra39i5eTEPmFcLhd0XYfVakVbWxu2b9+O6dOnRycsgPbJiNTUVJSWfvMt35tvvgmLxYLZs2dHyxwOB2bOnIny8nIcPHgwetyebpOouzpiQ7gPuOE+4O5TgSa5KoaOpPP47UtjF+CqGCIiIqKBrN9OhEyaNAkAcP/996OqqgoHDx7EG2+8gQ0bNmDu3LlITU3F3r17EYlEMG7cuJi/tdlsGDt2LKqqqqJlVVVVGDFiRMzkBgAUFRUBAD799FMASEibRN3VOTaEc7gTzuFOBpqkfuPw8cuxS0RERES9od9ujZkyZQquvfZaPPvss9i2bVu0/Cc/+QkWLVoEAGhsbM9x7nK5uvy9y+XCxx9/HP29sbFRWQ8AGhoaEtamSkNDQ/R4AFBdXf2t9WnwyijMwK37b012N4i6heOXiIiI+hrz68wtye4DJUa/nQgB2uNynHrqqZg2bRoyMzPxzjvv4Nlnn8WQIUMwd+5cBALt3zbabF33edrtdgSDwejvgUBAWa/j8c7/7ck2VTZu3IjVq1d/ax0iIiIiIiIiOnr9diLkjTfewB/+8Ac899xzyM/PBwBMmzYNpmli1apVuOCCC+BwtO81D4W6BtIJBoPRCQmgPXaHql7H453/25NtqsyePRtnnXVW9Pfq6mrcc8893/o31Df1dArOjiCTfS3AJA08iUh/zPFLfVVarQ+6GfsFRtgpB/XDoWaxOHz8MLHc4paDbJq6HHwQLkUwypAclFBvUjyfLIr2DTkYopE/RCx3fC6vYjVcilg6qSlyeVAObqgKMqvZ5beqVkVQVCNdPq5W3ySWm0Nz5fqHWsVyZKTJ9f3yeZlpivd6iuuvGXLwTV+BfF72Fjm4pyq4qtUnt68KmmlvltuxnyAHwUx3BMXyms/l6wxd7k9GrVzeNlTuaNtQeZynNiiCHfvl9oNOuf3UQ3I74RT5+hiKT1iqIK2aIoZwKF0ut3kVQVoV/dEVQV29hXJ9W7Pcz3Cq3B+kyePQH5CDDvsgl2fa5CinDl1uX8WiCJaaXiuPTxXD1IAkr8hI9oqUgazfxgh56aWXMHbs2OgkSIezzjoLfr8fVVVV0S0onbeXdGhsbERu7jcvyi6XS1kPQLRuItpUyc3Nxbhx46I/o0aN+tb61PckKgVnR5DJvhZgkgaORKY/5vglIiIiomTqtxMhTU1NMITZ9HC4fcYwEolg9OjRsFgs2L17d0ydUCiEqqoqjBkzJlo2ZswY7N+/P5qNpkNFRUX0cQAJaZMGrs6BHxsqG7CyaCUeHPEgVhatRMULFd1ut3OQSQaYpEQoWV6C3PG50PT2byI4fomIiIhooOi3EyHHHXccqqqqsG/fvpjyN954A7qu44QTTkBGRgYmT56M1157DV7vN0sot2zZAp/Ph5KSb958n3vuuYhEIti4cWO0LBgM4u9//zuKi4tRUFAAAAlpkwauw1NwdqQKPZZv2MvXl8N9oD2fekZhBhbvWtxjWxaIOkjpj491/JavL8fKopXRLTEcv0RERNRXmWb71pRk/pjyribqAf02Rsj8+fPxr3/9C0uWLMGPfvQjZGZm4p///Cf+9a9/4Yc//GF028l1112HxYsXY+nSpZg9ezbq6uqwdu1anHHGGZgyZUq0veLiYpSUlOCxxx5Dc3Mzhg8fjs2bN6O2tha33357zLET0SYNXA6nA264u5R3fCt+tDriKjRUfrNPm1sKKNF6cvy+cPkLXdomIiIiIupt/XYiZOLEiVi5ciX+8pe/4KWXXkJraysKCwuxaNEiXHnlldF648aNw4MPPohHH30Uf/rTn5CWloaZM2fihhtu6NLmr3/9axQUFGDLli3weDw4/vjjcf/992PixIkx9RLRJg1cJctLUHpXKQLuABxOR8xERjwOnwTpaJsokXpy/HbGLTFEREREPcvr9WLNmjWoqKjArl274Ha7cccdd2DGjBkx9V555RW89tpr+PLLL+HxeOByuTBp0iQsXLgQhYWFXdp99dVXsWbNGtTW1iIvLw/z5s3D3Llzu9Srr6/HihUr8P7778MwDEyaNAlLly7FsGFyIPFk6rcTIUD7ios//OEPR6x3yimn4M9//vMR6zkcDtx000246aabktImDUzF84pjlv4/OOLB6NaWeHSOq+A60dWjWTyIVHp6/ALAZesv49ilPqltRCpMe2yahvSv5CwDkZFDxXJLm7xaylRkP9EV2U9MRfYTVXaYSF6mWK5iaZOPq3sVq70MRVaXgCJbiuJ8tUY5e4txnLxdWD+kyIbTJmct0YOKrBBZiuujWHdu5GfL1a3yrnL90/1y+/Y8udwmZ+WwNMivrxk++ToHXXIWG0ORLMhUlIfS48t+4vPL2ZRaGzLEci0ot59SL5cHMxRZb+TbjpRmOe2KP0e+X6rsPJqc3Alt+fKFs3vk46qTnMjHVdVXZfMJZijOS9GOt0C+nhHFwswUxXcePsVw1hvl8eD3y9ctvUC+kcen1Inlm+omiOWZqXJ6GNW7FF+enK1GxTA1aEnO2mLGefyWlhasXr0aBQUFGDNmDHbs2CHWq6qqQmFhIc466yw4nU7U1NTg1VdfxT//+U/85S9/iUnqsWHDBjzwwAOYNm0arrjiCuzcuRMPP/ww/H4/fvzjH0freb1e3HzzzWhra8OCBQtgtVqxbt06LF26FE899RSysuRsaMnSrydCiHpC55gbvclT48GDIx6Ew+mITmp0bH8JuAPRPnXEGDk8rgJRMtPQftv4BYCCUwtw8OOD0QmQjj46hzs5CUJERESUAC6XCy+99BJcLhcqKytx/fXXi/VuvfXWLmXnnHMOFi1ahM2bN2PBggUAgEAggCeeeAJTp07F8uXLAQCzZs2CYRh4+umnMXv2bDid7Z9VXn75Zezfvx+rVq1CUVERAGDKlClYuHAh1q5dq+xLsvTbYKlEPaXzkv3eiFnQOS3p4YEnO7a/dJ6YcR9ww33AzVSj1EUy0tAezfhtqGxA+dry6Fjm+CUiIiJKPLvdDpfL1a2/HTq0faWjx/PNF2wffvghWlpacOmll8bUnTNnDnw+H955551oWVlZGcaPHx+dBAGAUaNG4bTTTkNpafeSRCQSJ0Jo0Ou8ZL83YhZ0pCV1DndGU5M27mnEgyMeROOexi71NV2Dc7gTzuFOxlWgGMlIQ8vxS0RERIOBCQ2mmeQfJHZrTktLC5qamlBZWYn77rsPAHD66adHH6+qqgIAjB8/Pubvxo0bB13XsWfPHgCAYRjYu3dvl3oAUFRUhAMHDsRkXO0LuDWG6Gu9tWS/c8yFlUUro9/oq7bnZBRm4Nb9XZevEXXoze1SHL9EREREvau6ujrmd5fLFRPHo7vmzp2L4NexlbKysnDzzTfjjDPOiD7e2NgIi8WCnJycmL+z2WzIzMxEY2P7l2Ctra0IBoPiapSOsoaGBowcOfKY+9xTOBFClESdM3J0OJbMHES9SRq/yYi3Q9RTLAETiMQGM7S0yUEqA3lyMFNHvdy2kaKIUinHWlQGLQ0PzRbLLW45aKDml/sfHpUvHzeoCIoalIMMhnJSxXL7XjnoYXjsCLFc1X/Y5Leqqnb0NjlYqt7UKrefKgd51MLyjQllyffdPky+npEMub61Wf5mNDQsWyzXfXIUzEiKvLjb55LHW1iOraoM1hnKkq+D3SKXTy36VCz/13vjxHLPKLkdq1c+L1PxycWvx7nIXRGAsk0RVDSrWn5eBLLk44ZTFN/iK4qDqli+crGScu2A4oGIPPzhV3y+DmfI92vIaDkIsscnb4cdmaMImqy4LxfllYvl25rHiOU7XF2zngBAWpxvr00kfkXGkbUf/5577okpXbhwIa655ppjbv33v/89gsEgqqur8dprr8Hni40YHAgEYLXKTzy73Y5AIBCtB7RPkEj1OtfpKzgRQpREh2fk6NDxTTvAmArUd0njt/PYBTh+iYiIiI7VnXfeiVGjRkV/724ckMOddtppAIDvfve7OPvss3HVVVchNTU1mhrX4XAgHJZnSoPBIBwOR7QeAIRCXSffO1acdNTpKxgjhKgP6ojDwJgK1N90jiHC8UtERER07EaNGoVx48ZFf3piW8zhhg8fjrFjx+L111+PlrlcLkQiETQ1xa7iCYVCaG1tjU7IZGZmwm63R7fKdNZRlog+HwuuCCHqg1QrRYj6Oo5dIiIiGggMU1Nuo+o1ptarKxeCwWB0BQcAjB07FgBQWVmJqVOnRssrKythGEb0cV3Xcfzxx6OysrJLmxUVFRg2bBjS0hR785KEK0KIiIiIiIiIBoFwOAy3u2tMt4qKii6ZX0477TRkZmZiw4YNMXU3bNiAlJSUmMmRadOmobKyMmYy5Msvv8SOHTtw7rnn9vyJHCOuCCEiIiIiIiIaAF588UV4PJ7olpRt27ahrq49gPXcuXNhmibmzZuHkpISjB49GikpKdi7dy82bdqE9PR0/PSnP4225XA4cO211+Khhx7CsmXLcOaZZ+Ljjz/Ga6+9hkWLFiEz85tIv3PmzMGrr76K22+/HfPnz4fFYsG6deuQk5OD+fPn9+5FOAqcCCEiIiICoAfMLtlCAgVyVhSrRw4eZ2mRs4HoPjmLRyRTbt90yPUtrT6xPORKF8utzXI2Ft2ryCaTrciKss8jH/c7croLW45T7s/BFvm4+Yq0GelycL1glpzFJsUnZ40x0xVLsiOqLDlyub1ezpoRLMgQy21N8vWPZCnuuy4vw/cNU9S3yPXTD8rjs61QfusfkocPjFT5fPMy5fGQYpHHlZEtl6d+Kt9fVXabiDw8kf5VfPlVbF65ftApL5ZvGyo/HzVF1idV+/4h8v2yqJJpKE7LVyCX2+WnFwxFdhhdvi3KbEHQ5Q41t8S35eGgR359cOfKN9iiuBCekDx+TMWeB8Ma3zYX00Qf2BoT/5+sXbsWtbW10d+3bt2KrVu3AgCmT5+O3NxczJw5Ezt27MCbb76JQCCA3NxcnH/++fjpT3+KwsLYrDtz5syB1WrF2rVrsW3bNuTn52PJkiW47LLLYuqlpaXh4YcfxooVK/D000/DMAxMmjQJS5YsQXZ2dvwnkmCcCCEiIiIiIiIaANatW3fEOj//+c/janPWrFmYNWvWEevl5+fj7rvvjqvtZOFECBEREREREVEnfSVYqrweiY4VJ0Jo0CpfX46yZWXw1MjLO4n6svL15XAf6BroioiIiIiIvh0nQmjQKltWhobKhujvDqe8z5CoLypbVhb9N8cuEREREdHR40QIDVoBd3tkKk3X4DrRhZLlJUnu0cDmPuBGxQsVKJ5XnOyuDAgd4xcAx26CceXNIGIFzMOC6dncctBJW5MctNRIkycm9YAclVAz5Eh4WkARxNMjB9+0mYqIerocNVALKYKB7pfPy3TI0RbT9jaL5YYiyKmm6I+1XvE888r9sdbIb2GNbDkIIxTBE6GICWkogtjqimC4qqComk8RPDRFDvaqK4K0ph2Qg8BCcd/dJyiug+J8VcElbYfk63wgJUcsb3Qroq665fNVBUVV7UZIq5PLVUFLQ+lyQ/ZW+bpZ5dsIR4t8AEezfL88w+Tzzfpcru8bIt8AVXDPVMV18OXJ5SkNcrmqvh6Qj2so7ovZoHjdy5OjwBqKG/xe02ixfFbex2L5vtZssTyi+H4o7Ihzm4upwUzy1hgt2VtzBjDV/xaIBo2Mwgws3rWYH9ATpPNqhdK7SpPYk4HJOdzJsZsgXGlDRERENDBxIoSIEqrzaoXOqxiI+rqS5SXIHZ8L53DFN6tERERE1C9xawwRJVTxvGI4hzu5vYD6neJ5xVxtQ0RENEgZ6ANbY8CtMYnCiRAiIiLqFbW1taivr0dzczNSUlKQnZ2NkSNHwuHgNiQiIiLqPZwIISIiooT58MMPsWnTJnz44YdobGzs8rjVasW4ceNwzjnnYMaMGcjKykpCL4mIiGgw4UQIERER9bj/+7//w1NPPYX9+/fDNE3k5+fj7LPPxpAhQ+B0OhEIBOB2u/Hll19i9+7d+Pe//40nnngC06dPxzXXXIPc3Nxe77Nh0YDDsjRYvHLWj0iGvIrFWtca1zF1r5wNJJytyFrS2CKWa0HFWzqLIptMq0csNrPkmDiGIniwKvuM5bOv5HZGFsjl6SliORTZWxBRnJdVkSXHI99HVdYVrUXezmnkydlS9INNcvs2OXuImStnV7EqshGZdvn+ekfI7aTWyeNKD8n90QyL3P4w+fqYrXI7AcV4szfJ90WV/cSI8xOKrU0+rq647SmN8gNWv3wdAtlyecQhn5clJPcnmKEYn4qsNxHF8FfcLtgULz9B1fyyYtdFSoP8QFiRhcdfKGfXQkSu70prE8tPyJDT2xyKyOPc65ezWZmKcWhRjAcV01S+RPSeZB9/AONECBEREfWon/3sZ9i1axdOPPFE3HTTTSgpKUFeniJPI4BwOIyPP/4Yr732GkpLS/HGG2/gv/7rv/D973+/F3tNREREgwUnQoiIiKhHWa1WPPjggzj99NOPuv7pp5+O008/HUuWLMHatWtx8ODBBPeSiIhIzYQGI8nBSnUGS00YToTQoFO+vhxly8rgqZGXBRP1ZRy/1B+sWLGi23/rdDpx3XXX9WBviIiIiGJxIoQGnbJlZWio/GYPokOx75moL+L4JSIiIiI6NpwIoUEn4A4AADRdg+tEF0qWlyS5R0RHj+OXBpKamhps374ddrsd55xzDtLS0pLan5SDfuimN6Ys7JSD8dlr5WCaEVeG3LgiuKcWkYONWg/JwQTNIZly+6qgn61yO8hU9FOO5QiLKgisLi/bNoe65P4ogqtqYTlaZCRTDqJqqZWDKkaGyUF2w/nydbPWNIvlZptXLMfQIWKxkZstlutN8nWzeAJiueaTg5yqpB2Q++kfKj+XNEXgxbDiqWfxyfc34pTvl9MpB3v1aXLUz7AcAxO6fHmgKWJyBrJUQUjlE/YVyMFeQ6ny+RpWRblFPq7VLx9X2Y5NLrf4xWJY5aeR8npC0Y4/T+6ntU3uTyBXPrCjTv5IGXTJ7XhD8uvqx03DxPKQ4v6Och0Sy/ftlF/f9HB8kUfbg6Umd2tK0oO1DmCcCKFBK6MwA4t3LU52N4i6heOX+pNnnnkGr7zyCp588kk4ne1ZSXbs2IFf/epXCATaP/H89a9/xaOPPorMTMUHfSIiIqIeopj3p75s3bx1qHihItndIIqbp8aDlUUrOX6JBpm33noLhYWF0UkQAHj00UdhGAauvvpqXHLJJThw4ADWr1+fxF4SERHRYMGJkH6o+fNmlN5VmuxuEB21jjgWpmGiobKB45dokKmtrcWoUaOivzc0NKCyshJz5szBVVddhVtuuQWnn346tm7dmsReEhERfcMwtT7xQ4nBiZB+qiNOAFF/ULK8BLnjc6F9vZec45docPF6vTGrQT7++GNomobvfe970bKxY8eirq4uGd0jIiKiQYYxQogo4YrnFaN4XjEeHPEg3AfkAINENHDl5OSgtrY2+vv7778Pm82G4uLiaFkwGISmJfebr0iGDYYeG8TP1iRHGTRT5WCLui+kaDy+IKFQXQu3/BpqZsnBAY3cLLkdxXG1oByN0siSozDqNfVyOz7FdXPJ/TEV56u6PkahHIzVUt8s11ddB6tFPq4rRywPZcqZuuxfNIrlZroiaKnqvDLkoKLBPLkdw6H4TlMRJNSfLZ+vrU2ubwnK9yU1R76/Xp98fcKZ8vnaPIr+x/lSoIfk/qc0K4Lw2uUDqOqHU+V+WvxyfatXLg855esfyJL7Y/XJ5xVWBHWFIrBmRI5NiowvFEFR5ZjAsDfJ/Q9myeer++TrFgjLH0EvP+5DsTzXKgcdfnXPBLHcqviEqwe7Eyw1rj/pcck+/kDGiRAaNMrXl6NsWRk8NZ5kd4Uobhy/1J+NHz8eb7/9Nv75z3/CbrejtLQUkyZNgt3+zbvzmpoauFzyh1siIiKinsSJEBo0ypaVoaHym3R7HXEriPoDjl/qzxYsWIB33nkHv/71rwEAmqbhJz/5SfTxYDCInTt34pxzzklWF4mIiGgQ4UQIDRodcSk0XYPrRBdKlpckuUdER4/jl/qzcePG4dFHH8WWLVsAACUlJTHbYqqqqjBp0iRccMEFyeoiERHRYTSYSQ9WmuzjD1ycCKFBJ6MwA4t3LU52N4i6heOX+qsxY8ZgzJgx4mMnnXQS/ud//qeXe0RERESDFbPGEBEREREREdGg0a9XhNx7773YvHmz8vEXX3wReXl5AIBPPvkEjz76KPbs2YP09HSUlJRg0aJFSEuLjcIdDAbx5JNP4rXXXoPb7cYJJ5yA6667DmeccUaX9hPRJhERUX/37LPPYt68eUhJSenW35eXl6O1tRVTp07t4Z59O8OiQ7Mc3XdEkXQ5DUM4TX5r5ahtE8vNFMXxFKkCzEz5mkYUWWwsqiw2Fjn7g+4PxtUfZGUq2pfPK+KU+2/96pBcP1vOomI92CKWm2lyfS0gXwczRb5upkMut7rl6xMYnSuW2w75xHJVFhjHQUVAbMXq+LBDfsBUXP9Qhlxfl5MFKbOQhMNy+6ahKLfLDemK4akSUYTHMq3yeUVsqusjt+MdEl9WHT0slxuKrDSq46YekrOutBXI1zMsJ3GCvVku1+SkVcrsMKrrrJShyDbll0/YosnnW942TCz/XqZXLE9LVTwfNfn5FciObw2AaSZ/a0yyjz+Q9euJkNmzZ2Py5MkxZaZp4oEHHsDQoUOjkyBVVVW45ZZbMGrUKCxZsgR1dXVYu3Yt9u/fjz/84Q8xf3/fffehrKwMl112GUaMGIFNmzbhl7/8JR5++GGccsop0XqJaJOIiGggeOaZZ7B+/XpceumlmD59OoYPH37EvwmFQti2bRteeeUVfPDBB/jZz37W6xMhRERENDj064mQCRMmYMKE2PzRO3fuhN/vx4UXXhgte+yxx+B0OvHHP/4R6entU6iFhYX4/e9/j/feew9nnnkmAKCiogJvvPEGbrzxRlx55ZUAgIsuuggLFy7EI488gkceeSShbRIREQ0Ezz33HB5//HE8/fTT+Otf/4oxY8aguLgY48aNw5AhQ5CRkYFgMIjW1lZ8+eWX2LVrF3bu3Amv14uhQ4di2bJlOO+885J9GkRENIgZpgYjySsyNK4ISZh+PREief3116FpWjTyfFtbG7Zv347LL788OmEBtE9G/OlPf0JpaWl00uLNN9+ExWLB7Nmzo/UcDgdmzpyJxx57DAcPHkRBQUFC2oyXp8aDlUUrUbK8BMXzio/8B0R9CMcv0cCWm5uLO+64Az/5yU+wceNGbNmyBRs2bICmdX1DZ5omdF3HqaeeiksuuQTnnHMOrNYB9/aEiIiI+pAB9U4jHA6jtLQUEyZMQGFhIQBg7969iEQiGDduXExdm82GsWPHoqqqKlpWVVWFESNGxExuAEBRUREA4NNPP0VBQUFC2pQ0NDSgsbEx+nt1dXX036ZhoqGyAaV3lfKDJPUbDqcDbrg5fokGiREjRuCmm27CjTfeiL179+KTTz5BfX09Wlpa4HA4kJ2djeOPPx6nnHIKnE5n3O3v2LEDN998s/jYI488gpNOOulYT4GIiIgGoAE1EfLee++hpaUlZltMx0SCy+XqUt/lcuHjjz+OqauqB7RPTCSqTcnGjRuxevXqLuXZo7NhVpgwDRMBd0D59/SN8vXlcB9wJ7sbg17J8hKU3lWKxj2NHL9HqXx9OcqWlcFTowigR9QPaJqGE044ASeccEJC2p87d270C4YORxOX5HCGQwOsscH0TF0Ormdt8Yvluk9+a6Upgo1qtXKQUDgUwVgLssRyVVBUvU1+ndX8iiiVwqodADBtctBDLaAIUqkI6mo9JAeN9Y+VvxSyN8pBEo2cDLFcRfPKQRXjDcYaGpYtluthOfij7pWvv61Vvp6GIuhtRBFU1xKUx5V/iKK+4n+7nuPkcrNI/n9PrlO+L/6wPP5bwvI48bvk65C9R3FeOXI7tia5fjhVUd8r17f45fKgU27Hmyufr1V+eUBQfvrCKj8tEJaHJ6zy5VfWT2mSy92KWMeRNHk8m7oieq4ml2ePkJ9HGQ55IJ7mrBbLD0Xk6LDpDvl57U1T9FMVdVjBNNVxontLso8/kA2oiZDXX38dVqsVJSUl0bJAoP2JZrN1/R+L3W5HMBiMqauq17mtRLQpmT17Ns4666zo79XV1bjnnntw+QuX42/n/40f7ONQtqws+m+HM95Q2NRTiucVo3heMR4c8SDH71EqW1aGhspvJkw5fom6OvXUU3HuuecmuxtERETUTwyYiRCv14u3334bZ555JrKyvpludTjaPzSEQl2/+QgGg9EJiY66qnqd20pEm5Lc3Fzk5srp2OjodHyb3rjnmy1GJctLvuUviPqO8vXl0UkQTdfgOtHF8Uuk4PV6YbfbGV+EiIiIjmjAvFt4++23u2SLAb7ZgtI51kaHxsbGmIkGl8uF+vp6sR6AaN1EtEmJcfi36bnjcxmTgvqNziuZXCe6sHjX4uR1hqgPu+++++Dz+WCxWHDKKafgxhtvxPjx45X1vy0GFxEREQDABMxkZ23h1piEkTcQ9kP/+Mc/kJqaGrOVBABGjx4Ni8WC3bt3x5SHQiFUVVVhzJgx0bIxY8Zg//79aGuL3ahXUVERfTxRbXZXR/aNihcqjqmdgaojBoWma8gdn8tv0/sYjt9v1zmGCscuUVdWqxXTpk3Dz3/+c9x777249tprsXfvXixZsgR79uxR/t3GjRuxaNGi6M8999zTi70mIiKiZBsQEyHNzc3Yvn07vv/97yMlJTY4V0ZGBiZPnozXXnsNXu83kYW2bNkCn88XE0/k3HPPRSQSwcaNG6NlwWAQf//731FcXBzN7pKINuPVESegc/YNUssozMDiXYu5GqSP4PiNj3O4k2OXSHDyySdj+fLlmDlzJs4++2wsWLAAjzzyCDRNw2OPPab8u9mzZ+Pxxx+P/tx555292GsiIiJKtgGxNeaNN95AJBLpsi2mw3XXXYfFixdj6dKlmD17Nurq6rB27VqcccYZmDJlSrRecXExSkpK8Nhjj6G5uRnDhw/H5s2bUVtbi9tvvz3hbcaD2TeoP+P4JaJEGTFiBM4++2xs3boVkUgEFkvXrBSqGFy2lhB0xL4eRTLkLB5GWM52YW1VvJ5FInK5U86G0DYmRyxPqVeko5CTPCDkktu3NfnEctMqf0dmqLLG2OW3kroiS4upqG8JKK6PImsPFFlaDs/608H3HTldR+qXclYLw5kmlzsU990jZ+EJDpePqwcVWWba5Otm8cn1VdmIUuvkcl+e6vorsqI0ydl/fClyP9Ps8nVoCsrXzS5ffrhHyv1JVSRbtAbk8w2lye24R8jjxKbI3qLKJqNF5PY1xfC0KRLAReQkUTBUoQTlpy8s8m2BL08uV2WfMRTPo3ChfACtRX6dTB0qj4cR6YrnnWIbykUZ5WL5tgx5ZX1TW75YbvXFt8/EhJb0rTFmnJlu6OgNiImQ119/HTk5OTj99NPFx8eNG4cHH3wQjz76KP70pz8hLS0NM2fOxA033NCl7q9//WsUFBRgy5Yt8Hg8OP7443H//fdj4sSJCW8zHsy+Qf0Zxy8RJVJ+fj5CoRD8fj/S0+WJACIiIhq8BsREyCOPPHLEOqeccgr+/Oc/H7Gew+HATTfdhJtuuikpbRIREQ005557Lq6++mpcddVVyjpPP/00/vKXv6C09Ni3yn311Vew2+1ITU095raIiGhwMpH8WKXJPv5ANiBihBAREVHfZZomTMUS/sPrxaO5ublL2aeffopt27bhjDPOgK7aVkFERESD2oBYEUJERET9W3NzMxwO1YZ42W9+8xs4HA5MmDABOTk5+OKLL/DKK68gJSVF3KpKREREBHAiZMDoSENasryE2SUAlK8vR9myMnhqFFGpqE9xH3Cj4oUKjt2vcfzSQLB58+aY36uqqrqUAYBhGKirq8OWLVswevTouI5xzjnn4B//+AfWrVuHtrY2ZGdn4/vf/z4WLlyIESNGxN9pXYOpxa4iUQUNdNTLz89wjhxk0/ZFvVhuDskUy9OrDql6KYo45W1A9sr98nG9imCpxfI9sNY2ywe2ykEwTYfiLaYmB/6zNiuiPyqCopopcvuaIkiro14R1NKnCP4YkftjNxRBS0NysFfdowh0qLgOpkMOOmltk4NOWhTBVf2FGWK5o1Xuv1cRzNRRK1/ncL5c3+OXny+6V66vknZQ8YDicqZ9JQcpPlQsPy/S6uXVZxZF0FV/jnxelqBc31QsRkttiC+oq00xflTBWE3FZdbl4aPsfyRFMT7r5PEZKZDHYU1ttlje5JFfJ626/Dxqicj1M21y8GiH4uVTD8cZLNXsA8FSk3z8gYwTIf2cw+mAG+6YNKT8MAmULStDQ+U3ocU70rVS39IxfgFw7HbC8UsDwX333Qft6w97mqZh27Zt2LZtW5d6HdthHA4Hrr766riOMW/ePMybN+/YO0tERESDCidC+rnD05A27mnEgyMehMPpGJSrQzq+SW/c0wgA0HQNrhNdKFlekuSekaRkeQnWX7YeAKJjFwDHL8cvDQC/+tWvov/+3e9+h7PPPhtnn312l3oWiwVOpxMTJkyA0+nszS4SERHRIMWJkH6uIw3pyqKVaKhsgGmYcB9www33oPyG/fBv0l0nurB41+Ik9oi+TfG8YuSOz40ZuwA4fr/G8Uv92YwZM6L//uijj3DOOeeIEyFERER9EtPGDGgMpz5AlCwvQe74XDiHO6Hp7UuRA255v+RA1nHOmq4hd3wuv0nvBzqPXY5fjl8amGpra1FZWZnsbhAREREB4IqQAaNjZQgAPDjiweg364NBx3aCgDsQPe+Mwgx+k95PdB67wOAdvwA4fmnA2rVrF0466aRkd+OIDKsO7bCUu44DrWJdM80ultv2N8mNR+QggFqz/HpnOuXggKZVESRUEazTLHDJ/TkgR6M07HK0RYsiKCos8ndqWkTxNaZbEQQ6LPcfKYoYSbb4gm9qiutvOuT7aKbKQSF1RTBWQ1Ff84flDumKIJsWOTCiHpDbCeXIwUBD6fJ9UbVvU9yWYLZcHgrJ1z94KEX+A4ciyKwh9zMi3xZlsNS2EfJxHa3ydVaNz2CG4vorgmzqiturim+pqh9Kl//AkIcVHM1yf8KKoKuqdnx5cv1IiuK6GYrgrS2KA2TLz5fsdDkYcVF6rVh+IJAtllc0FojlqqCxqmC4KgyWOrBxIoT6vcO3ExD1Jxy/NBiMHDkStbXyG1wiIiKi3saJEIpZUdEfglQe3l/pQySzbAweHL9Efd/cuXPxv//7v/jiiy/wne98J9ndISIiokGOEyGDXPn6crxw+QvR3482SGXn5fy9/cGz8zfoHalXO+SOz432iQa2jjHYeSLhaMZvsidOvm38Ooc7o30iGkgKCwsxceJE/OxnP8Ps2bMxfvx4DBkyRKw7ceLE3u0cERGRxATMZAcrTfbxBzBOhAxgnhpPNB1pZw6nAwWnFuDgxwfFb6OPJkhl5w9z3cnu0fnDaEefjvYDqap/ueNzGVdhADnS+C1fWy7+3ZHG7+ETEfGO38PHbkefOH6J1G6++WZomgbTNLF27VpomnrPc1lZWe91jIiIiAYlToQMQA6nA264Y9KRduaG+5hjEnT+MNe4pxEri1bG9c16vN/kd/7w6an5JqJX7vjcmG/2qf/rzvjtSMF7NA6fiIh3/EoxPTh+ib7dVVdd9a2TH0RERES9iRMhA1DJ8hKU3lUqfvPsqfHANL5ZY6XpGlwnulCyvASbf7FZma3j8O0EneuZhomGyoa4vlnvnCa0cxsri1aKWxakD5/8Bn1gimf8AsBl6y9D8bzib802I2UW6hDv+O08djMKM6J96hi/HefQuS2OXxrsrrnmmmR34ahY3UHoZuxrTyRbzsoRSZPfQjkaWuTGU+WsFmaaHBNIOyRnq1FNKAXHDhXL7fsUWWzyc8ViW0ObXN8vr2YzneliuRaS02OYLfLrtJanyG6jyDJjZsvHhVWRxcYXkusrss8os/DYFVl7woqsKIpsOEaG4r4r2oEiy0kkRe6/1Se3E3HI10eVjSViV6zLj8jtOIfK98u9L1MstygWcRqKrDGq7DYhRbaU1Ab5+gcz5f4bVrkdqyLbiL1Vbt+XK98XVXaY9Fr5fhl2xfNd0Y6tTe6nd6gqG45YDD0UbzYZuR1rqnwAX0h+Hv29Rs4udlbeXrE83S5npfHISbegxbnNxEQfyBqjenLSMeNEyAB0eDrSzlYWrYz5QOY60RX9MLb5F5sByFsSOn94PDyugaZrMA0z+gGxc/yQji04h28j6JwmtHP7qi0Lh3/45DfoA1c84zd3fG6Xukcav53ljs9F457GuMZv57F76/5bYyZgVNvFOH6JiIiIiPoOToQMMp2/bT/8w9iRtiRIOpb2uw+44T7g7vJBVdqucPhEikrAHYh+KO3YTtDx4ZMGp54cvx0rMjomMo52/B6NwydVOH6JiIiIiPoOToQMMt/2bfu3bUkAYoOsdv4g2rGSBPj2D47O4U5xa0PHB9jDeWo8MRltOurS4NVT47ej/uF6avx2rEo5fEKG45cGs4MHD+Lpp5/GBx98gIaGBoTDXZdMa5qG0tLSJPSOiIjoMCaAJG+NYdaYxOFECEV924fMb9N5IgT4ZqsMEJsOtHhecZdv3Dse6/wtf8fjh3/gzB2fy+0EpNTd8Xu4ox2/HZMancdvx8SHtCqF45cGs6+++go33HADPB4PvvOd7yAUCqGgoAB2ux01NTUIh8MYM2YMMjIykt1VIiIiGgQ4EULH7PBvxDvHHTmctLXh8A+wFS9UxHyzH09qUqJ4dWf8dvwbiJ2AOXzsdrTP8UuD3V/+8he0tbXhoYcewsSJEzFt2jT84Ac/wMKFC9HQ0IAHH3wQX3zxBR58sGvK7N4USbfB0GKjNNrr5K121gNesTw8Qg5Caj0oB1ENueSgn3ZV0ExTEbTxgCJIq4oimKmRJUcZ1CNyf8wU+a2kmWqT27Hmy/1RtA+nPDkWSZPbt+1rlNtR8fnFYmOE3E/draivCH5qqoKiKoKfwlQEOVW0Y/Ep7qNdDtYZkWP2IqJYsGjzyN+GB8JysFGPWz6A1SPX98tPF6TVyOWaHJsUqYcUQVGd8nHtrfJ1tvjlcl++Ikiu4jamNsrttA2V74uKoagelGPPwuaV75dFfrlCKEsuVwXJNRWxds0hctDSYJsc9TYtRa4/JktemftR8wix3B+WXwfCimCpoXTFCSiYpvIlt9ck+/gDGSdC6Jh9W9yGwx3Nt/Y99c0+0dHoyfHLsUsk++CDD/Dd734XEydOjJaZX7+7y83NxX//939j4cKFeOyxx/Cf//mfSeolERERDRacCKFjxg9/1J9x/BIlXktLC0aOHBn93WKxwO//5pt1u92OyZMn4+23305G94iIiGiQ4UQIERERJVRWVlbMxEdWVhZqa2tj6lgsFng8nt7uGhERkcxE8oOVJvv4A1h8G6WIiIiI4jRixAgcOHAg+ntRURHef/99fPXVVwCA5uZmvPnmmxg2bFiyukhERESDCFeEEBERUUJNmTIFf/nLX+B2u+F0OnHZZZfhn//8J66++mqMGjUK+/fvh9frxdVXX53srhIREdEgwIkQIiIiSqhLL70UkyZNgsXSngJh0qRJ+M1vfoO//OUv2Lt3L4YOHYrrrrsOs2bNSmo/NdOEdtg65FCuIqWvqlzBO1ZOj5H2eZNYHsp3iuV6UM6OYepytgjNUGV/UGSX8ATEcljkRcSmXX4rqXsVWSQK5POy75evg5GZKpbbPq+T6w8dIpabVrn/ml/OuqISyZHTUWiKLD9GipzVQgsr7qNVkSZEcR8jKXL9cJpc7s2Ty32KZD4qQ4bI29gyHXJWnaZs+bp5yuX7FciWjxuShw9MPb7zSquV62uGYrG8/HRBmyKbTFgetsp2tLD8QEjxMqOrhq1iG0VEkUUlmCn/QUq93J+24+UDaxH5up16wj6xPMMmv86cmHZQLM+1y+PtrcAJYrlpkc8rrMiOpGKaGkxTcdN6SbKPP5BxIoSIiIgSKj09HcXFsUGJS0pKUFKiztJERERE8fF6vVizZg0qKiqwa9cuuN1u3HHHHZgxY0a0jmEY2LJlC958801UVVXB7XajsLAQ5513HubPnw+Ho+uM0auvvoo1a9agtrYWeXl5mDdvHubOndulXn19PVasWIH3338fhmFg0qRJWLp0aZ/c+soYIURERJRQmzdvxmefffatdfbu3YvNmzf3Uo+IiIiOgpnknzi1tLRg9erVqK6uxpgxY8Q6fr8f9913H1paWnDJJZdg6dKlKCoqwl/+8hf88pe/jKa377Bhwwb8/ve/x+jRo3HzzTdjwoQJePjhh/Hcc8/F1PN6vbj55pvx0UcfYcGCBbjmmmtQVVWFpUuXoqWlJf6TSTCuCCEiIqKEuu+++3D11VfjhBPkZcwA8Pbbb+Opp57CxRdf3Is9IyIiGjhcLhdeeukluFwuVFZW4vrrr+9Sx2azYeXKlTj55JOjZbNmzcLQoUPx1FNP4YMPPsDkyZMBAIFAAE888QSmTp2K5cuXR+sahoGnn34as2fPhtPZvmft5Zdfxv79+7Fq1SoUFRUBaI8RtnDhQqxdu1bsSzJxRQgRERElnWEY0DTuhSYiIuouu90Ol8v1rXVsNlvMJEiHc845BwBQXV0dLfvwww/R0tKCSy+9NKbunDlz4PP58M4770TLysrKMH78+OgkCACMGjUKp512GkpLS7tzOgnFFSFERESUdFVVVcjMzExqH8KpFsAa+9bIVHxllFIvB/sLZtvF8tQv5WXBqiCeqiCYtq+axXIjSxHEMyQH5Qzmp4vlKpY2OfipMkhrML4gpKqgqKpgo1AFRVVNpkXkNea6Xz4vtPnk/uRlyce1yffL0uQVy7WAfFz/CXJQXWUQzFRVsFR5XGXUyPcllCZ/JGgtluu7vSliuUWTO+ppk6NU2lvFYpiKmLEOOaauMqioo1kuDyuGv82tqJ8ij6uwIgipc58cPNefI98XPSxfN1ubfFzV9Qkp+hNSnK8mdxMhxUux7lcETQ7J/dx7SP5AfmJuvVg+LqVGPrDCPl+OWH6odahYrrrOKoMtWOqhQ4cAAFlZ37zOVVVVAQDGjx8fU3fcuHHQdR179uzB9OnTYRgG9u7dix/84Add2i0qKsL7778Pr9eLtDTFIE0CToQQERFRj7v55ptjft+0aRN27NjRpZ5hGKivr0dtbS2DpxIREQk6r9IA2rfA5OYqJk676fnnn0d6ejqmTJkSLWtsbITFYkFOTuykk81mQ2ZmJhobGwEAra2tCAaD4mqUjrKGhgaMHDmyR/t8LDgR0o8EAu3fPh3+RCAiosQbNWoUUlLkb0Gpq48++ij6b03TUFtbi9ra2i71dF2H0+nEueeei6VLl/ZiD4mIiPqHe+65J+b3hQsX4pprrumx9p955hls374dt956azTmB9D++dNqlacM7HZ79PNpx39ttq6r+Ox2e0ydvoITIf1Ix9Kkw58IRESUeH/4wx9iviWhb/fmm29G/z1t2jRcffXVWLhwYfI6REREFI9uZm7p8T4AuPPOOzFq1Kho8ZHigMTjjTfewBNPPIGZM2d2iQXicDgQDstb5ILBYDTVbsd/Q6GQWK9znb6CEyH9SMfgv/3225XpkKh7qqurcc8993R5kaGeweubWLy+idVxfVNT5RgGdGQPP/wwhg6V92wTERHRtxs1ahTGjRvX4+2+//77uPfeezF16lT8v//3/7o87nK5EIlE0NTUFLM9JhQKobW1NTohk5mZCbvdHt0q01lHWU9v5TlWnAjpRzqWKY0ZMyYhTwRK3IsMteP1TSxe38Tqa99k9CcTJ04Uy9va2lBRUQG73Y5TTjkl6VljrL4INC32my/7l4fEuuECOWimvUkOghnKk6M5aoognrYmxRJixTXSD8pRJEOj8+X2D8nBQFXta165PxZT7r+RIgeNtXoUwUl1OQij9UDXN9UAYORly/3x+MXySKa8rU0VrFZLkZ/vultuPzhc7o/u6/rtKAAYdjlgoNUj19dCclTLSIo8QRtWvFz5hshv/U3FJwJ7g/yANkS+7y2KIKrml/L5hhXzy+lfyeWq+rY2uTy1Ub5ugSzF80gR41dVblcEVw1ky+PKUFxnw6oIxqo4X1WwVFXw06zP5PvVerx8XCPO9s0MOShzik0ez96wHATZb8jlTov8elWYIkfbVfXT1qZ4QEn7+ieZEnf8iooK3HnnnRg3bhx++9vfiltgxo4dCwCorKzE1KlTo+WVlZUwDCP6uK7rOP7441FZWSkeZ9iwYX0qUCrA9LlERESUYK+88gqWLl0Kt/ubTw2ffvopFixYgP/8z//EzTffjCVLlsDvlz9kEhERUc/54osvcPvtt2Po0KG4//77lV/2nHbaacjMzMSGDRtiyjds2ICUlJSYyZFp06ahsrIyZjLkyy+/xI4dO3Duuecm5DyOBVeEEBERUUJt2bIF4XA4JgDbypUr0dzcjBkzZqCpqQnvvvsuXn75ZcyfPz+JPSUiIurfXnzxRXg8nuiWlG3btqGurg4AMHfuXOi6jttuuw1utxvz58/HO++8E/P3w4YNw4QJEwC0r4a99tpr8dBDD2HZsmU488wz8fHHH+O1117DokWLYtLez5kzB6+++ipuv/12zJ8/HxaLBevWrUNOTk63/t++fft2rF27FpWVlfB4PDCFFYiapqG0tDTutgFOhPQrLpcLCxcu7NHgONSO1zaxeH0Ti9c3sXh9j93+/ftx1llnRX9vaWnBjh078MMf/hC33XYbAOBnP/sZ/vGPf3AihIiI+oY+FCw1HmvXro3J0rZ161Zs3boVADB9+nQAiE6MrFq1qsvfX3zxxdGJEKB9gsNqtWLt2rXYtm0b8vPzsWTJElx22WUxf5eWloaHH34YK1aswNNPPw3DMDBp0iQsWbIE2dnZcZ1DWVkZfvvb38IwDBQUFGDUqFGwWBR7trqJEyH9SG5ubo+mSaJv8NomFq9vYvH6Jhav77HzeDwxb4J27twJAPj+978fLTv55JPx97//vbe7RkRENKCsW7fuiHU6JkaO1qxZszBr1qwj1svPz8fdd98dV9uSv/71r7Db7bj33ntx+umnH3N7EsYIISIiooTKzMyMiST/wQcfQNd1nHzyydEy0zSVKfqIiIho8Ni3bx/OP//8hE2CAFwRQkRERAl2wgknYNu2bdi7dy/sdjtef/11nHzyyTEpiWtra5O+/cjiCUE3Y7OjhIZli3VtXzXLjdjlrAeq7CRGmpxdRQvJWRhMhyKLh0WOxm+raZGPmyGnozAdcj9DQzPFcluVnN4jMrpQLP//s3ff8VFV6f/AP3dqei/00EMUpSwWVJaAgCDSpCsqKlhB1PVn2a9lbes2F3Gx0ARFDeAiRaW5LEWKDUORQAgKoUggvU2m398fLKMhz4EkJJmUz/v14rWbZ+6ce+6ZO2Ny5pznMRbK1R80p1xdQg8LVhyvmDSzy1VpjGVVTMSrqBqjYjmcJT8QqKiiEq6oGpMnlz/RFVV1ArLlihK6QT5vUI4Yxpme8n3lCZTX5bty5fsnMMYmxq35cj9doWIYmnz7K6vDWErkfjpDFOOjqI4UUCDfV2674n0RpKiypNjOEHRGrlriCpbbNyqKLCmKq8AdKPentEXNVB7RXIp2FF+t5+TKL3B+sXz/fxfeXoxfEXRcjK86dIUYD5RvQ5TFVHFrRQPdGtMYhIWF1Xq1Pq4IISIiolo1ceJEFBcX45577sGkSZNQUlKCcePG+R73er3Yt28fyz8TERER+vbti127dtXqSlFOhBAREVGt6tmzJ1577TX06dMHffr0wZ/+9KdyyVP37duHmJiYcjlDiIiIqGm67777EBISgj/96U84ffp0rZyDW2PqAafTiQULFmDDhg0oLi5Ghw4dMGXKFFx11VUXfW52djZmz56N7777zpeZd/r06WjRokUd9Lz+q+7Yvvfee1i0aFGF+Lkl3XSWzWbDkiVLkJaWhgMHDqC4uBjPPPMMhgwZUqnnFxcX491338XWrVvhcDiQlJSEhx56iN8K/8+ljO/atWvx2muviY+tWLHC71sQ/O3AgQNYt24dUlNTkZWVhbCwMFx++eWYMmUKWrdufdHn896tut69e6N3797iY926dcOCBQvquEdEREQXoGtn//m7D03Q5MmT4Xa7kZaWhm3btiEkJATBwRW3SmqahiVLllTrHJwIqQdee+01bN68GWPHjkWrVq2wdu1aPPnkk5g1axauvPJK5fNsNhtmzJiB0tJSTJo0CSaTCcuWLcP06dPx3nvvITw8vA6von6q7tie84c//KHcHnaDYo9uU1VYWIhFixYhPj4eHTt2RGpqaqWf6/V68dRTT+Gnn37ChAkTEB4ejpUrV2LGjBmYN29epf4YbewuZXzPuffee9G8efm9+iEhITXVxQbr448/xr59+9CvXz906NABubm5WLFiBaZMmYJ33nkH7dvL+5QB3rtEREREtUnXdRiNRsTFxZWLScdVFydC/CwtLQ0bN27Egw8+iIkTJwIAbrrpJkyePBnvvPMO3nnnHeVzV65ciRMnTmDOnDlISkoCAFxzzTWYPHkyli5divvuu69OrqG+upSxPadv375VrnvdlERHR/tWFxw8eLBK99zmzZvx448/4qWXXkJycjIAoH///rjtttuwcOFCPP/887XU64bjUsb3nGuuuQZdunSphd41bOPGjcPzzz8Ps/nXjHP9+/fH3XffjY8++gjPPfec8rm8dxsvR1wAYCr/jVPQ0SLxWK8i2aXBJmc31GwOMW4slrP6eWMUX2Yotkt7g+WkclqZnITUoDgvzshJRY0hctJSRMhJVI2l8vWqkqLCrEgCe0qR3dOg+JY0OlIMe8Lk5KEGRT91k9wfg+J1RIh8P3gi5Lgqaaw7Sh5n3Shfr9csJ380lclJOe1R8nVZ88Qw7LFyO+HN5fdFUaF8vVq83I4lT/6CyWSX/7hxW+VxsEfIcWuR3E7QGfk+LGkhZyE1l8ntBGfJb0jNIx9fqmhf9aW/R3G9qmSyBsXbK0DxNiqLleOa4i9EjyLJrFaoeEKk/HnYqVm2GLd55PH5oSRBjFss8vjb5FzNiDxY9T+aL+HvbLoElSkBfKn49bafbdmyBUajEcOHD/fFrFYrhg4div37919wT9TmzZvRpUsX3yQIACQkJKBnz57YtGlTrfa7IbiUsf2t0tLSS5ptbMwsFku1t1hs2bIFUVFR5XICREREoF+/fti2bRucTkWq9CbkUsb3t2w2GzwexW9NTdQVV1xRbhIEAFq3bo22bdsiMzPzgs/lvUtERETUsHEixM8yMjLQqlWrCnuezk1uHD58WHye1+vFzz//LH7Tm5SUhJMnT8JmU3zb00RUd2x/a/z48RgyZAgGDx6Ml19+GXl5iq9MqMoOHTqETp06VdhulJSUBLvdjuPH5VJpVDUzZszA4MGDMWjQIDz99NMc1wvQdR35+fkX3VbIe5eIiIioYePWGD/Lzc0Vv/E9F8vJkdeyFRUVwel0XvS5bdq0qcHeNizVHVsACA0Nxa233orLL78cZrMZe/fuxYoVK3DgwAHMmzdPTNZDVZOXl4du3bpViJ97fXJzc9GhQ4e67lajYbVaMWTIEPTo0QPBwcFIT0/HsmXL8NBDD2H+/PmIj4/3dxfrnS+//BLZ2dm45557Lngc710iIqImQP/fP3/3oQlYtGgRNE3DqFGjEBYWJhatkGiahrvuuqta5+REiJ85HI4Ky7OBs0vizz2ueh6Aaj23qaju2ALA2LFjy/2cnJyMpKQkvPzyy1ixYgUmTZpUs51tghwOh++1+C3evzWjf//+6N+/v+/nPn364Oqrr8b06dOxePFiPPHEE37sXf2TmZmJmTNn4vLLL8fgwYMveCzvXSIiIqKas3DhQmiahv79+yMsLAwLFy6s1PM4EdKAWa1WuFwVMxud22NutcrJz87Fq/PcpqK6Y6sycOBAvPXWW9i1axcnQmqA1WoVcynw/q09V155JS677DLs2rXL312pV3Jzc/HUU08hODgYL7/8MoxGOfngObx3K2f8+PEYO3YsxowZ4++uEBERUT02a9YsAPBViTn3c23iRIifRUdHIzu7Yubk3NxcAEBMTIz4vLCwMFgsFt9xVXluU1Hdsb2QuLg4FBXJmdKpaqKioi54/9ZEklCqKC4uDseOHfN3N+qNkpISPPnkkygpKcHs2bMr9bnAe7dysrKyUFJS4u9uVImp1ANNK1+FQLfIvyq5g+XqBqqJNOOxLPmkAYpqLw65/IMnNFCMG4vlKiTamYr3KgAgPFSOuxVlaVRJw0vlKjOaJlcPgUkeH2XVG5P8ntRK5PN6QuTqMMacYjGuB1Zc3QUAuqIaizdMHn/DKXmcjaXy6wKrfF6vRXFes5zWzxUiH69VcTm9W/FyGe3yeY0G+QStm8m51E6ekst4hByX29HkIjMIzJMfcIbI1UwMbrn9shj5fW0pkds3KN4WBR3kzwFVtRqvYp5dV1RBMjrkdjyWqlWTcUTIcVeY3L6lUFHGRsEdKrdjNMvjeSxfru7UOqhAjHcLlXNvHYyQt/keccu5vkyK6j9KOtQlfepKE9ka07179wv+XBuYLNXPOnbsiBMnTqC0tLRcPC0tzfe4xGAwoH379jh48GCFx9LS0tCiRQsEBSn+q9ZEVHdsVXRdR1ZWFsvp1pBOnTohIyMDXm/5/0geOHAAAQEBaN26tZ961rj98ssvvIf/x+Fw+BLI/uUvf0Hbtm0r9Tzeu0REREQNGydC/Cw5ORkejwerV6/2xZxOJ9asWYPLLrvMl9Dw9OnTFUo69u3bFwcPHiw3GXLs2DGkpqYiOTm5Tvpfn13K2BYUFFRob+XKlSgoKMA111xTq/1ujHJycpCZmQn3b75p7Nu3L/Ly8rB161ZfrKCgAJs2bcJ1110n5mAgmTS+0j28c+dOpKen4+qrr67D3tVPHo8Hf/rTn7B//368+OKL6Nq1q3gc710iIqImSj+7usqf/5rKihCV9PR0zJo1C9OmTcPdd9+NadOm4c0330R6evolt82tMX522WWXoV+/fpg7dy4KCgrQsmVLrFu3DllZWXjqqad8x7366qvYvXt3uV+8R40ahc8//xxPPfUUJkyYAKPRiGXLliEyMhITJkzwx+XUK5cytmPHjkX//v3Rvn17WCwW7Nu3Dxs3bkSnTp0wfPhwf1xOvbV8+XKUlJT4tgVs374dZ86cAQCMHj0aISEhmDt3LtatW4elS5eiefOzy2OTk5Px73//G6+99hqOHj2K8PBwrFy5El6v96JVO5qS6o7vgw8+iM6dOyMxMRHBwcE4dOgQ1qxZg7i4ONxxxx1+u5764q233sL27dtx3XXXobi4GBs2bCj3+KBBgwCA9+4l0jQ/LykmIiKiBuntt9/GJ598UmEF7r59+7BixQqMGzcODz74YLXb50RIPfDHP/4R8fHxWL9+PUpKStC+fXv89a9/vejeqKCgIMyaNQuzZ8/GBx98AK/Xix49emDatGlc+v4/1R3bgQMH4scff8SWLVvgdDoRHx+PiRMn4s4770RAgLz/uKlaunQpsrJ+3fu+detW36TSoEGDEBISIj7PaDTib3/7G95++20sX74cDocDXbp0wTPPPNOkyz6fr7rj279/f3z99df47rvvYLfbER0djWHDhmHy5MmIioqqk77XZ4cPHwYA7NixAzt27Kjw+LmJEAnv3cpbtmwZ1qxZU+njNU3DkiVLarFHREREVN8tX74cS5cuRevWrXHnnXeiW7duiIyMRH5+Pvbs2YMPPvgAS5cuRbNmzTBq1KhqnUPTdVX2KyIiIqLq6du3b7Wet2XLlhruycWlp6dj6tSpMGm9oWnlk+yZSuWkpXDLSQA1rxxXJd802CpWIALUSVp1k7yr2RMsb8kyOOQsj4ZSucyzVqJI7umS29Gj5aSEml0xbory0nqEnLzVqxgH45l8uZ2wYPm8qtVJql+DPXLc2UzupzVTTpaqK5KieiLkpKumbDmpqzdczvvmjKzalzN2RZLQ4lbyfVXaWnE/h8r3Q2iUTYyXHAsT42GH5fNaCuXxt8VXLUmoKsmpSc61C4NTPq/JLscdEXL/VUlRVUlgVclVXYHy9Xrk20c5Dqrz2hW5vR1RinGwyf1xhSo+D2Pk93tkRKkYH5/wgxiPMcnvizfS+4tx5/dyMtawTPm6vl30eLmfz/034dSQPnBFR4jPqSvm3AI0X/sV5s2bh8TERL/2pS7dcccdsNvteP/998W8lyUlJZg8eTICAwOxePHiap2DK0KIiIioVtx9992YPHmyv7tBREREDcipU6cwcuRIZfGPkJAQ9O3bF6tWrar2OZgslYiIiIiIiIjqhchIeVXP+S5luzcnQoiIiIiIiIjK0QDdz//QNJOO33jjjdiyZQtsNnm7XWlpKbZs2YIbb7yx2ufgRAgRERERERER1Qv33HMPOnbsiPvvvx8bN27EmTNn4Ha7cebMGfznP//BAw88gM6dO19StT7mCCEiIiIiIiIiv+jbty80Iam1rut4+eWXxfjx48cxaNAgbNq0qVrn5EQIERER1bilS5cqyzvXV/ZoC2C2louZixW/Khnl5coBv5SIcVXVGG+gWYyrqsm4ouTqGwaHXC7CUCxXbYCqP4rqLW5FdRJztny9qioznmbyvm/dIC9S1k3yOBsD5f7oVsV4FsnVcDxRcpUZTVEVyGSTq+F4YuXXxR0i90dzye3b28r73U0l8nldIfLr6FZUG1FVz9EVh3sD5X5Gxsqve1iAXI6lOExOeFjSWh6fQIvcIZOiqFFAvlwNxCM3r6YYB2eIfH8GZ8nvO1uc/Lo4FR+JXsX1GhXVbVTXpSk+rsri5fExOFT3iRx2xsjva0uU3FG3Sx6HZsFyFZjEgFNi/ArLaTH+lkmuTlYco6h2dKyK20z0//3zJ3+fv45069ZNnAipTZwIISIiohq3bt06dO/eHd27d/fF8vPzkZeXhw4dOlQ4fuPGjfjvf/+LV199tQ57SURERP725ptv1vk5mSOEiIiIatzChQuxe/fucrGVK1fi3nvvFY8/duwYtm/fXgc9IyIiqgS9nvxrInbu3AmXS179Vhs4EULUBPz5z3/G73//e5w6JS85rK/ee+89/P73v0dqaqq/u0JERERERLXk6aefxrBhw/D8889jw4YNKC6Wt1DVFG6NIaoHTp06hfHjx5eLmUwmREZGolu3brj99tvFpeREREREREQN3Ysvvoht27bh66+/xpYtW2A0GnHllVeiT58+uP7669GsWbMaPR8nQojqkZYtW2LgwIEAgLKyMqSlpeE///kPtm7dipkzZ+KKK67wcw+JiBovS5EHmqF8MkBLvpwEUDcpknta5F+tdKNiEa4iaSm88npooyJppidYzp6oOq03QO6nIzZQjFvy5eStnjD5eINiHAx2RRLVEKsYdymSjZqzxTDcoRYxbim0yf1RJKVVvY5ei/x6mQ+dlDvUVv7F3VAmv466Igmv5pHvB3OJPD66Ue6/U86FC4vii1fNJCed9Hrlfp7KC5cbKlHc54rciKrkrUZF7l97lPwEc7E8bgEFimS1EfIbxuiU21ElRdXkHKoIPyqftyxaPq9TzsELr3ybK8fNUiA/4FUkXTUXycc7FEldPR7FB41iW0eeXU6e+0VeNzF+MvSY3JCC0Sb3R9OruM+kPmxN8ff561BycjKSk5Ph8XiwZ88efPXVV9ixYwfefPNN/Otf/0L79u19kyKdO3e+5PNxIoSoHmnZsmWFetjz5s3D4sWLMW/ePL8kEiIiIiIiIqoLRqMRPXv2RM+ePTFjxgz89NNP+Oqrr7Bt2zYsWrQI77//PmJjY3HDDTfghhtuQPfu3WE0KiZbL4ATIUT13OjRo7F48WIcPHgQwK/baAYPHow//vGPFY7//e9/j+7du1dq0mTz5s1Yvnw5MjMzYbPZEBoairZt22LEiBFITk4ud+xPP/2ExYsXY/fu3SgqKkJ0dDSuv/563H333QgPV3wDdJ5x48YBABYsWIB3330X27dvR0lJCRISEjBx4kQMGDBA+dwvv/wSKSkpOHbsGEJCQtCvXz888MADsFp//RbR5XJh9erV2LFjB44ePYqCggIEBwfjiiuuwF133VVh9tjr9WLNmjVYvXo1Tp48CYfDgfDwcHTq1Anjx49Hjx49yh2/e/duLFmyBPv374fNZkNcXBz69++PO+64AwEBcilHIiIiIiKqng4dOqBDhw6YPHkyTp8+jW3btmH79u1YvXo1VqxYgeDgYFx77bV47rnnqtQuJ0KIGoiarq29cuVK/POf/0R0dDT69OmD8PBw5OXl4cCBA/jqq6/KTYRs27YNf/rTn6BpGm644QbExcXh6NGj+PTTT/Htt99izpw5CA1VrLc9j8vlwuOPP46ysjIMGjQIdrsdmzZtwksvvYTCwkKMHj26wnPOnef6669Hz5498c0332D58uUoLCzE888/7zuuqKgI//rXv3DllVfi2muvRWhoKE6dOoXt27fjm2++wb/+9S8kJSX5jp8zZw5SUlLQsmVLDBgwAEFBQcjJycHevXvx/fffl5sIWblyJWbOnImQkBBcd911iIyMRHp6OhYvXozU1FTMmjULZrNijSlRE3XkyBH897//LfczAGzatAn6eUuUzz1GRERUL+iaer9RXfaBfOLj4zF69GiMHj0aJSUl2LlzJ7Zt24adO3dWuS1OhBDVcytXrgQAdOnSpUbb/fzzz2E2m/Hee+8hMjKy3GOFhYXl/v+rr76K8PBwvPXWW+USFW3cuBEvvvgiFixYgEcffbRS583NzUWrVq3w9ttv+yYOJk2ahHvvvRfvvPMOfv/73yM2Nrbcc3bt2oV58+ahTZs2AICpU6finnvuwX//+1889NBDiImJAQCEhobik08+qfD8I0eO4IEHHsC8efPwz3/+0xf/4osvEBMTg4ULF1ZY0VFUVOT7/0ePHsWsWbPQoUMHzJw5s9wKmA8//BBz587F8uXLMWHChEqNAVFTsWXLFmzZssX387nJjxdffLHCsbqu1/iELxERETVOISEhGDhwIAYOHAi3W84/dSGcCCGqR06ePIn33nsPAGC325GWloa9e/fCYrFg6tSpNX4+k8kEk6nix8Bv/9Bfv349SktL8eijj1bI1nzjjTciJSUFGzdurPRECADcd9995VZPxMXFYcyYMViwYAE2btxYYUJhzJgxvkkQALBarbjxxhuxaNEipKen+yZCLBZLhUkQAGjXrh169OiB7777Dm63u9w1m0wmGAwVk2qFhf2aoWzVqlXweDyYMWNGhW1At912G5YtWyb2m6gpmzx5sr+7UGWarldIpmcoKhOP9UQFy20okoEaCxTZKD1y8kQ9Ss6SaCwolduB3B9V0k9jjtyfoBM5cjuR8qo/VftaplyuXQuSkyQaIV9vYImcHVO3yivwLFmKcfbK46zZ5aSlUEzKGRyKZJGt48W4MbtIjLubRcjH58tJXV2x8uvrDJfHP+gXxX3bTh5/VVJO2OR996WBcnJbT5ncH0u+3I5RzkUMqzxsysSR5hL5AU1+2ZVJUS2K5KoGRbJauyIbsdcs3yfOUMV95ZLbDzkpx11BqvOKYTgVO5iN8m0Cd4gc1y2Kz6tf5KTJYZ3z5eMVqxwOFVb8HQ4ATAY5+2yoRf58KFVcl8lWtcyjGgDNz8lKm+rXAz/99BMOHjyI5ORkBAef/fxzOByYPXs2tm/fDovFgokTJ2LEiBEAIP49czGcCCGqR06ePIlFixYB+LV87oABA2qlfO6NN96Id955B3fddRcGDBiAHj164Morr/R92Jyzf/9+AEBaWhpOnqyYFd/pdKKwsBAFBQWIiIi46HmNRiMuv/zyCvFu3c5mCs/IyKjwmJQZOi4uDgBQUlJSLp6RkYGUlBTs3bsXeXl5FWaICwoKfBMn/fv3x8qVK3HXXXfhxhtvRI8ePdC1a9dyeUeAs9cOAN9++y127dpVoS8mkwnHjlUtozlRY3f33Xf7uwtERETUAH3wwQfYt28fbr75Zl9s7ty5WL16NQIDA1FYWIiZM2eiRYsWuOqqq6p1Dk6EENUjV199Nf7xj3/UybkmTJiAsLAwrFq1CkuXLsWSJUtgNBrRu3dvTJs2DS1atAAAFBef/XZtxYoVF2zPbld8rXOe8PBwcQXGue05paUVv+08f3IGgC87tPc33/Lt27cPjz32GACgV69eaNWqFYL+9+3jtm3bcPjwYbhcv37798gjj6B58+ZYu3YtPvjgA3zwwQewWCzo168fHn74Yd/EzrltMosXL67UNRIRERERUfUcOHAAPXr08G2ZdbvdWLt2LZKSkjBr1iwUFxdjypQp+Pe//82JEKKm4twkgsdTcZng+asjLkTTNAwdOhRDhw5FYWEh9u7di//85z/YtGkTTpw4gYULF8JoNPomEhYtWoT27dtfcv8LCwvh9XorTIbk559dPilNelTW4sWL4XQ6MXv2bFx55ZXlHju3quO3TCYTJk6ciIkTJyInJwe7d+/GmjVrsH79euTl5eH1118v16d169b5xoOIiIiIGjEdyu1YddqHJqiwsNC3+hsADh48iNLSUowYMQJWqxVWqxXXX389vv7662qfgxMhRA1MSMjZjZs5ORX3cUvbSiojPDwcffr0QZ8+fVBYWIgffvgBJ0+eRJs2bXDZZZdh69at2L9/f41MhHg8Huzfvx9XXHFFufiePXsAAJ06dap227/88gvCwsIqTILY7XYcOnTogs+NiYnBgAED0L9/f9x+++3YtWsXHA4HrFYrLrvsMhw6dAj79++v9qwzUVMzY8aMKj9H0zS88cYbNd8ZIiIiajCMRmO5Vdy7d++GpmnlKjqGh4eXK/BQVXKmHSKqt4KDg9GmTRvs3bsXJ06c8MVtNhvmzp1b6XZSU1MrlK90u92+rTAWiwUAcPPNNyMoKAjz5s0Ty1va7XZfHpHKmjt3brkPtzNnzuDf//43LBYLbrzxxiq19Vvx8fEoLi4u10+Px4O3334bBQUF5Y51Op3Yt29fhTbsdjvKyspgMpl8y/FGjhwJo9GIWbNm4fTp0xWeU1xcfNGJFqKmZvfu3dizZw92795dpX+X6oMPPsDvf/973HXXXZd+EURERFTnmjVrhtTUVN/PmzZtQvPmzcsVbsjOzq5QxKAquCKEqAEaP348/v73v+PBBx9Ev3794PV68c0331SpxO7//d//ISgoCJdffjni4+Phdrvx/fff4+jRo0hOTvZ90EREROCFF17A888/j3vuuQdXX3012rRpA5fLhaysLOzevRtdu3atdG6T6Oho2O123H333bjuuutgt9uxadMmFBYWYsaMGWLVl8oaPXo0vvvuOzz88MPo168fLBYLdu/ejZycHPTo0aPcB6rD4cDDDz+M1q1bIzExEXFxcSgrK8POnTuRl5eHCRMm+CaD2rdvj8cffxz//Oc/cfvtt+Paa69Fy5YtYbPZ8Msvv2DPnj0YPHgwnnjiiWr3nagxMhqNuPbaa3HzzTcjKSmp1s935swZfPjhhwgMlCsYXIyuaRWqhdgTIsVjrSflshbeYLmaBhQZ7T2xcnkGY3aB3E5ggBg2FivKJKhYFOUljHJ1D13Rf0OeokpLgNxPVTUcr6L6jOHnE2Jci42Wz+tVlRVRjH+ofK8YDh+Xz9u+pRh3h1jk7gTK94+pQFHVJVLefmnOU1STCZNfR0eMfB+ayuSqH5ZCRRWVAvl+cIYoqhEFylWTPIFyP625ck0Mh+JvG5PiNg9Ll6v/2GPk87rl2xP2KHkcTHb5vvJY5f6HHVX0J0oeN1311bSiepG5TNEfubiKsp9uxW5kV4iiCo9DUa3GIh9fVCS/vwq9cn9u6PiTGL8lcrcYP1Ki+PJMUWpFVVWH6p9BgwbhnXfewf333w+z2YyffvoJd9xxR7ljfv75Z7Rq1ara5+BECFEDNGzYMLjdbnzyySf4/PPPER0djSFDhuDOO+9E//79K9XGfffdh2+++QYHDhzA9u3bERgYiBYtWuAPf/gDhg4dWu7Y3r17Y8GCBUhJScGuXbvw/fffIyAgALGxsRgyZAgGDRpU6b6bzWb885//xLvvvosNGzagpKQEbdq0wYwZMzBgwIAqjcP5rrvuOrz00kv48MMP8eWXX8JqtaJnz5549dVXfdV4zgkMDMQDDzyAXbt2Yc+ePSgoKEBoaChat26N++67r8LKlGHDhqFjx45YtmwZ9uzZgx07diA4OBjx8fEYO3YsBg8efEl9J2ps/va3v+GLL77Ajh07sH37drRr1w4333wzBg0adEnf4FzI22+/jcsuuwxer/eSlssSERGR/9x66604cOAAtmzZAl3Xce2112LSpEm+x48cOYLDhw/jnnvuqfY5NP38tfFERLVk3LhxAIBly5b5uSdEVFcKCwuxfv16rF27Fj///DPMZjOuu+463Hzzzbjmmmt8W9Au1e7du/HYY49h/vz5mDVrFgoLC/H+++9X6rnp6emYOnUqDJYboBkqN0lT1RUhxnw5mbUnsmZWhKCqv86pxt0jrxjwBsnXZShQrAhxySsD9JgIuf3aXhFikK+3qitC9CquCNEU3VGuCAlVrPgpko+3tVXcr6pvxE2KFRhh8jf9hZ3k452tnGLcaJVfd5yUxznohNy+Vx5O5YqQyHS5P1VdEaIaH9WKEFdw7a4IMShWeKh4FOPmCK/aihB7tHy9Xqv8+QBdbt8Q5ZAPr+KKkIlxckLMfx2XV4Qc2dRWjEcckvv/9Ud/KPfzuf8mZA3oC1dkhPicumLOL0Cz/2zBvHnzkJiY6Ne++ENpaSk0TatQrKCgoAA5OTlo1qyZL39iVXFFCBEREdWa8PBwjBs3DuPGjcOBAwewZs0a/Pe//8WWLVsQExODwYMHY+zYsb5y1dXh8Xgwa9YsDB06FB06dLjo8Tk5OcjNzfX9nJmZWe1zExFR46Tp6snMuuxDU7R79240b94c8fHx4uMRERFwOBw4fPgwunfvXq1zcCKEiIiI6kRSUhKSkpIwffp0bNmyBe+++y4++ugjJCUl4YYbbqh2u6tWrcLp06cxc+bMSh2/evXqCtvliIiIqH549NFHMXnyZEyePFl5zPr16/Hee+9h8+bN1ToHJ0KIiIiozuTm5mLdunVYu3YtcnJyYLFYEBYmJ9CsjMLCQrz33nu48847K72qZPjw4bj++ut9P2dmZuKVV14Rjw3IzFecWN4ao1nkhM96oLxmXbUFxhsRKsYNpXa5Py55Kb4eJq991/LlLS3eaHmrhXb0pHze5nFyXJGvVitR7G2Ile8BLTpKPr5U0Y5i65BuqlqhRC1EMW42xZYQRfvGX/LkE3jlJfpGRdwZJ98P5mJ5K4rXLPfH3kLeKmJQ7GhR7HiAJUgeB7dTTq6qKXZUeBRbVIyK29xaIH89Xqq4LpMiqahqK5C1UD7eZFPEFe2XKMdZkeTUIg+0pVTVf8VWL8V4GuSXCy7F1hjVKgTNI59XtbXHY5P/1GzfrmIFvgv5NLeXGE8/Ia8WMCpyVqvuQyVdU78J6oq/z+8nlcneoev6JW2v5UQIEdUZ5gYhaprcbjd27NiBNWvW4Ntvv4XH40Hnzp3x2GOPYcCAAdXe3wsA8+fPR2hoKEaPHl3p58TExCAmJqba5yQiIiL/OnHiBIKDFbN5lcCJECIiIqoVP//8M9asWYMvv/wSBQUFCAsLw8iRIyudy+Nijh8/js8++wzTp09HTk6OL+50OuF2u3Hq1CkEBwdf0ooTIiIiqn1/+ctfyv381VdfISsrq8JxHo8HZ86cwd69e3HNNddU+3ycCCEiIqIad9999+HQoUPQNA29evXCzTffjD59+sBkqrlfPXJycuD1ejFr1izMmjWrwuPjx4/HmDFj8Mgjj9TYOYmIqInQ//fP331oItauXev7/5qm4fDhwzh8+LB4rKZp6NKlC6ZNm1bt83EihIiIiGpceno6TCYTrrrqKsTFxSE1NRWpqakXfd7jjz9e6XO0a9cOr776aoX4/PnzYbPZ8Mgjj6BFixZV6jcRERHVvaVLlwI4m/tjwoQJGDt2LMaMGVPhOIPBgNDQUAQGKpJRVRInQoiIiKhWuN1u7Ny5s9LHa5pWpYmQiIgI9OnTp0L8k08+AQDxMSIiIqp/mjVr5vv/Tz/9NDp37lwuVtM4EUJEREQ1TtqqUt95AjTgvOofrni5WocWLSd4NRXY5MYLFVVamslVUbwBiqoTiqoremiQGNeKFdVVyuSyHJou51Pxdmojxo2/5IhxmOVfMb3RcvvGU3J1FV1RPUezKcZBMW6ayyOfN0tR1UVRfQYl8utrVLy+ntZyFSF3sFxFyJKraL9MUR3GKldpgaKQgj1SfiAwV15/7w6Vy2yEB8plSMzB8jjnZcnjqapyEpArxz1WxYUptg+oqquEZMnXZZCLL0HzKqrGlMrXaymU2ymLle9Pp3ybw6CokqN6gY0O+Wi3qoqT3H1AUV3F4JTP6w5XvL8C5fu21CmXdYmKLBXjkWb5fREWLn8OlLnkC/aaq1FhpAltTalPhgwZUuvn4EQIERER1bju3bv77dxvvvmm385NRERENSMtLQ0HDx5ESUkJvEJ5cU3TcNddd1WrbU6EEBEREREREf2Gpp/95+8+NEVFRUX44x//iB9//BG6rh4EToQQERERERERUYM3e/Zs7Nu3D927d8fgwYMRFxcHo1GxFbCaOBFCRERERERERPXCzp07kZSUhDfeeAOaVo3cLpXAiRAiIiIiAJqrYlJET4D8q5K5QM5K6I4KFuMmu5xc0muVkyfqRvkXP90iH+9oJmdbNNnkpIGmTDkrpFdxvcZ8OVmhp0WMGDeUKrI2qgTJ/fQokooavfL16uclu70YTZEUVZV01RspJ6U12OWkkAab/LqbFL/YO+IU949Nbl+VxNOruH8C8uTjnaHy8Zp8WhgU6/WDLfL15qmSbyqSk9rlHLPQFS9vyHHFOJgU7yODHLfFyXGv4i8ma6HcIa/ii+uyGLl9a5F8fFGC3L6mGE+nnItYeXyAIldwcXt5PI1livvEqsi6WsW/X68LPVyl49eZLhPjLkXO6irT4f9kqf4+v584HA5069at1iZBAKBq/7UgIiIiIiIiIqolHTt2RFZWVq2egxMhRERERERERFQvTJ48Gdu3b8f+/ftr7RzcGkNERERERET0W9wa4zd5eXm49tpr8cgjj2DgwIHo1KkTgoPlrYODBw+u1jk4EUJERER1Ijc3F1u3bsWxY8dgt9vx1FNPAQAKCgrwyy+/oEOHDrBarX7uJREREfnTa6+9Bk3ToOs61q5di7Vr11bIF6LrOjRN40QIERER1V8rVqzAW2+9BZfrbHZETdN8EyH5+fl46KGH8Ic//AHDhg3zWx91M6Cfn1xRkXTSEyT/CuW1KLIkNosQwwaXnGTQY1L8iqboj8Ept2M6I2dhtCe1kNtxy1kVNbecVNSYJWdb9MZHinHo8tebbkUSUmOJnHRVt8jjU9JOTqIa9EuZGDeV2sW41yr3B4rEfV5Ff1T3icEpj7OpVM4e6oiWJwgVOUuR31E+r6VIlSxVbgcG+XhNceJAsyIJbzP5dXR5FfeV/LLAokgqqkyKqngbqZKWGuXbBJoimYAqCali2GBSXJc9So6bixXtKPqp4lC8HUtbyB3VFfkp3WHyBesO+XOvT2KG3I4i622qLUGMR5lKxXjr0AIxvickTowb3FVbXqHp6vdYXfH3+f3l6aefrvVzcCKEiIiIatX27dvxxhtvIDExEZMnT8bXX3+N1atX+x5v164dOnTogK+++sqvEyFERETkf0OGDKn1c3AihIiIiGpVSkoK4uPjMWvWLAQGBiI9Pb3CMe3bt8eePXv80DsiIiJqajgRQkRERLXq8OHDGDRoEAIDA5XHxMTEID8/vw57RUREdCGaep9QXfahCTp9+nSlj42Pj6/WOTgRQkRERLVK13WYVDkv/ic/Px9ms7mOekRERNT42Gw2LFmyBGlpaThw4ACKi4vxzDPPVNhqkpaWhnXr1iEtLQ0//fQTPB4Ptm7dqmz3888/x5IlS5CVlYXY2FiMGTMGo0ePrnBcdnY2Zs+eje+++w5erxc9evTA9OnT0aKFnJdKZdy4cRWSo0o0TcOmTZuq1PY5nAghIiKiWtW6dWvs3btX+bjb7caePXvQvn37OuwVERFR41JYWIhFixYhPj4eHTt2RGpqqnjc119/jc8//xwdOnRAixYtcPz4cWWbq1atwuuvv46+ffti/Pjx2Lt3L2bNmgW73Y7bb7/dd5zNZsOMGTNQWlqKSZMmwWQyYdmyZZg+fTree+89hIeHV/o6brrpJnEipKSkBD/99BNOnTqF7t27o1mzZpVu83ycCCEiIqJaNXDgQLz99ttYuHAh7r777nKPeTwevP322zh16lS5X6j8wWsyAOby1QxU1ViMdrcYdyuqhBhL5HIR7gh5u5A5u0TuY4BFjBtcivIVJrmagyXXJrdTJlf9UAqRq6sYfsmRjw8LEcOaonqObpCrS6iODz1UUKV29EB5PFWvl6rqDYrlqhaGaPkXf1V/DA55/E2nC8W4W1GNKOqg3M/S5vL9aZa7D4dd7mdRiXzfljnkVV26W25HVf0kULEq3lQmX5eqagwUbwtLodyOuVSO26Pl/rut8nktJfKJQ0/IcUeY3L6yGo6iOJVT8Xdm0Ck57g6S23dEyXF3sGJAA+Rx27I/UYxbQuUqQoO77RPjeR75cyPHLn/+eBV/4VoK5M8NJf1///ypiuePjo7GihUrEB0djYMHD+K+++4Tjxs5ciRuv/12WK1WzJw5UzkR4nA4MH/+fPTu3Rsvv/wyAGDYsGHwer344IMPMHz4cISGni07tXLlSpw4cQJz5sxBUlISAOCaa67B5MmTsXTpUmVfJH/84x+Vj+m6jiVLliAlJcVXfa46FMWgiIiIiGrG6NGj0b17d7z//vu47bbbsGXLFgDACy+8gNtuuw3Lly9Hr169MHToUD/3lIiIqOGyWCyIjo6+6HFRUVGwWuWy3L/1ww8/oLCwECNHjiwXHzVqFMrKyrBz505fbPPmzejSpYtvEgQAEhIS0LNnz2pvX5FomoaJEyeiXbt2ePvtt6vdDidCiIiIqFaZTCb84x//wO23346ioiIcOXIEuq5j8+bNKC4uxm233YbXXnutUvuBiYiIqG5kZGQAALp06VIunpiYCIPBgEOHDgEAvF4vfv755wrHAUBSUhJOnjwJm01eiVhdiYmJ+OGHH6r9fG6NISIiolpnNpsxdepUTJkyBceOHUNRURGCg4ORkJAAo1GxzpuIiMhfdECrJ1tjMjMzy4Wjo6MRExNT66fPzc2F0WhEZGRkubjZbEZYWBhyc3MBAEVFRXA6neJqlHOxnJwctGnTpsb6dvLkSXg8Vdzu9BucCCEiIqI6o2kaEhIS/N0NIiKiBuOVV14p9/PkyZNxzz331Pp5HQ6HsuqbxWKBw+HwHQdArP5msVjKHXMpvF4vsrOzsW7dOmzfvh09e/asdlucCCEiIqJadfToUXz//fcYMGAAIiIiKjyen5+PjRs3olevXmjbtm2d9++cgBwnDCifJNNQ5hSP1RWrWIJ+ypMbN8jbfsxHs+XjFUk5Vck0Nadir7eqnWw5+aanRZQYN+bKyVthVvwqGSQn09RNiuSnRXK2Tk1Vdtku/0Ltah8vxs1ZRWLcGyKPm2ZTvO5WRYlni5ylUpXU1RuiaKdYXjruahEh90cxnga3nNTSUiTHdU2RTFYx/Caj3I7ZJF+vViw3ZM2V21clu6xq8lC3nEsT1mL5faFKHhqQJ1+v1ywfb49SvC6KXMSaV+6PyS7HHeHyeUOOye175ZzAcETKcZNiB4PBJV+XM0I+XjfJ/TdGyOO5s7ijGG8dIH+uFjkCxHig4mPVHVzF1Yf1KFnqs88+W+5LhMrkAakJVqsVbrecHNzpdPryjJz7X5er4k3udDrLHVMZffv2veB2WV3XERoaiocffrjSbZ6PEyFERERUqz766CPs2rULt956q/h4WFgYUlJSkJGRgWeeeaaOe0dERFS/JSQkIDFRrsJTm6Kjo+HxeJCfn19ue4zL5UJRUZFvQiYsLAwWi8W3Vea3zsWqspWnW7du4kSIpmkIDQ1Fly5dcPPNN1fYslMVnAghIiKiWrVnzx787ne/g0FRMtRoNOJ3v/sd9uzZU8c9IyIiIpVOnToBAA4ePIjevXv74gcPHoTX6/U9bjAY0L59exw8eLBCG2lpaWjRogWCghRLtARvvvnmJfb84lg1hoiIiGpVXl4e4uLiLnhMbGys+E0SERGRP2h6/fjnTz179kRYWBhWrVpVLr5q1SoEBASUmxzp27cvDh48WG4y5NixY0hNTUVycnJddbnSuCKEiIiIalVgYCDy8/MveEx+fr4voRoRERFVz/Lly1FSUuL7cmH79u04c+YMAGD06NEICQlBVlYW1q9fDwBIT08HALz//vsAgGbNmuGmm24CcDavx7333ouZM2fi+eefx9VXX409e/Zgw4YNmDp1KsLCwnznHTVqFD7//HM89dRTmDBhAoxGI5YtW4bIyEhMmDCh2tezb98+ZGRkwGazISgoCJ06dcIVV1xR7fbO4UQIERER1apOnTrhq6++woMPPojQ0NAKjxcXF+Orr75C586d/dA7IiKixmPp0qXIysry/bx161Zs3boVADBo0CCEhITg1KlTWLBgQbnnnfu5e/fuvokQ4OwEh8lkwtKlS7F9+3bExcVh2rRpGDt2bLnnBwUFYdasWZg9ezY++OADeL1e9OjRA9OmTRMTpV/Mvn378Je//AUnT54EcDZB6rm8Ia1atcLTTz+Nrl27VrndczgRQkRERLVq1KhRePbZZ/Hoo49i+vTp6N69u++x3bt3480330RxcbEymWpd0c0avBWqZ8irVHSjnM3eYJd/tdLsinIRwYrqKorqJFqpXYyrNjvrigc0q3xdxqNZYlxvVvkkdwCgB8vVAQzHT8tPUO0dV+SVgaL/5mM5cn8K5Koxnvh2VTqvIbtAbj88RG7HJVdb0Lxy1QxPVMWJQgDQ3IrqIVGKaix5ctUb1a/+uqqqkTxscNjk+9OoqCajK15GZVWXAjmuqg5jcMnjE3FYUcVGsd2gLEo+gTNEHh9V1RhNftkRfFp+QHVee5TcvlHxMaAeHzluVRS5UlWZUby80K2KBwLl8Q8JkKs+RSrK1WSWyRVSukSdEeN7IX9eBR+Xq1NdkL+rxlTDsmXLLnpMjx49fJMjlTFs2DAMGzbsosfFxcXhpZdeqnS7KkeOHMETTzwBu92OXr16oUePHoiOjkZeXh5SU1Px3Xff4YknnsC7775b7WpznAghIiKiWtWnTx+MHTsWn3zyCR599FGYzWZERUUhLy8PLpcLuq5jwoQJ6NOnj7+7SkRERH62aNEiuFwu/O1vf8M111xT7rHbb78d33zzDZ555hksWrQIf/rTn6p1Dk6EEBERUa2bNm0aevbsiRUrVuDgwYPIzs5GSEgIevbsiVGjRuHaa6/1dxeJiIh+pcP/K0L8fX4/2b17N5KTkytMgpxzzTXXIDk5Gbt27ar2OTgRQkRERHXiuuuuw3XXXefvbhAREVE9VlpaiubNm1/wmObNm6O0tBrbnf6H5XOJiIiIiIiIqF6Ijo7G/v37L3hMWloaoqPl/DGVwRUhREREVCfcbjeOHz+OkpISeDxyEr3fJlKtcx4dGson/dPccj9N2XJSP2+QnCRUs8lZJ/Xo8Cp0EIAur5PWnHI/kVcghr2t4uV2AhVZElXndSmSUWbJSUsRII+PHionjfWEyMcbC8rk9s1ytkjNKMcNdsW4Kegl8rePmqL0s64aT488nkabnAXTGygnJw3IUSXrlK9LlRQVirAjWpH8VJefEGSRk7SWueTjPfLLC7d8OyDojCIppya3b4+UX3dzqdxOYI6czNQZJrfjCJPPG1Agt2+LVdyHiuSqlqKq7YtQJYG1R8r9dIWJYRgVby9HpOK+LZavy+ORz1sUHCDG2wVki/FIs/y+W3mymxjXFG/r0tbB8gMKmq4e07ri7/P7y/XXX49PP/0U8+fPxx133AGr9dcPC4fDgY8++gipqakYPXp0tc/BiRAiIiKqVbquY8GCBfj0009hs8kTCOds3ry5bjpFRERE9dJdd92FnTt34sMPP8Tq1auRlJSEyMhI5Ofn4+DBgygoKECLFi1w1113VfscnAghIiKiWvX+++9j8eLFCAkJwU033YTY2FgYFd/QExERUdMWHh6Od955B++++y42btyIr7/+2veYxWLBkCFD8MADDyAsTLGsqRI4EUJERES1as2aNYiPj8e8efMQHl7FrSBERETU5ERERODpp5/GE088gczMTNhsNgQFBSEhIQEm06VPY3AihIiIiGpVXl4eRowYwUkQIiIiUvrggw9gt9txzz33+CY7TCYTOnTo4DvG5XJh3rx5CAwMxKRJk6p9LlaNISIiolrVrFmzSypxR0RERI3b999/j/feew9hYWEXXPFhNpsRFhaG+fPn44cffqj2+bgihIiIiGrVyJEjsXjxYuTn5yMyMtLf3VHSTQZ4tfK5SwwuufqDOyakSm17E+LEuOmMXE3GGyKXzdAU1TFU/TF5FVU2FF+FaTa5fIWq+omuqtISFCSfwCifWCuWy1SY8ovldgLlqhO6UVH+RMHw8wn5geaxVYrripw3nmB53IwlDjHuipVfR/MZeRy8AXI1GXu8ogqPVVE9RFFMQ1WxwhIsV4dR3J7QTXJDBrf8BJMip7IjQr5/vIq/aMwl8nlV1WS0cLl9S7HcTkC+4vMhSL4uVdUea4H8vstLki/MpKjq4lEUKfIq4tZ8OW6PUrQfJF+v6nUMayV/voUGyPd/tjtUjPcMPCrG5xbeIMZNiqpDRqfi81BF/98/f/L3+evQ+vXrERoailtvvfWix44aNQoffvgh1q5di549e1brfJwIISIiolp1ww03YO/evXjooYdw1113oXPnzggOlv/yio+Xy7oSERFR4/Xjjz/id7/7HSyKcuS/ZbFY0KtXL+zbt6/a5+NECBEREdWq8ePHQ9M06LqOv/zlL8rjNE3Dpk2b6rBnREREMk1Xr4qqyz40FTk5OejXr1+lj2/evDm2bdtW7fNxIoSIiIhq1U033aTc0kFERERkMBjgdsvbxCRutxsGQ/VTnnIihIiIiGrVH//4R393gYiIiOqx6OhoHDlypNLHHzlyBDExMdU+HydCiIiIiPC/RIbnJTMsayZn3TOVesS4wSnHdUWSUEOYIqufIqefN0LOreK1yMkfVdkrNbd8Am+ItUrH6xbFr5Kh8nXpJnkcVMlGNZc8npquWC+uON4dL5duNijHU74u1Ti4IhXj5pX76QmS2zfn28W4rZ0iybAiOWzAKTmbpiNcTsaqWn7vtcgPBFpdYjwhTM6+eSZEHn9nhJzsFbpiBZkibC2Q416LIrmw6m2nGE918lO5HaOcS1aZ+FKVFFWVBNareLtb5NykKOiieB1PK643VNHRQPn+t0bI95vdIb++UUFyNty9Ra3EeKxJThbcMrJAjB+Lkt/XhW2r8advE9qa4m9XXnklvvzyS5w6dQrNmze/4LGnTp3CDz/8gJtuuqna52P5XCIiIiIiIiLym1GjRsHtduP5559HQUGB8rjCwkK88MIL8Hg8GDFiRLXPxxUhDYjdbkdmZiYSEhIQECCXjSMiIvK3GTNmQNM0/PGPf0RcXBxmzJhRqedpmoY33nijdjtHRERE9U5iYiLGjh2LTz75BHfeeSdGjBiBHj16IDb2bNnynJwc7Nq1C5999hkKCgowbtw4JCYmVvt8nAhpQDIzMzF16lTMmzfvkl50OqusrAyBgYq1kVRlHM+axzGtWRzPurN7925omgaHw+H7uTKYUJWIiOoNHf7fGuPv89exhx9+GBaLBSkpKVi8eDEWL15c7nFd12EwGDBp0iRMmTLlks7FiRBqsrxexQZsqhaOZ83jmNYsjmfd2bJlywV/JiIiIjqfpmm47777MHToUKxZswY//vgj8vLyAABRUVG44oorMGTIELRs2fKSz8WJECIiIiIA7iADYC6fhTD4WKl4rCtMTo5pdCiSe7rl5JKaXS4V6A2tWtJSzSPHPdFyckwoko1qqv7b5f57FMlV9UBFMtBjOWLcGx0mxg0O+bxKiusylqqyV8oMmjwOytMa5NVMRrsqea4i+aZZzoJpLpHHwRUiJ6Ms7CK/7qocpM5QOW4skdMJejxyPMceJMYN+XI/Vf1RJUU1yTk54bHIcXOJHFclIQ09Ib+P3NaqJW+1FCnaCVQkC1bcP6pkrM4IOW5QvF0s+XL7LjmnKCwF8vFOxZ+OrmD5vg0LkZP/Gg3y+IyN/U6Mp9rainFdcQOFnJDj5tKqLa/QdHUi4bri7/P7S8uWLTF16tRaPQeTpRIREZFf6LqO48eP4/Tp0/7uChERETUhXBFCREREtWrLli3Ytm0bHnnkEYSGnv3q+dSpU3j66aeRmZkJAEhOTsZzzz0Ho6KMKhEREVFN4YoQIiIiqlWrVq1CRkaGbxIEAGbPno2jR4+iR48e6NChAzZv3ow1a9b4sZdERES/odeTf1QrOBFCREREtero0aNISkry/Wyz2bBz5070798fM2fOxJw5c5CQkMCJECIiIqoTnAghIiKiWlVUVISoqCjfz3v37oXH48GNN94IADCZTOjVqxdOnjzpry4SERFRE1Ivc4TYbDYsWbIEaWlpOHDgAIqLi/HMM89gyJAhyue43W7cfffdyMzMxIMPPoiJEyeWe9zr9WLJkiVYuXIl8vLy0KpVK0yaNAkDBgyo0NbRo0cxe/Zs7Nu3DyaTCb1798a0adMQERFR620SERE1NsHBwSgqKvL9nJqaCoPBgG7duvliJpMJdrtcYaCumGxeaIbyVT7coXI5CoNLrgZiKFNUh3HK1WFUlO2UydVPNEV/cOSEGPZ07SDGjTabGNet8q+MpjNFYtwTqahaEqqoKqK4Xk94oBg3Zsvn1YMU1XZKFOVGDIrvBAPl1101/hZNrlKheVRVhBTlvBXt6Aa5P9Z8hxh3hci5dlzBcvuWYrk7Zc3lfhb/IpeZKQ5QvL7x8nvbdFh+fVXCjsrjWRYtX69VUb0loEBu3ysXt4HXJI9bUI7cH9XxyiozJfL+B3uk/IQAufgSzDa5HVeooqqRopiSW34ZYS6U23EEBIjxArf8/ipzyAN9OL6ZGD9hjxDjquozLkX/A3LluFI9qBrDrTG1p15OhBQWFmLRokWIj49Hx44dkZqaetHnLF++HGfOnFE+Pm/ePHz00UcYNmwYunTpgm3btuGll16Cpmm+b6QA4MyZM5g+fTpCQkIwdepUlJWVYcmSJfj5558xZ84cmM3mWm2TiIiosWnTpg127NiBKVOmwGAw4D//+Q86d+5cLmdIVlYWIiMj/dhLIiIiairq5URIdHQ0VqxYgejoaBw8eBD33XffBY/Pz8/H+++/j9tuuw0LFiyo8Hh2djaWLl2KUaNG4bHHHgMA3HLLLZg+fTrefvttJCcn+7LUf/jhh7Db7Zg/fz7i4+MBAElJSXj88cexdu1aDB8+vNbaJCIiaoxGjx6NF154AaNHj/at/JgyZUq5Y9LS0tC5c2c/9ZCIiEjAFRmNVr3MEWKxWBAdHV3p4+fMmYPWrVtj4MCB4uPbtm2D2+3GqFGjfDFN0zBy5EhkZ2dj//79vviWLVtw3XXX+SYsAKBXr15o3bo1Nm3aVKttEhFRzTu46iC+eOgLHP7isL+70mQlJyfjscceQ7t27dC6dWvcf//95ba77t69G6Wlpbj66qv92EsiIiJqKurlipCqSEtLw7p16zB79mxoin2VGRkZCAwMREJCQrn4uQz2GRkZuPLKK5GdnY38/HwkJiZWaCMpKQlff/11rbZJREQ168CKA1h26zIAwPfvfI+AgAAkDq/4eUy1b+TIkRg5cqT4WPfu3VkxhoiIiOpMg54I0XUds2bNQv/+/dG1a1ecOnVKPC43NxeRkZEVJkrOrTrJycnxHffb+PnHFhUVwel0wmKx1Eqb58vJyfE9HwAyMzPF6yMiooocxQ6sf3y972fNoOHo5qOcCCElr1GDZiz/33XrqRLxWN2k+BXKq0iCqeCOqFryUM0uJ8fUjPIiX71tSzFuOibnVfPGy3lavIrkoSZF0k9jiZwcU8/KFuOIipDbOSknb3W1ixPj5mOKLJJGOZkmyuR+qsZZDw+Wmy+U++kNk5OB6mZFclXFeLpC5XxyBpe8bt/gluOhJ+T7qsQrv76WAnncjElystqOMfL47/+hnRg3KXLYqpJalsXI/bGUyOPmCJPfF+ayKu53UCQ5LY1TJGktlvujKT4ejHb5gWCHfGJ7lHxd9ihFUlTFODsVaZkMVUyiqsoo6rHLn5Nus3y9B0rlZKleXb7e/DK5Q6oksKr7REmH/7fG+Pv8jViDnghZu3Ytfv75Z7z00ksXPM7hcIgJSc9NPjgcjnL/e7FjLRZLrbR5vtWrV2PRokUV4na7HaWlpRXiVDVlZYr/KlC1cDxrHse0+opPFuPT0Z+i8GghgLOTILpXR7Nrm1Xr8zM4WP7jh4iIiIgangY7EVJaWoq5c+di4sSJ5XJvSKxWK1yuijPgTqfT9/hv/7eyx9Z0m+cbPnw4rr/+et/PmZmZeOWVVxAQEMBfymsIx7FmcTxrHse06k79cAof3/IxSk6VIKRZCHo/0RvFJ4vR7Npm6Dau28UbICIiIqJGrcFOhCxZsgQulwv9+/f3bYnJzj673LKkpASnTp1CTEwMzGYzoqOjkZqaCl3Xy21lObftJCYmBsCv21d+ux3lt8eGhYX5Vm7URpvni4mJ8bVDREQXl/5ZOpZPWA6XzYW4rnGY+PlERCREAABX0hEREVGlabpy10+d9oFqR72sGlMZp0+fRnFxMe68806MHz8e48ePx7Rp0wAAixcvxvjx43H06FEAQMeOHWG32yvk2EhLS/M9DgCxsbGIiIhAenp6hfMdOHDAd1xttUlERNX3zZvfYMmIJXDZXOgwqAPu3na3bxKEiIiIiOicBjsRMnr0aLz66qvl/j3xxBMAgCFDhuDVV19F8+bNAQA33HADTCYTVqxY4Xu+rutYtWoVYmNj0bVrV1+8b9++2LFjB06fPu2L7dq1C8ePH0e/fv18sdpok4iIqs7r9mLN9DVYN2MdoAM97+uJiZ9PREB4gL+7RkRERET1UL3dGrN8+XKUlJT4tpRs374dZ86czXA+evRoJCYmVihJe26LTNu2bdGnTx9fPC4uDmPHjkVKSgrcbjeSkpLw1VdfYe/evXjuuedg/E0m8UmTJmHz5s149NFHMWbMGJSVlSElJQXt27fHkCFDarVNIiKqGkexA8snLEfGmgxAAwb+bSB6/6G3spw60YUYPDo0vfw6ZG+IPKGmuTxi3GuWt7uqjjdly9U3YFB8V2WRq4foJvl4VRUS3a6olnLkF7k7CS3EuNcq9+f8cfTFw0PldiLkfEiGUrl6i/l4nhjXQ+QqLapxgKI6jKp6juGEXG1Hj1Ycr6omE6qYqFVUHbJmy+1AcVmaV26/pLWcl84ZKn9meizy6+gqVWzrbiVXWTKWye2XJsjvi6DT8v3sDlRV2xHD0BV/6aiq7aiqumgexfFy9+EIV7wfFe8L5XfTiuOthXJHS5rL7SiKAsGSL8fLmiuqwATKcd0kxy2hivItCteG/SzGTzijxPghU6wYdyhed1dwFdcAsGpMo1ZvJ0KWLl2KrKws389bt27F1q1bAQCDBg1CSEhIldq7//77ERoaitWrV2PdunVo1aoVnn32WQwcOLDccfHx8XjzzTcxe/ZszJkzByaTCb1798bDDz9cIZdHbbRJRESVU3SiCB/f8jFO7zkNU6AJt354K5JuTfJ3t+gCDh06hI0bNyIzMxMOhwMzZ84EAGRlZSEtLQ29evVCWFiYn3tJREREjV29nQhZtmxZlZ/TvHlz32TJ+QwGAyZNmoRJkyZdtJ127drh9ddfv+hxtdEmERFd3KnUU0i5JQXFvxQjOC4YEz+biJZXt/R3t+gC3nnnHSxduhT6/77h/O2qHV3X8fLLL+Ohhx7C2LFj/dVFIiKiX3FFSKPWYHOEEBFR03To80NY2Gchin8pRuxlsZjyzRROgtRza9aswZIlS9C7d28sXLiwwhcIzZs3R5cuXbB9+3Y/9ZCIiIiaEk6EEBFRg/HNv/5XGabUhfYD2uOe7fcgom2Ev7tFF7Fy5UokJCTg5ZdfRvv27WEyVVyQmpCQgBMnTvihd0RERNTU1NutMUREROd4PV6sf3w9vn3zWwBAjyk9MPTtoTCajRd5JtUHR48exS233CJOgJwTGRmJgoKCuuuUwFTqggHlk/tpdjkLo6FYTl7pjguXj/9ZnuRxXd5WjJsPnxLjnjZxYtxYWCbGddV7JF5OMqgHyK+R4UyB3J9WMfLxpwvl86qSqGYck49X5VIzydflbCf3x3KmWO6OIimqrkpWGxUhhrUyOemqHionbzWUueTjFYmeNYM8bm5FdSx7jGLcVMvsFfmlrfmKJKcR8n3yzckEMe4OlpN7BmfKr6NdflkQdEa+AK9F7qe5VJHcU/HyeqxyO+4AOR6Qp0j2mq3I3qp4fZ0hig4pjncpksa6FCkUDYrueFQ5e63yuJkL5X46FfePKVIen0CrfP8vOHK9GB/TJlWMW43yhXnknMAwOqq2z0QDoPl5awpTv9ceToQQEVG95ixxYvnE5Tj0+SEAwIC/DsB1/+86VoZpQIxGI9xuxW/i/5OTk4PAQPmPRiIiIqKaxIkQIiKqt1IXpuI/T/0HtmwbTAEmjFo8CpeNuczf3aIqat++PX744Qd4PJ5y5eXPsdvt2LVrFzp37uyH3hEREVFTwxwhRERUL30962usvmc1bNlntyAkv5TMSZAG6uabb8bx48fx+uuvw+ksv/WktLQUr732GvLy8jBs2DA/9ZCIiOg8ej35R7WCK0KIiKjeyVibgS//35e+nzWjhpJTJX7sEV2KoUOHYteuXfjiiy/w3//+FyEhZzey33fffcjMzITdbseQIUOQnJzs344SERFRk8CJECIiqle+f/d7rJm2Brrn7NcgmlGD7tHRNrmtfztGl+T5559Hjx498Omnn+LIkSPQdR3p6elISEjA6NGjMWLEiCq3eeTIESxcuBDp6enIy8tDQEAAEhISMHHiRFx/vZx070IcMVbAVD5PiTVXToLpCZOz8RlLnWJcbyeXeDY45Nwp3rgoMe4OMsvtKJJvuiLlvCumYvm63IrrMgTIyVWNRXKSVk9cmNyOop/eODk7pidYvl5LVpEYNxfI/VElnVQlw9WDFUlmFclevdGhYtxQqhjniCC5fQWDU+6nO0j+Vd4ZKl+vKmmmKm5rKz9gDJZfR6dT7o8eICdLNZXJi9NNci5iuBVJQjWP/LoY5bejsh2vSY7ritvBpUhyqkrK6YiQj3fIbxfoir/UjKrbXLV6QBF3K25Da47cT3uc/DqqTtwmKl+MR1nlF7h1oHx8v5ADYny7tYMYPxYt97OoddU2Q2h6PUiWyhUhtYYTIUREVC/oXh1fPvkldr6+EwDQfXJ3dL6lM45tP4a2yW2RODzRzz2kSzVs2DAMGzYMDocDxcXFCAoKQlBQ1f4g/K2srCzYbDYMHjwYMTExsNvt2LJlC5555hk88cQTGD58eA32noiIiBoLToQQEZHfuWwurLhjBQ58evZbn34v90Of/+sDTdOQNDrJz72jmma1WmG1KuobVkHv3r3Ru3fvcrFbb70VU6dOxbJlyzgRQkRERCJOhBARkV+VnC7BkuFLcPLbkzBajBixcASuuO0Kf3eLaonX60VeXh48Ho/4eHx8/CW1bzQaERcXh4MHD15SO0RE1MTVh2Sl/j5/I8aJECIi8pvstGx8dPNHKMwsRGBUICasmoA2N7Txd7eoFmzYsAFLlizB0aNH4fXK+7c1TcOmTZuq3HZZWRkcDgdKS0uxfft2fPPNN+jXr5/y+JycHOTm5vp+zszMrPI5iYiIqOHiRAgREfnFzxt/xrLRy+AodCCqYxRuW3MbojtF+7tbVAtSUlIwZ84cmEwmdOvWDdHR0TAaFdkHq+Gtt97C6tWrAQAGgwG///3v8dhjjymPX716NRYtWlRj5yciIqKGhRMhRERU51IXpuLz+z6H1+1F6+tbY8LKCQiKqX7STKrfPv30U8TExODtt99GXFxcjbc/duxYJCcnIycnB5s2bYLH44HLJVe1AIDhw4eXqyqTmZmJV1555WxFkPOqgjiiLGIb1nxF9ZMAucqJ5pS3AukGRRWJ5gFi3FyqqDJjkX+lU1WH0U3yec05pXL7AfI4eELlqjQGl3y9mqL6iWau2sSYOzJYPq+ifV3RvsGlKCuiOm+UfF7NJa9y0o2KKiSK6iSOaDl3jqVQcb9Z5HaCsuXxt0fI41AmFwUCnPJ9ckXrX8T44dwYMe4NltspbSn3x1QiX1dYprxPwKMYB7tibt2rut3kZmCRixTBVCb3xxUsN2S0y8ebFfeDqv2SllWrCuSSixrBmifHy+Ll82ouxf0cKB9faJc/H8LM8udSS6tcNSbN0UKMl7jkzyWvokoRULWqMdwa07hxIoSIiOqMruvY9NwmfPXqVwCArhO7YsR7I2AK4H+OGrOCggIMHz68ViZBACAhIQEJCQkAgMGDB+Pxxx/H008/jTlz5kATyqbGxMQgJkb+g42IiIgavypOixEREVWP2+7Gp7d/6psE6fN/fXDrh7dyEqQJaN26NYqLi+vsfMnJyTh48CCOHz9eZ+ckIiKihoMTIUREVOtsOTYsHrgYP6b8CIPJgOHvDUf/V/pDMyjWIVOjMnbsWGzbtg1ZWVl1cj6H4+yy65KSkjo5HxERNT5aPflHtYNfwxERUa3KzcjFxzd/jLzDebCGWzFu+Ti0v7G9v7tFdWjIkCEoKCjAQw89hJEjR6Jjx44ICpJzwnTv3r3S7ebn5yMyMrJczO12Y/369bBarWjbtu0l9JqIiIgaK06EEBFRrfnqta+w5cUt8Dg8iGgbgdu+uA2xl6my8lFjVlpaitLSUrz33nsXPG7z5s2VbvMf//gHSktL0a1bN8TGxiI3Nxdffvkljh07hocfflg52aJiLvFA087LNqj4Ok5zy8n4nOFy8r6gnxRbg3Q5E54pW5Ehr1ixyiVETuLpahEhxs2n5f54Q+Rknao1xKqkn7pXjquSrhoKbWLcXKZIEhqq6KeC5pHHU7fKyW0NpXIyR2+wfF5NkRzW3jJMjFtPy9drUaySMzrk9o0l8viUtZTvfXOpfN9aCuTsoc4IuT97DrcW49HxclbR0qwQ+bw2uX1VclJHmHx8yCnF+9GtuD8V97OlSL5PVElpnaGKpLeKfqreR6rr9VgVyXDPyMc75NsNAblyvLS14vOnWHFdzeRsrMZg+T4sKpPfL17FuHkVL0yxR04e7fDIf8oGZcrx0BOqJKoXwGSljRYnQoiIqFasf2I9vn79a9/PfV/sy0mQJmrBggX48MMPERERgf79+9dY+dz+/fvjiy++wKpVq1BYWIigoCAkJibigQcewA033FADPSciIqLGiBMhRERUo3Rdx1evflVuEkQzaji9+zRwpx87Rn6zZs0atGrVCnPnzq3yKo0LufHGG3HjjTfWWHtERETUNHAihIiIaozH6cHn93+O3Yt2+2KaUYPu0dE2ua3f+kX+VVxcjP79+9foJAgREVGt0gHN31tj/H3+RowTIUREVCPsBXYsG70MR/57BJpBw5DZQxDWMgxHNx9F2+S2SBye6O8ukp+0b98eubmKTepEREREdYwTIUREdMnyj+Tj46EfI+dADiwhFoxZNgadhnQCAE6AEO644w68+OKLSE9PR2Ii7wciIiLyL06EEBHRJTn57UmkDEtB6ZlShLYMxW1f3IZm3Zr5u1tUjxQXF6NXr154+OGHMWjQIHTo0AHBwXKVk8GDB9dx735lcLhh0MtXP/AEyL8qGZxyFY+gowVVO6ldUZ0kPlKMGzRFNQpFO8ZSp3y8R+6/IbtQPrxFlBg35cvVT1RVWlRVclBSKrejSqqrqN6idCJLbl9RbUfFWCCX9/A2jxbjAVmK67LJr5ceFSif2CNX69DNcpUNS6FcxcMWL1ftMcrdga4YfmOA4v5RrOPXnPJ9a1YVU1Kc1yTfbiiLksdBUxQJsSiq57iC5X4a5MuFtVC+XoP8csFcKh9f2kzuv0Hx9nVXcZehR/F2CTitqIYTIR8feFL+PHRGyC+YzSLfb7mhcvWrrXonMd48UP5cahksvx8LXM3l/sQpyvao6PD/1pQqnt9ms2HJkiVIS0vDgQMHUFxcjGeeeQZDhgypcOzRo0cxe/Zs7Nu3DyaTCb1798a0adMQERFR7jiv14slS5Zg5cqVyMvLQ6tWrTBp0iQMGDCg2m3WB5wIISKiajuw4gA+vf1TuMvcaNa9GSZ+PhFhinKR1HS99tpr0DQNuq7jiy++AABo5/1Br+s6NE3z60QIERFRQ1ZYWIhFixYhPj4eHTt2RGpqqnjcmTNnMH36dISEhGDq1KkoKyvDkiVL8PPPP2POnDkwm38tLT5v3jx89NFHGDZsGLp06YJt27bhpZdegqZp5RKWV6XN+oATIUREVGW6rmPnP3fiy//3JaADnW7uhNFLRsMaWsVvaalJePrpp/3dBSIioqppgCtCoqOjsWLFCkRHR+PgwYO47777xOM+/PBD2O12zJ8/H/Hx8QCApKQkPP7441i7di2GDx8OAMjOzsbSpUsxatQoPPbYYwCAW265BdOnT8fbb7+N5ORkGP+3cq+ybdYX9W4ipDLLebxeL9avX48tW7YgIyMDxcXFaN68Ofr3748JEybAaq34i/jnn3+OJUuWICsrC7GxsRgzZgxGjx5d4bjs7GzMnj0b3333HbxeL3r06IHp06ejRYsWddImEVF953V7sfaRtfj+ne8BAFc9fBUGvzEYBlMVl5xSkyEtySUiIqKaZbFYEB0tb9X7rS1btuC6667zTVgAQK9evdC6dWts2rTJN2mxbds2uN1ujBo1ynecpmkYOXIkXnrpJezfvx9XXnllldqsL+rdb63nlvNkZmaiY8eO4jF2ux2vvfYaCgsLMWLECEyfPh1JSUlYuHAhnnzySejn7T9dtWoV/va3v6Fdu3aYMWMGunbtilmzZuGjjz4qd5zNZsOMGTOwe/duTJo0Cffccw8yMjIwffp0FBYW1nqbRET1naPYgZThKWcnQTRg0D8HYci/hnAShIiIiKiWZGZmIj093fcvJyen2m1lZ2cjPz9fTF6elJSEjIwM388ZGRkIDAxEQkJChePOPV7VNuuLercipDLLecxmM9566y1cccUVvtiwYcPQrFkzvPfee9i1axd69eoFAHA4HJg/fz569+6Nl19+2Xes1+vFBx98gOHDhyM0NBQAsHLlSpw4cQJz5szxvbjXXHMNJk+ejKVLl/r6UhttEhHVd0UnivDxLR/j9J7TMAWacOtHtyJpVJK/u0VUY1yhFmiG8qtKzcVy0knNLmcx9AbJyQE1t5ycUVMkD9Uc8nl1q/yr2/k5V3xxp5y10RshJwk1ZMpJRY1n5KSE7uYRYtx0UlEuWZUctlWc3B+bPM7GM/ly+yomedy8sRHyeYvK5OOj5RxIhmK7fN4yRTxEznZpyZGTq+qKyWZnlLwd0RMgH28qq1qSUGjy/RkVLie7LCoLEOMBZ+T+eOTDEZAtx1VJQgPy5X5aiuXrdYRVbfJe1Y49Um4nIE/OruoOUiS3LZL7b3Sq9kVULTlscJb8QH5n1X0it+ORP97gNcn91C3yeW0uuaHO4fILb9bk8UzLjhfjqmS7AQVV22ei6cq3QJ05d/5XXnmlXHzy5Mm45557qtXmuXL20sqR6OhoFBUVwel0wmKxIDc3F5GRkRX+G3PuuecmZKrSZn1R7yZCKrOcx2w2l5sEOadPnz547733kJmZ6ZsI+eGHH1BYWIiRI0eWO3bUqFH48ssvsXPnTgwaNAgAsHnzZnTp0sU3YQEACQkJ6NmzJzZt2uSbtKiNNomI6rOs3Vn4eOjHKP6lGMFxwZj42US0vLqlv7tF9VTfvn1hMBjwwQcfoHXr1ujbt6/yD/Xf0jQNmzZtqoMeEhERNRzPPvtsuVUZldn+ouJwnJ2QlpKXnpuocDgcsFgscDgcFz2uqm3WF/VuIuRS5OXlAQDCw8N9sXPLcLp06VLu2MTERBgMBhw6dAiDBg2C1+vFzz//jJtvvrlCu0lJSfjuu+9gs9kQFBRUK21KcnJyfLNrwNklUUREdS1jTQY+GfcJXKUuxF4Wi9u+uA0RbSP83S2qx7p16wZN03w5u879TERERFWXkJAgbjupjnP/bXa5Kq48dDqd5Y6xWq2VPq6ybdYXjWoiJCUlBcHBwbjmmmt8sdzcXBiNRkRGRpY71mw2IywszDfRcG65jmo5D3B2YqJNmza10qZk9erVWLRoUYW43W5Haam8dJIqr6xMse6PqoXjWfPqw5imzk3Ff5/4L3SvjjbJbTD8w+EwR5gb5GfQpYxncLC8jYBkb7755gV/JiIiqvcaYNWYyjj3d+hvv3A/Jzc3F2FhYb6VG9HR0UhNTfWVuP/tcQAQExNT5Tbri0YzEbJ48WJ8//33ePzxx335OYCzS3BMin2h55b7nDsOuPhyntpqUzJ8+HBcf/31vp8zMzPxyiuvICAggL+U1xCOY83ieNY8f42p1+PF0tFLcWjVIQBA97u745Z3b4HRoth420DwHq07ycnJuPvuu3HXXXf5uytERET0P7GxsYiIiEB6enqFxw4cOFCuYEnHjh3x+eefIzMzE23btvXF09LSfI9Xtc36olGk+d+4cSPmz5+PoUOHVsjbYbVa4XbLicKcTme1lvPURpuSmJgYJCYm+v6dn62XiKg2OEucWNB7gW8SBAASRyQ2+EkQqlu6rleo4kZERET+17dvX+zYsQOnT5/2xXbt2oXjx4+jX79+vtgNN9wAk8mEFStW+GK6rmPVqlWIjY1F165dq9xmfdHgV4R89913+POf/4zevXvjD3/4Q4XHo6Oj4fF4kJ+fX24ri8vlQlFRkW8Zz7nlOqrlPED5pT813SYRUX1QeKwQKcNTcHrPr/8R04waMrdkosuILhd4JlHDZy52wqCrV2qWY5QnBlXVQ1TVXvSAiqtGAcATKpfTMJbKVVTglLd+aQWKuOqLGIMil4tia5mxSNGOYuWsHivnRdPK5Co5cCriiuozCFGs+gpSvF6FNvl4o/xdoSFfsS3QrLjeiBAxbm8RKsZNNvmLNlORfL2qqka6UV6C7ois2q/+mlu+H3IL5OsKDJLvz9JWctWPoGPy66KqfhKYq5hcVYRVVV2sBfIJdKN8vR6LHDeXyCf2muXzuoLkdnTV+04RNpfJ57VHy09whMv9McvFf+CSb09lNRZVZZW4lgVi3O6S70OrQVHlSpf7X2aXPz9VXzOHHVJcsIKGelA1phrPWb58OUpKSnx/b27fvh1nzpwBAIwePRohISGYNGkSNm/ejEcffRRjxoxBWVkZUlJS0L59ewwZMsTXVlxcHMaOHYuUlBS43W4kJSXhq6++wt69e/Hcc8/B+Jv/Fla2zfqiQU+EpKWl4dlnn0ViYiJefPFFcbtKp06dAAAHDx5E7969ffGDBw/C6/X6HjcYDGjfvj0OHjwonqdFixa+pKa10SYRkb+d+OYEloxYgtLTpbCGW+EodEAzatA9Otomt/V394iIiIjoIpYuXYqsrF9LoW/duhVbt24FAAwaNAghISGIj4/Hm2++idmzZ2POnDkwmUzo3bs3Hn744Qq5PO6//36EhoZi9erVWLduHVq1aoVnn30WAwcOLHdcVdqsDxrsRMjRo0fx1FNPoVmzZvjrX/+q3GLSs2dPhIWFYdWqVeUmLVatWoWAgIBysb59+2LOnDk4ePCgryLMsWPHkJqaivHjx9dqm0RE/vTjkh+xcvJKeBwexF8Zj4mfTUTW7iwc3XwUbZPbInF4zWQqp6aFlWKIiKjBaqDJUpctW1ap49q1a4fXX3/9oscZDAZMmjQJkyZNqrE264N6ORFyseU8BoMBTzzxBIqLizFhwgTs3Lmz3PNbtGjh269ktVpx7733YubMmXj++edx9dVXY8+ePdiwYQOmTp2KsLAw3/NGjRqFzz//HE899RQmTJgAo9GIZcuWITIyEhMmTPAdVxttEhH5g67r2PLiFmx5cQsAoPOwzrj1o1thDbUivE04J0DokixcuBALFy6s9PGapmHTpk212CMiIiKiejoRcrHlPAB8EyNz5syp8PzBgweXS9wyatQomEwmLF26FNu3b0dcXBymTZuGsWPHlnteUFAQZs2ahdmzZ+ODDz6A1+tFjx49MG3aNERERJQ7tjbaJCKqS64yF1bfsxo/LvkRAND7id4Y8JcBMCj2xhNVVVBQEEJC5FwCRERERP5SLydCKrOc59zESGUNGzYMw4YNu+hxcXFxeOmll/zWJhFRXSjJKsGSkUtw8puTMJgMGPruUPS8t6e/u0WNzLhx4zB58mR/d6PSbM0DAXP5ZJvBJxTJRp1yUj9PeNVyfxlU7QQofkVTbDcyKir0aIp92d4gddU6sR2vnFxSNQ7OVpFi3JwvjycU7aNUTmaqx8rt6xZ53FT91APk8dEV42ywyskZvYFy3JgnJ1cNPFYoxuGRx8HZPEyMl8XLr6OlUL5eg0u+Txzx8gS416xIKpovj1uzZjli/KcseULUGSH3x1ysSE6quH2CT8rJZHOulJMOuxTJcyMOy8lnnRHy8Y4wRVJdxTgbFLl/VfsfymLkcVAl8NQVHxtlsYrjFd97eBXtmBTj74qS75Mimzz+nWKzxXiY4gRxliIx3i4uToxnhspJk7OvUmSBVdD0epAs1d9bcxqxejkRQkREtSdrTxZShqWg6HgRAqMCMW75OCZDJSIiIqImgxMhRERNSPpn6Vg+cTlcpS5EJ0bjts9vQ1THKH93i4iIiIioznAihIioCdB1HTtf34kvn/wS0IH2A9pjzLIxCIwM9HfXiIiIiOqfBlo1hiqHEyFERI2cx+nBFw99gdQFqQCA3z3wOwx5cwiMZnnPMxERERFRY8aJECKiRsyWa8Oy0cuQuSUTmkHDTTNvwtXTr4amSARIVFO2bNni7y5UmcFdMTOerbmc7C9I8S2dM1pOXhmULieRVCUJtTrkrIreIDlJpVbmFOOuZnKSTc2tuADFR4PmVSVjlX+VtJwuFuNORX8sx/PEuKNrazFucHjEuClXTq6qOeXx1Nzy+HtD5NddmRT1hPz6lvyulRhXJTP1WOXslUa7fL2qpJaqpLrOEDmuasfgUBzfTL7foqxyssufrHL/PQGKfkYokgK75Lith/x6VTUZqD1GfsARruiPXW5HdTwU/QnIVSSNlXPtwiXnAoVRkcy0NEGRjFjxMWApkDtqb616HynuE12OJ4adEeM3hu0X4y5d/uJmtX6lGFe9LkZHFZdXcEVIo8aJECKiRirnYA4+vuVj5P+UD0uoBWOWjkGnIZ383S0iIiIiIr/iRAgRUSO05aUt+OrVr+BxehDRNgITP5uIuK5ymTkiIiIioqaEEyFERI3MFw9/ge/f/t73c/KLyZwEISIiIqoCDRV2S/qlD1Q7FDvViIioofF6vNjwxIZykyCaUUPW7iw/9oqIiIiIqH7hihAiokbAWerEp7d/ivRV6b6YZtSge3S0TW7rv44REREREdUznAghImrgin8pRsqwFJz64RSMViNGLBwBS7AFRzcfRdvktkgcnujvLhI1CLpBAwzlFyIH5MrVMYw2OW5VVIHRAxXVXkrl8gZlCRFi3FIon9cbFijGzVlFYtwTHSLGdUW1EUOR3E9XrFy+wuyUq6KYc0rEuCMhWj4+X1H+QUHT5XXszlaRivblMhuaov+6JleNcbWPF+MBOfLr5QmsmfLlgdlyPx0R8q/4Brl4Czxy0RXltoDQcHncfi6Mkp9QJl+vuVBenG4pkJtRMcnFguCSb3NY8+W4osiJsvqMuUxRTUkxbm5FlRx7tBxXVY3xyG93Zf8DTivGWf54QGEX+UYxFMr3lSdUvg8NioE4ZZerR23QrhDjz8V+J8Y/CJKrU52Su1N1rBrTqHEihIioAcvanYWPb/kYxSeLERQbhAkrJ6D1dWfLTXIChIiIiIioIk6EEBE1UIc+P4R/T/g3XKUuxCTF4LbPb0Nke/lbTyIiIiKqAl1XrjKryz5Q7eBECBFRA6PrOr558xtseHwDdK+O9gPaY+wnYxEQoVjbTEREREREPpwIISJqQLxuL9bOWOurDNNzak/c/NbNMJprZr85EREREVFjx4kQIqIGwlHkwL/H/xuH1x0GNGDg3wai9x96Q1MkNySiqrHmOWHQHOVihjJVmQ+rWQAAl/5JREFU0kz5fae55CSDumqyUpFENfBQthj3RofK53XLSVphks+r6qcxV86e6G6pSGaaLWdz1FyKbIWK/piK5aSiqqSlWokiiapRTgppPiMnadVsctJPBMor7Iy/yK+L1ra53I6C6Yw8zt5Q+byuCDk7psmmSFLplF/fovZy+0FnxDAK5dsNJSVyO9ERinF2y++XwBy5faNLjnusiuMdcjwgT95WoEoqanTKx4ceVyRBNqr++yvHg0/Lr5czRL5vHeFyPPC0fFZ3kKI7qt0Viu4HnpLfp/ZYeRyMJYo/KRW7dVNPtRTjPRKPifEXzlwrxjPyY8W4V85pfDYhdlUwWWqjxokQIqIGoCCzACm3pODMj2dgCjTh1o9uRdKoJH93i4iIiIioweFECBFRPXfy25NIGZ6C0tOlCGkegomfTUSL37Xwd7eIiIiIiBokToQQEdVjaf9Ow4o7VsBtdyO+WzwmfjYR4a3D/d0tIiIiokZNqwdbYzRujak1nAghIqqHdF3HN69/g69e+AoA0GloJ4xOGQ1rqGKDNBERERERVQonQoiI6pkDyw9g0/ObkJ12NinfNTOuwaDXB8GgSAJIRERERESVx4kQIqJ6ZO+He7HijhW+n3ve1xOD3xjsxx4RNR3uQBM0Y/lfjQJK5Wom3kC5LIEpX66ioqoao6r24okJE+PGQpvcvqIaC8rk6iqaotqFN0beeqc6r1YsXy90RbWOiBC5/VO5cjsBilVwVnn8vSFyNRPNIZch0YPkaiyaov+upNZi3Hy6WIwjr0A+bzO5Co/BJt9vxgDF9Vrk172klTxuJrt8XWXR8v1gLpXjZTb5T4h8o1y2xOCS29EV8/sOxQ5Qa4EcV12XuUR+fzlDFdWFbIrqMIpiI6r+WwvldlyB8hNU1WdUVWBM8tsRgbnyONgj5fY9ir8EdcXHicGheB0VVVrshfL7Ma55gRj/Jr+9GB8Ss0+Mr7HLSeMNiqJVqtfxgrg1pdHi14tERPVE1p4sfPHQF76fNYMGS7BcWpOIiIiIiKqHK0KIiOqBtH+nYeVdK+Gynf3WUjNq0D062ia39W/HiIiIiJogJktt3DgRQkTkR7pXx6YXNuGrV84mRW0/sD263dUNp3adQrNrmyFxeKKfe0hERERE1LhwIoSIyE8cRQ6suGMF0lenAwB6/6E3BvxlAAwmA668/UqUlir23hMRERERUbXVy4kQm82GJUuWIC0tDQcOHEBxcTGeeeYZDBkypMKxR48exezZs7Fv3z6YTCb07t0b06ZNQ0RERLnjvF4vlixZgpUrVyIvLw+tWrXCpEmTMGDAgHrVJhE1DXmH87BkxBJkp2XDaDVi2Nxh6HZnN393i6hJMxe7YMB5ySoVSTONhWViXLfIv1p5QhTJK7PlJJvGrDy5k1Y5b5BW6pCPN8n90Urk/mt2OamoN0SRVDREkc3Ro0hSGRcqxq2K/usWOQujpkhCavAq1pGrqm4pksnCIo+zOUcxQV0qZ69UJVc12D1iXHPJcYNN8bookqWGH5b7WdxOfr0sRWIYZc3l8QyOlq83ISpfjB86kSDGVckrg0/J53UHyE8IyJPHraSFfP+byuT2naHyeJpL5fvZa5H7UxIpt6NMohqkSFZbIoaV/bHFyfe5t4pJUVVJYFW84fL9qZXIJ7aY5GymLQILxLhL0VG3WzHOio/DgHx53JTqwdYYv5+/EauXEyGFhYVYtGgR4uPj0bFjR6SmporHnTlzBtOnT0dISAimTp2KsrIyLFmyBD///DPmzJkDs/nX/3jOmzcPH330EYYNG4YuXbpg27ZteOmll6BpGm688cZ60yYRNX4/bfgJ/x7/b9gL7AhtEYrxK8aj5dUt/d0tIiIiIqImoV5OhERHR2PFihWIjo7GwYMHcd9994nHffjhh7Db7Zg/fz7i4+MBAElJSXj88cexdu1aDB8+HACQnZ2NpUuXYtSoUXjssccAALfccgumT5+Ot99+G8nJyTAajX5vk4gaN13X8fUbX+PLJ76E7tXR6tpWGPfpOIQ2l78hJSIiIiKimlcvy+daLBZER8v11X9ry5YtuO6663yTCwDQq1cvtG7dGps2bfLFtm3bBrfbjVGjRvlimqZh5MiRyM7Oxv79++tFm0TUeLntbqyavAobHt8A3auj+93dcdfmuzgJQkRERFQPaXr9+Ee1o15OhFRGdnY28vPzkZhYsaJCUlISMjIyfD9nZGQgMDAQCQkJFY4793h9aPN8OTk5SE9P9/3LzMxUHktE9VfRySIs6rsIez7YA82oYfCswRi+YDhM1nq5KI+IiIiIqFFrsL+F5+bmAoC4ciQ6OhpFRUVwOp2wWCzIzc1FZGQkNE2rcBxwdsKhPrR5vtWrV2PRokUV4na7ndUkakBZmZwojqqH4yn75dtfsOq2VSjNKkVAVACGvT8MCf0SYLPJieZ+i2Nasy5lPIODg2uwJ1RfGdweGPTzki4qcut5g+XkpwZF0k/TsWy5IVWyUa98Yk90iBg3ZslJKvXgADGuOeVkha5YuX1VklBVcljNJo+DOU9+H3rD5feYbpWTIRqOKz5D46Lk/uTLSWm90eHyec3yeY05iqyiAYpkuLlyP/VAOT+cK0pOSmu0y6+XsVROUukJlts3OOWvl11VXJxoy5fv2wPF8v2GYMX9HCiPsy1OTh5qVCTBtFcxOalulNs3lVUtmabbKrcTkiW/Xs5Q+Ttop2L8zYrb3B4ltxOQL7++RW3lfgadltt3RMrx0KNyO/lRclwPlJPYOt3y58bPJTFivG1ArhhvGVUgxjNbyp8nYVX9TpnJUhu1BjsR4nCc/SSUEo2em1RwOBywWCxwOBwXPa4+tHm+4cOH4/rrr/f9nJmZiVdeeQUBAQH8pbyGcBxrFsezvNSFqfjigS/gcXoQe3ksJq6eiMj2it8uFDimNYvjSUREREQNdiLEaj078+5yVZwJdzqd5Y6xWq2VPs6fbZ4vJiYGMTHyzCgR1V9etxcbntiAb2Z9AwDoMqoLRr4/EtZQ+b1ORERERER1p8FOhJzbanJu68lv5ebmIiwszLfKIjo6GqmpqdB1vdxWlnPPPTfZ4O82iajh2/vhXmz840YUHT+7fLrvn/qi73N9oRnkZaNEREREVP9ogN+3pvC3x9rTYJOlxsbGIiIiAunp6RUeO3DgADp27Oj7uWPHjrDb7RWSjaalpfkerw9tElHD9u1b32LFHSt8kyDXP309kl9I5iQIEREREVE90mAnQgCgb9++2LFjB06f/jXTz65du3D8+HH069fPF7vhhhtgMpmwYsUKX0zXdaxatQqxsbHo2rVrvWiTiBquw+sPY8PjG3w/a0YNHoecJIyIiIiIiPyn3m6NWb58OUpKSnxbSrZv344zZ84AAEaPHo2QkBBMmjQJmzdvxqOPPooxY8agrKwMKSkpaN++PYYMGeJrKy4uDmPHjkVKSgrcbjeSkpLw1VdfYe/evXjuuedgNP6aadqfbRJRw6PrOr6d/S3WP7oeuvfs+knNqEH36Gib3Na/nSOiKrHHBwKm8gl1zSWqah1y3BumqJqhiOuaonqFR1G9QnG8p5mciNlQJlcVgUOOa4rTqvrpCZK395pU7evyOnPdJH83p7nlDrm7yytqdaOinQi5Gos5u0SMO8PlnE5Gq1yNxR2pSMSsWBBoLJCr5zjbyFV7TGa5IVeIXC1FxRMgj49Bvp3hCZEn9EOjq1a9sNguX5dX8ZeIQVEdRkVXfLXrDlTct4rx9JgVVV3C5OMDc+T7szRefl2coXI7qvedR77dlPdVSQv5AatcVAoOuWiSUlGnqu0TMQbJN1aZU76wuzttE+NmTb4PLcbLxLg3QvH5rKgGpaTrZ//5k7/P34jV24mQpUuXIisry/fz1q1bsXXrVgDAoEGDEBISgvj4eLz55puYPXs25syZA5PJhN69e+Phhx+ukHfj/vvvR2hoKFavXo1169ahVatWePbZZzFw4MByx/m7TSJqODwuD9ZOX4tdc3YBALrf3R2dhnbC8e3H0Ta5LRKHJ/q5h0REREREdL56OxGybNmySh3Xrl07vP766xc9zmAwYNKkSZg0aVK9bpOIGoayvDJ8MvYTHPnvEUADBv5tIHr/oTc0TcNlo+VvKIiIiIiIyP/q7UQIEVF9lZOeg5RbUpB3OA+WEAtu/fhWJA7j6g8iIiKiRkMHNH/vTPH3+RsxToQQEVXBT1/+hE/GfgJHoQPhCeGY+NlExF8R7+9uERERERFRJXEihIiokr5961usm7EOukdH6+taY/yK8QiOUyTII6IGR/Po0M77+s0VLCfXcwfKcUuBU4wbXHI2RN2kSNoYLSeXNBTZxbitY4QYDzwhJxnUoxRJObOL5eMD5ZxmXoucXFJXJCXUjYosj4qEgIZjp8W4FhctN2ORf7X1Bsv9d8bJ4wBF2XNPqJx01eCUkzO6Q+TzasGKZKwueRwseXL2UHdwkBh3hsqvi8eiSroqhmHJlsezWeciuR2P/LoXGeX/VrpC5OvVvHI/LXJuW9gj5ePNNvl4g1s+r2p8gs7I71+jQ26nLFYef68i+akqWa1qNYJLlZtXkXS1tIUcN8ofV8rzKnKWqnI4Q/fID9yUcFCMexQFTX9xysmg82zy/W89IQ+0sarV/HT4f0WGv8/fiHEihIjoIjwuD9Y9ug7fv/09AKDbnd1wy9xbYLLyI5SIiIiIqKHhb/FERBdQlv+/pKgbzyZFHfCXAbju/10HTfX1BxERERER1WucCCEiUsg9lIuUYSnIPZQLc7AZt350K7qM6OLvbhERERFRLdN0AIrtRnWGW2NqDSdCiIgEP2/8GZ+M+QT2AjvC24RjwuoJaNatmb+7RUREREREl4gTIURE5/nune+wdvpa6B4drXq3wvgV4xESr8gkR0REREREDQonQoiI/ufAigPY8uIWnN5ztkrBlZOuxLB5w2AK4EclUVPgCDNCt5avehHyi1xWwVQox10RcjUQze0S4+bTcpUWb5hcncQbKrcfcEauJqNa1q155DIVuiIJtFdRjcVok9vRbHKVE82iKJtRJJcD8SbIK/E0t+LCFFVpDGXy62VUtKOqPqOqbqMpqsZYfsoX447OzcV44HH5fvAEydVnzCVyFQxHuKKaj1zURXmfqKqcHDkjV+2Jj5T7b7DJJw46pajOI9/msBRXrdqLij1KPt6kqDLjscrHq6ogmUrldgzyxwC8Vfw1w1Ioxz0Bivat8rgZHYoqQmHyfWUqUVTLCpXf785i+YX8qSRGjKcXxYnxB1ttEuNRQfILVqi4Hap6n7BqTOPG3+6JiADs/XgvVty+wvfzFXdcgZHvj2RSVCIiIiKiRoYTIUTU5OUczMGah9b4ftYMGoJjgjkJQkRERNREaVwR0qhxIoSImrSMtRlYPmE5HEVnl3VqRg26R0fb5Lb+7RgREREREdUKToQQUZOk6zp2/nMn/vPkf6B7dbTp0wY9p/RE1u4stE1ui8Thif7uIhFdxIEDB7Bu3TqkpqYiKysLYWFhuPzyyzFlyhS0bt3a390jIiKieooTIUTU5Lgdbnx+/+fY8/4eAECPKT0w9K2hMFqM6HZnNz/3jogq6+OPP8a+ffvQr18/dOjQAbm5uVixYgWmTJmCd955B+3bt69Se8G/OGBAWbmYqVBOQqopkm8aShVJQsvkuB4WVKV24JKTcnojguXzeuUsmFqJIrmqUU6yqSmSh6qShOpWObmnHihn3zSUye3rJkV/FElODYWKbJdmRftmOfmj6ro8IYpkuIp2ECwfb1bcV17l+MhZNg1WRRLSbDnZZWFbeRwsco5TlDWXx1mVc/XkCTmJqsGj2GqqCBsVt789Qn6CuVTeP+BVJDMNyJWPD86SX/fS5or7Xx5mmBxy+7r8sQGjq2pJYN2q5K3y2wXmIvl4TbHtIiBbfoXt8fIF64XyfW6NkF/IEJMctxrl8V98+joxnlUcKsY9QfKFuQOrmixVVyZIrjP+Pn8jxokQImpSSrJKsPTWpTix8wQ0o4abZt6Eq6ddzXwgRA3QuHHj8Pzzz8Ns/vWPx/79++Puu+/GRx99hOeee86PvSMiIqL6ihMhRNRknPrhFJaMWIKiE0UIiAjA2E/Gov2Aqn1jTET1xxVXXFEh1rp1a7Rt2xaZmZl+6BERERE1BJwIIaImYf+y/Vg5eSXcZW5EJ0Zj4mcTEd1JXsJLRA2XruvIz89H27Zt/d0VIiJqwFg1pnHjRAgRNWq6V8fmP23G1pe3AgA6Du6I0UtGIyA8wM89I6La8OWXXyI7Oxv33HOP8picnBzk5ub6fubqESIioqaFEyFE1Gg5S5xYeddKHPj0AACg9x96Y8BfB8CgSAZIRA1bZmYmZs6cicsvvxyDBw9WHrd69WosWrSoQtwVbgZM5ZP+6arkoR55MtVUpMjy6FDkIVIkwtMVSR51a6AYN+SXiHFPjJxMUJn81KbI5qjIo+QNkpOiGs8Uye2oPn4D5GSLyuSz+XJ2T298pNzOmQK5HZMq7afMqEg+qyvGU8kgD4SxQE726oyXX0evWW7HVCwnVw35RX4dcy+XxyHwlNy+LUxO6moMks/rtchJNr2n5PeRKnmruUR+v5hL5dfFo0gq6g6Q4/Zo+XU0KXILO0PldgxOxfvaIB9vi1MkM1UkYzWXynFVktmwI3J/HJHyeR0RivMWyPeJJ0C+T5xuOb7D3U6MP9JtkxhPDkoX43/Wh4rxvQVRYtxaqBjQC+GKjEaLEyFE1CgVZBZgyfAlOL33NIwWI26Zewu639Xd390iolqSm5uLp556CsHBwXj55ZdhNKr/wB0+fDiuv/5638+ZmZl45ZVX6qKbREREVA9wIoSIGp1j245h6a1LYcu2ITg+GONXjEfr3q393S0iqiUlJSV48sknUVJSgtmzZyMmJuaCx8fExFz0GCIiooYmPT0d8+bNw48//ghd13H55ZfjwQcfRKdOnSocu2/fPrz77rs4dOgQgoOD0a9fP0ydOhVBQeXLujudTixYsAAbNmxAcXExOnTogClTpuCqq66qq8uqFVwfTkSNyg8LfsD7/d+HLduG5j2bY+p3UzkJQtSIORwOPP300zh+/Dj+8pe/MEkqERHVCE2vH/8qKz09HQ8//DB++eUXTJ48GZMnT8aJEyfwyCOP4NixY+WOzcjIwGOPPQa73Y5p06Zh6NCh+Oyzz/DCCy9UaPe1117DsmXLMHDgQDzyyCMwGAx48sknsXfv3ksdYr/iihAiahS8bi+W3roUhz47BAC4fNzlGLFwBMxB8j5mImr4PB4P/vSnP2H//v3485//jK5du/q7S0RERH6xYMECWK1WvPPOOwgPDwcADBw4ELfffjvmzp1bbgvo3LlzERoaijfffBPBwcEAgObNm+Nvf/sbvv32W1x99dUAgLS0NGzcuBEPPvggJk6cCAC46aabMHnyZLzzzjt455136vgqaw5XhBBRg2cvtGPe1fN8kyAA0PW2rpwEIWrk3nrrLWzfvh3XXHMNiouLsWHDhnL/iIiImoq9e/eiV69evkkQ4OxW0O7du2Pnzp2w2c4mYy4tLcX333+PQYMG+SZBgLMTHIGBgdi06dektVu2bIHRaMTw4cN9MavViqFDh2L//v04ffp0HVxZ7eCKECJq0PKP5CPllhRkp2X7YppRQ+aWTHQZ0cWPPSOi2nb48GEAwI4dO7Bjx44Kjw8aNKhK7ZmLXNC08lVTLKcV5StcbjGsBytKcyuqhDhjgsW4uaBMjGtO+bzwyuunvVb5Vz3zkTNiXI8Kk897+LgcbxEvtxMqV7dR9l8xnjDIVWkQHCTHFePsbh0rxk2KKi3eQHkiXXPL1UlU1+UJl/tpypPLfrhiQ8S40Sa3b86X7xNPqHwflkXJSYQtBWIYZc3keGikPG6lpXL1H+Mvctwkdx8u+W2hrJai4gyR74eQLHk8HeHy+IQcl8vG5Fwh3+cWRfUWj1l+n4acko9XcQUqqkopckSXtJKPr+p4eqxy/w2qqljxchWq2Ai5ytUPRQliPMclV006mCu/r72K78GcoVVcA6DryspedaYK53e5XLBYKn5mBgQEwOVy4ciRI7j88svx888/w+PxIDExsdxxZrMZnTp1QkZGhi+WkZGBVq1alZswAYCkpCQAZ/87HB8v/3egvuNECBE1WMe2HcPSUUthy7EhMCoQZXll0IwadI+Otslt/d09Iqplb775pr+7QEREVOsyMzPL/RwdHV0h6Xfr1q2RlpYGj8fjq5zmcrmQlpYGAMjOPvulYW5urq+N80VHR2PPnj2+n3Nzc5XHAUBOTk51L8nvGvREyPHjx7FgwQLs27cPRUVFiI+Px4ABAzBhwgQEBPw6E14bGXGbepZdIn/bs3gPPpvyGTxOD5r/rjkmrp6IX77/BUc3H0Xb5LZIHJ548UaIiIiIiOq580u8T548Gffcc0+52KhRo/D666/jr3/9K2677TZ4vV588MEHvokPp/PsCh2H4+ySJbO54tIZi8XiO+7csarjfttWQ9RgJ0JOnz6N+++/HyEhIRg1ahTCwsKwf/9+vPfee0hPT8drr70G4NeMuAkJCZg2bRrOnDmDpUuX4sSJE/j73/9ers3XXnsNmzdvxtixY9GqVSusXbsWTz75JGbNmoUrr7zSd1xttElElaN7dfz32f9i22vbAACXjbkMI98fCXOQGYnDEzkBQkRERESXTNMB+HlnzLnzP/vss0hI+HXrkLRKY8SIEThz5gxSUlKwbt06AECXLl0wceJELF68GIGBZ7dyWa1nt6q5XK4KbTidznLba6xWq/K437bVEDXYiZANGzagpKQEb731Ftq1awcAGD58OLxeL9avX4/i4mKEhobWSkZcZtkl8g9nqRMr71yJA58eAAD0+b8+6PdSP2gGxd5UIiIiIqIGLiEhoUJOD8nUqVMxYcIEHDlyBMHBwejQoQPmzp0L4OzWGeDXSZRzK0V+Kzc3t9yWm+joaN+WmvOPA1Bhe05D0mAnQkpLz2b3iYyMLBePjo6GwWCAyWTyZcQdN25chYy4//rXv7Bp0ybfpMWFMuLOnTsXp0+fRnx8fK20SUQXV3SyCEuGL8GpH07BaDFi2Pxh6HZHN393i4gaEVeoCTCVXwJstMvJEHWjnHRPUyQtRZCc9NN6PF9u3yz/iqYr2vEGyt/KmbOKxLizo/z7hylfTgrpvbydGFcxZSuSzCrGTZXkVFXfUA+oWlUw0zE5Oay3ecVvVQFA++mE3FBrOXuollMgxo1yblV4rXL/dcXEvrFYkRQ1Qk7G6rHKWTNNdvn+tEcpvlBQ3M7Fp+WkrpZI+f5xRHrkdixyP6N3y+d1BamSfspxTdF/Z6h8Xq/iL6Pcrorkv4r2TWXyC68r7nNHuCL5qeJlMSp2I+iK94tJzm2rTEqrasdrUSVlViQR9sgXEGCquMIAAKwGOYltxwC5Momt7Hdi3CjfbgjIUzygUo9WhFRFaGhouZ0H33//PWJjY9GmTRsAQLt27WA0GpGeno7+/fv7jnO5XMjIyEC/fv18sY4dOyI1NRWlpaXl/vY9l3ekY8eOVe9gPdFgy+f26NEDAPDXv/4VGRkZOH36NDZu3IhVq1Zh9OjRCAwMrPGMuABqpU0iurBTP5zC/Kvn49QPpxAUE4Q7/3snJ0GIiIiIiC5g48aNOHjwIMaOHQvD/ybiQkJC0KtXL2zYsMFXUhcA1q9fj7KysnITIcnJyfB4PFi9erUv5nQ6sWbNGlx22WUN+kv9Brsi5JprrsG9996LDz/8ENu3b/fF77jjDkydOhVA7WTErcssuzk5OeWWLJ2fLZioKTjw6QGsuGMFXDYXYi+LxcTPJyKyXeTFn0hERERE1ETs3r0b77//Pq666iqEhYUhLS0Na9euxTXXXIMxY8aUO3bKlCl4+OGHMX36dAwfPtyX8/Kqq67CNddc4zvusssuQ79+/TB37lwUFBSgZcuWWLduHbKysvDUU0/V9SXWqAY7EQKczcvRrVs39O3bF2FhYdi5cyc+/PBDREVFYfTo0bWSEbcus+yuXr0aixYtqhC32+2+rUFUfWVliuL1VC01PZ66ruPbf36Lr174CgDQdmBbDFs0DJZwS5O5/3mP1qxLGc/zV/YRERFR46fa/lRXqnL62NhYGAwGpKSkoKysDM2aNcO9996L8ePHw2Qq/2d/YmIi/vnPf+Ldd9/Fv/71LwQFBWHo0KG4//77K7T7xz/+EfHx8Vi/fj1KSkrQvn17/PWvf0X37t0v7eL8rEYmQtxuNxYtWoTMzEwMHToU1157re+xp556Cn/9619r4jTlbNy4EX//+9/x0UcfIS4uDgDQt29f6LqOOXPmYMCAAbWSEbcus+wOHz4c119/ve/nzMxMvPLKKwgICOAv5TWE41izamo83Q43Pr/vc+z54OwKq6sfuRo3vX4TDKYGu5uv2niP1iyOJxERETVGLVu2xOuvv17p46+88kq8/fbbFz3OarXioYcewkMPPXQp3at3amQi5J133sHatWsRHR2Np59+GuPHj8eDDz4I4OLbP6prxYoV6NSpk28S5Jzrr78ea9euRUZGRq1kxK3LLLsxMTENOhMvUXWUZpdi2a3LcGzbMWhGDUPeHIKrHrrK390iIiIiIqJGokYmQrZt24b58+ejRYsW2LBhA15//XXY7XY89thjNdG8KD8/H6GhoRXibvfZbMMej6dWMuIyyy5R7clOy8bHt3yMgiMFsIZbMfaTsegwsIO/u0VETYTmBbTzigo4YuVqEdbT8lYrb4CiGoWiioex4vcqAABPhKJKhaIqjeaWqzY4m4dV6XjNKVdt0ALkXxm9Znmlnq6oBuINCZCPV1WTUdCNiiohiusyBCuqqwQqqvN0by/GjTa52oXernmV2jeVOsW4iqNVuBj3KlZKugMV8QB53AyKYhrOKPkBc4S8vdtgkO9PU4g8biiU75PS5nI/AxXfr9ojq3b/qKrDqPYhuOTbB0bFy+gIU7wvFN20Fsj3rT1K8ToqFjeqrktVfcYrF6GCrmonQL4fDFY5ntBc/oBrHVIgHx8oHx9hlMvetI2Vjz/hkQeosH0V//T1wv97YxSVp+jS1cg68+DgYLRo0QIAMGjQIMycORMbN27EggULaqJ5UevWrZGRkYHjx4+Xi2/cuBEGgwEdOnSolYy4zLJLVDs2/2kz5vSYg4IjBYhsH4l7d97LSRAiIiIiIqpxNZYj5Lf5MS677DK8/vrreOKJJ2ot2d+ECRPwzTffYNq0abj11lsRFhaGHTt24JtvvsEtt9zi21JSGxlxmWWXqGZ9dv9n+GHuD76fk19MRmxSrP86RERERERNm46qZSutrT5QraiRiZDevXtj9+7duPrqq32xxMRE/OMf/8DLL79cE6eooHv37njrrbewcOFCrFixAkVFRWjevDmmTp2KiRMnlutHTWfEZZZdoprhcXmw7tF15SZBNKOGUz+cwpWTrvRjz4iIiIiIqLGqkYmQc4lRz5eYmIgPP/ywJk4huuyyy/D3v//9osfVRkbcpp5ll+hS2Qvs+GTcJ/j5y599Mc2oQffoaJvc1n8dIyIiIiKiRq1GJkKIiKoi73AeUoalIOdgDsxBZtz68a3QNA1HNx9F2+S2SBye6O8uElET5LEYgPOSfwaekZNCarq8XlmVTBOanK2wrH2UGLdmy8kBdaOcXBKqJKFOOW60KbI8muX2VclMDXY5SaJml8dBs8i/erqi5WyU5mK5n6YzJWJcN6uyPCqSeObK4+wNtYpxZZJZjzwOply5n+6YEDFuzi0V4w5F0luDoj9lMWYx7pEvSxlXiQmXrysuSI7v+05OPmu2ye8LVRJSXXH7qxJKmm3y6+4Kkc/rUiQhDflFPoEtTn5feM1y+245B7Kyn45I+XjVdgmDnOtYed7zk0Of44pVvK898nV5nfIL80uBnOQ3MkBOnWDzyNlbQw3y8TEB8vvlSMV6GgCAiMNVyzyq6f7PlQqdu2NqS5UmQoqLizFr1ixkZmZi6NChGDlypO+x++67D3Pnzq3p/hFRI3N0y1Esu3UZyvLKENYqDBM/m4hm3ZsBACdAiIiIiIio1lWpaszs2bOxf/9+REREYNasWXjhhRfgcim++SAiOk/qe6lYPHAxyvLK0PLqlpjy7RTfJAgREREREVFdqNKKkL1792LevHkICQnB7t278cILL+CFF17AK6+8Ulv9I6JGwOvx4j9P/wc7/7ETAHD5+MsxYuEImAPlpbtERERERP6lK7fV1WkfqFZUaUVIaGgoQkLO7mk8V7Xl8OHDeO2112qlc0TU8DmKHVg6aqlvEqTvC30xOmU0J0GIiIiIiMgvqjQR4vF4YLfbfT+3atUKs2bNwp49e5CRkVHjnSOihq3wWCEW3rAQhz47BFOACaNTRiP5T8nQFEkDiYiIiIiIaluVtsYMGDAA6enp6Natmy/WvHlzvPHGG5g5c2aNd46IGq4TX5/AkpFLUHq6FMHxwZiwagJaXdPK390iIlIyuryAXr6qgOaRlyXrigldg6Iai7nYLsaNQXK5DmesXEUlIOO0GPdGyGUSDC65+oNuVPRf0U9TToHcTrRcFQIORdkPyOUrAo7kyu0HKFYPlsn91HR5PD2RcpUWY16xHC+TqwXZkuLEuCVfvl6DTW7HWCofr1vl61VVhzGWyWVCQk7K33WWNpd/9dcN8v1gyZergWRly697XqB83xodcvsmuWgPjPKwQVNURdEVX+26ghRfvCh2G0Qclk9gj5THIfS4/P5yB8kdUlVpsUfJxwf/InfUHaB4/yraN1QxpaPhuHy9quoz7jD5/vQEye2cLJbvnyCT/L74e8FgMW53y/dzUJYYrjJWjWncqrQiJCkpCfHx8RXiLVq0wN///vcK8d27d2PRokXV7hwRNUz7UvZhUfIilJ4uRXy3eEz9dionQYiIiIiIqF6o0kTIjBkzcPfdd2PLli2VOj41NZUTIURNiO7VsemFTfj0tk/hcXiQODwR92y7B+FtFN8YEhERERHVR3o9+Ue1okoTIQBgs9nwwgsvYN68ebXRHyJqoFw2F5ZPXI6tL20FAFz3/67DuE/HwRJi8XPPiIiIiIiIflWlHCEA0LdvX6Snp+Ojjz7C4cOH8fzzzyM4OLg2+kZEDcTuRbvx5VNfwnbGBoPZgFvm3IIed/fwd7eIiIiIiIgqqPJESPv27fHEE0/g+eefx9dff437778fr776KhISEmqjf0RUz339xtdY/9h638/JLyZzEoSIGiSj3QvtvGyDXrO8eNZcKGd51NyK5KQWOWmgd0+aGLde3lluJ0TOVmjIyhHjMMvJN72KJKeq5KRaqSKrpa5IJltSKsYNIXIyTbgVWTANcvJTb3ykGNcUyWGNJXJyVRgUi6MVyWSDdh+Xj/fKySL1mAgxrhWWyHGT/Ku5QfG6uEPkuDNMvt+shYrXS5EsVZXc01sm99PhlsfTIg/PBZKcyvGAfFXyUPl4r1lxXYrbzWOVOxR0Wn6CM0Lxvlb8hRVQIA+ELUZuR7UtwqO4XoN8WyHotNxQUTt5fFTtO2MUA6dgNsrXW1wmv69NUfLxAUb5vBlZsfLxVf4LV6bpOjTFZ1yd8ff5G7Eqb40BgLCwMLz++usYPXo0jh8/jgcffBDbtm2r6b4RUT2XvjodX/6/L30/a0YNtmzFL8tERERERET1QLUmQgDAaDTikUcewTPPPAOXy4XnnnsOCxcurMm+EVE9pes6dvxjB5aMXALv/0r6aUYNukdH2+S2/u0cERERERHRBVzywqHBgwejbdu2+L//+z+8//77yMjIwLPPPougIMWaNiJq0DxOD7546AukLkgFAPzugd+hw8AO+GnTT+g0sBMShyf6uYdERERERJdIB6DY1lWnfaBaUe0VIb/VpUsXzJ8/H127dsX27dvxwAMP4PhxxR5KImqwyvLK8OFNHyJ1QSo0g4bBswZj6NtDkXRrEvr9pR8nQYiIiIiIqN6roVQyQGRkJN544w288cYb+Oyzz3D//fejc2c50RcRNTy5h3Lx8S0fIy8jD5ZQC8YsGYNON3fyd7eIiGqO8O2f0S4n6dOtiiSkIXKWQYMiWad29RVy/Hi23EejnFRRj4+W28nOl/tjd4pxb5Ci5LkquapiHDRF8lNXjFxp0HxcMT65hXI7HZvJ7RTI7eiK5Kf6kV/k83ZsI8a9LeXkjMacIrkdpyLbqCKJbVUTI3oV12Uulb/GViVR1VW5OuXmEdlcvt7CAnlFuLO1Q4wH/KBImqlIN+YMlTtkLVRcb7B8fEC+4nVR0BVJV1XjrylWEXisigFVhK1FVVwOoGjH6JTbMRcrrktxexpLqnb/eELk79zjIorFeKBR/ly6IvSEGLe55Y4eC5A/Z1Svi4qm69D8vSSDyVJrTY1NhACAyWTCE088gc6dO+PNN9/E7t27a7J5IvKTI5uOYNnoZbDn2xGeEI6Jn01E/BXx/u4WERERERFRlVVpa0x8fDxCQkIuetzw4cMxc+ZMREREVLdfRFRP/DD/B3w46EPY8+1odW0rTPlmCidBiIiIiIiowarSipBly5ZV+tgrrrgCH3/8MYqK5KVzRFS/eT1e/Ofp/2DnP3YCALpO7IoR742AqaaKsxMRERER1Vf1YVdKfehDI1Wrf9EEBQWxegxRA+QsceLT2z9F+up0AEDyi8n4/XO/h6YpNp8SERERERE1EPxql4jKKTxeiJRhKTi95zSMViNGLhqJrhO6+rtbRERERERENYITIUTkc/K7k1gyfAlKskoQHBeMCasmoNW1rfzdLSKiOiFVCNAUVWMMJWVVa1yR+d/okNtHiFz1QFlBQBUPlKvYqLjD5eMtR3PFuFZQIsY9l7cX40abSz6xSf6V1NUmRj68VG7HGyhXkTAWyuOsxcvto1SucqKHBcrnjZRfL0OJop1AuTqPbpHHwVAqV9MwKbL9OQLk9j2KokDmEvn+sRYoqq6Y5PEsNinKcpyUx82tuM3NpXLcq7heg6IqClRvI4N8XaqqNJqieYPidlZV23ErqsYYHfIJVP1xB1at+owzTH5AdT9oqqI6inHwRsr3p26T3495JfKOAWuMfF/lu+QX0uGW3y+qqjcGdxX3meg6/L43hVVjag0nQogIAJD27zSsuGMF3HY34q6Iw8TPJiIiIcLf3SIiIiIiIqpRnAghauIOrjqI7X/bjhM7ztZo73RzJ4xOGQ1rmNXPPSMiIiIi8hNducim7rrABSG1hhMhRE1Y2r/T8MnYT3w/dx7WGeNXjIfBWKXK2kRERERERA1Gg58ISU9Px8KFC7Fv3z44nU60aNECw4YNw5gxY3zH7Nu3D++++y4OHTqE4OBg9OvXD1OnTq1Q0cbpdGLBggXYsGEDiouL0aFDB0yZMgVXXXVVhfPWRptEdankdAnWTl/r+1kzaIjqGMVJECIiIiIiatQa9ETIt99+i2eeeQadOnXCXXfdhcDAQJw8eRLZ2dm+YzIyMvDYY48hISEB06ZNw5kzZ7B06VKcOHECf//738u199prr2Hz5s0YO3YsWrVqhbVr1+LJJ5/ErFmzcOWVV9Zqm0R1KWt3FlKGp6Ak62ySO82gQffqaJvc1r8dIyLyI1eICTCVz7JnLJOT97kDw+RGFOuoDYqkqF6r/KuYUZEc063YtmgqkJO3uuPC5f6UyVkeTfl2uZ1mEXI7Drkdd5CcrdBcII+DHqA4PltOxqobFUktxSjgDZKzQnoj5KSNXov8pYDBJScDdUXIyUC1MDn5rG6Se2oukJOrlrUJEeNGu6I//7+9+46Polr/B/7Zkt30DiFSEiAYKVIUUJRAAkiLBhCQgAVEUKSIelWuXO/1WpCvV4ULFqSKgEIoAkFCQCJSFaQjoYSLhNBSSc+W7M7vD35ZWXIOJJCw2eTzfr14aZ6dPXPmzOzu7NmZ5/EQ918jPqxQXF/cn8IQcfsFV3yF8aaNM4Tx1PR7hHFZ0k+DnzAMqzTZq3h7zeJhg6IWL6+VJC1Vm2XJTMXtyJKQmr3EcY0k97JPqixrqXi9Bj9JElhfSTMSpe6ScTBJkq5K2rk37JIw7q8Xb3BDfa4wHuSSJ4zn+4lfd2lukuPN9TZudOG9KbWW006EFBUV4aOPPsLDDz+MDz74AGrJG9q8efPg5eWF2bNnw8PjWsbh4OBg/Oc//8G+ffvQuXNnAEBycjKSkpLw8ssvY/jw4QCAPn36YNSoUZgzZw7mzJlTrW0S3S0n153ED0//AHOxGQH3BuDhVx9Gdko2QiNDER4T7ujuERERERERVSunvQZ+69atyMnJwdixY6FWq1FSUgKr1X7WuqioCPv370fv3r1tExbAtckINzc3bNu2zRbbvn07NBoNYmJibDG9Xo/o6GgcP34c6enp1dYm0d2gKAp2Tt+JuEFxMBeb0eyxZnjhtxfQ8eWO6DOjDydBiIiIiIioTnDaK0L2798PDw8PZGVl4R//+AfS0tLg5uaG3r17Y+LEidDr9Th79iwsFgvCw+2/4Lm4uKBFixZISUmxxVJSUtCoUSO7yQ0AaNmyJQDgzJkzCAoKqpY2iapbqaEU8WPicey7YwCAThM7oe/MvlBrnXYulIiIiIio2qisjq8aowKc+NKFms1pJ0IuXLgAi8WCqVOnIjo6Gi+++CIOHz6MNWvWoLCwEO+++y6ys7MBAAEBAeWeHxAQgCNHjtj+zs7Oli4HAFlZWbblqrpNmaysLNv6ACA1NfWmyxOJFF4pxIqBK3Bx70WoNCr0/6I/Oo7r6OhuEREREREROYTTToSUlJTAYDBgwIABmDx5MgCge/fuMJvNiI+Px+jRo2E0Xks45eJSPgGXTqeDyfRXxiij0Shdruzx6/9blW3KxMfHY/HixeXiBoMBRUVFN30u3VpJiSQzVS2SfiQd64atQ8GFArj6uSJmaQyaRDapluOnLozn3cYxrVp3Mp43XtlHRERERM7LaSdC9PprWdN79uxpF+/Vqxfi4+Nx/PhxuLpey9RtNpfPaG4ymWwTEmXtyZa7fn1l/63KNmViYmLw6KOP2v5OTU3Fhx9+CFdXV56UV5HaPI4nfjiBtc+uvZYUNTwAwzcMR0CL8lcoVaXaPJ6OwjGtWhxPuhlNiRUqtX39A7OXuPyDtGqJRVxhwMUirr5R6iGulmLykVQ50UuqXeSLf1xRXMTLW9Xi9jUF4qoxKquk/17icxlddrEwDrOsvoRYqZ+4qots/GVVfqw6jXj5QvG4aQrE2wuVpGqGu7g8iUuGuOqNxUtc7cIsqQpklVSZUUnGQTY+FvHhBkgKYygukgfU4niRSdJ/L/F+V+VJqtuIixFJq94Y/CU3MMiqOElep6V68RN04sNKSiU5fCRFUaCSvCzyQ8THrUFyOqe/Ko6bvcTbq7sqex8Tx9WScdC5i3dYgVFcNamBW4EwfrpYnDKgqZ+4GtHejBBh3KVI3H9ZdSQpRYH0xXHXOHr9tZfTToQEBATgzz//hL+/v13cz+9ava2CggI0bNgQAOxuLymTnZ2NwMBAu/auL7t7/XIAbMuW3dZSlW3KBAYG3nIZohspioKdH+3EtneuJe5t3rs5hsQNgauv+MOIiIiIiIioLnHa1CtlyUpvnGgoy7vh6+uLpk2bQqPR4NSpU3bLmM1mpKSkICwszBYLCwvDhQsXyt0ykJycbHscQLW0SVRVzCVm/PD0D7ZJkM6vdMaIjSM4CUJEREREVBlKDflH1cJpJ0KioqIAABs3brSLb9y4ERqNBh06dICnpyc6duyILVu2oLj4r0s0N2/ejJKSElsbABAZGQmLxYL4+HhbzGQyISEhAa1atbJVd6mONomqQsHlAnwb+S3+WP4H1Fo1Hp/7OPrN6sfKMERERERERNdx2ltj7r33XvTv3x8JCQmwWCxo3749Dh8+jG3btuGZZ56x3VIyZswYTJgwAZMmTUJMTAwyMjIQFxeHTp064aGHHrK116pVK0RFRWHevHnIzc1Fw4YNkZiYiCtXrmDKlCl2666ONonuxOWDl7E8ZjkKLhbAzd8NQ1cPRdOopo7uFhERERERUY3jtBMhAPDGG28gKCgImzZtws6dOxEUFISJEyfiqaeesi0THh6OGTNm4Ouvv8bnn38Od3d3REdH46WXXirX3tSpUxEUFITNmzejsLAQzZo1w8cff4z27dvbLVcdbRLdjlPxp3Bg3gH876f/wWqyIrBlIIbHD4d/mP+tn0xERHYMAVooevtskj4nxckuVYr4emVFkkxTZRFnQ3SRJDmVJV1V54qrflk9xck3VaXirI0qq6T/LuLkjOoScTJERS256lCSFFWVkyte3lOcyFiTL15c0YlPYVWS9Wol44ZCSVzSH5SIk8m6SMZNmlzVQ9x/3RVxEkmovcRxWU5XSVwrKVhoFW+W9LJ8N09xQ/nFlbsVVyMp5iW7G0AjSdapliRX9bwsfoKqVLyG4vri/VIqqW/gelWSRNhNvN+tksPE4ipJ4ikZCM/zsnbEcY80cftmcY5fqCVJaY0h4gc058Wvl6Iw8fhfKREfzz3qnxLGT5Q0FMY9dJLjsJKvCxmVokDl4HtTHL3+2sypJ0K0Wi2ef/55PP/88zddrm3btvjqq69u2Z5er8f48eMxfvz4Wy5bHW0SVcbJ9ScRNzDO9nfwA8F47ufn4OrDfCBEREREREQyTB5A5IRKjaVI+nvSXwEV0CSiCSdBiIiIiIiIbsGprwghqouKs4sRNygOWSevVUhSqVVQrAqa9mBOECIiIiKiqqEAktsg7xoVb42pLpwIIXIiWaeysPzx5cg5kwO9tx4P/+1hGHONCI0MRXhMuKO7R0REREREVONxIoTISZz75RzinoyD4aoBvqG+GLFxBOq1qufobhER1RruGSaoVPbJ9xQXyV3EFkkSUllyUpM4aaAs6af6qiRpps5FHNdULtmi7FdO9cVM8fJ+PuLVFkqybEpKt1sb1RevN69Y3I6E+lKW+AGrJBuiuziZrBLoK4yrZOMvSXorS1qqnE0Txl10kqs4JclVXXLEWUULm3kL496nxUl+s9uJk1RqiyXHg1G8H01G8XFoydUJ46pS8XYpkuShLrIkqpLDvNRdHDf4iVdglXwD8pAkV1W04hWX6sXj45MiPp6z24qTisrGXysZh+J64v64XhUvXyJ+2UmTJKglh7nHCfH+LWopTqJakCt+3bloxSsotkiy0kp4uojXa/ITj6fPn5Vq/trr2tEXZEiOebpznAghcgKHFx/Ghhc3wGq2otHDjRC7PhYe9SUZ7YmIiIiIiEiKEyFENZhiVfDzP3/Gro92AQBaD2uNAd8MgIub5BdBIiIiIiIiuilOhBDVUOYSM9aPWo/jK48DACLeiUDUe1FQqXmNHBERERFRdVIpClQOTpaqcvi9ObUXJ0KIaqDC9EKsGLACF/dehNpFjSfmP4H2I9s7ultEREREREROjxMhRDVMxvEMfB/9PfJS8+Dq54pha4chtHuoo7tFRERERERUK3AihKgG+d+W/2HV0FUw5hvh38IfI34cgYB7AxzdLSKiOkFTaIZasa8aY3EX52RSSaoqyJZ3yRFX8ZAUbQA0kmoXenH76is54rikWorFV5JwWy3ukeIiKe8hocoQ9wf+vsJwaaCkmsmfl8XteHmK42azMGz1Fbcvo5KMAzzE5Ulk46MOaSSMl8qOE0n1HIuXuDqMxiQuVyOrdqQrEi+f30SyvKQKiVFStcS7Yb4wbjroJ4ybJbvRO1V8O0CpXrxe9wzxC1JrFLcjqyZjcZVUO5JUjVGXitvPvVd8nGhLxMtbXMTty/aXm6RokslbUk0mW7x8iaT4oFpcjAUmcfEooED8ldLtHvH7nqfeKIzvyRJXU2rrd0myYjHPVPE4aIslb9wyCqQVtsj5cSKEqIbYP3c/EiYkQLEoCOkWgqd+eAruAZJ6cERERERERHRbOBFC5GBWixU/vfUTfpvxGwCg3XPt8Pi8x6HV8+VJRERERERU1fhNi8iBTEUm/PD0Dzi1/hQAIOrDKERMjYBKxcowRERERESOozj+1hgVb82pLpwIIXKQw4sPY+uUrSjKKIJGr8HAxQPRJraNo7tFRERERERUq3EihMgBfv3vr9jy2hbb31HvR3EShIjIwYz1XAGtfRJRj4NpwmXNzYKEce1VcbJLU6g48bXusji5JCzipH7qwhLx8t7irJNWD714+UPJ4niLZuK4jFWSrLOeODmmylgqjGuzxUkVrfcEituxSJJp+oizObqkZgrjcBEnLYVRnMwROkmy2hLJ8lpx8k1trmQ/FojHQeMqXq/GQxy36sXJQEsCJElRC8TdKRLnaIW3j/g412pkyVjFSWz994r7X1xffGWsz5/i10VJgCRZrSSZqSzZscFXPD6yH+VdxLtLmlxVlvxUYxKvwOgt7o9ZkkJOnyfpqORCY02J+AGjv3h5q04ynuLNQkmB+P3H4ik+fp5r/Jswvu3qfcL4+Txf8Yol9Hni9x8p6///R7WSNFk5EVWPU/GnsPXNrba/VRoVCq9IPkmJiIiIiIioSvGKEKK7RFEU/DrjV/z05k/XynHh2iSIYlEQGhnq0L4RERERERHVFZwIIboLLGYLEiYm4OC8gwCAB8c9iOaPNcf5XecRGhmK8JhwB/eQiIiIiIjKqBQFKgcnS3X0+mszToQQVTNDrgGrhq7C2a1nARXQZ0YfPDT5IahUKrR8sqWju0dERERERLVAWloaFi5ciGPHjiE/Px9BQUHo1asXYmNj4erqalvu2LFj+Prrr3H69Gl4eHggKioKY8eOhbu7fQIak8mEhQsXYsuWLSgoKEDz5s0xZswYdOrU6W5vWpXjRAhRNcr5Xw6WP74cWSez4OLhgsHLByP8CV79QURUVYqLi7FixQokJyfjxIkTKCgowNtvv41+/fo5umtERER3TXp6Ol566SV4enpi0KBB8Pb2xvHjx7Fo0SKcOnUK06dPBwCkpKTgtddeQ0hICCZOnIiMjAzExcXhwoUL+OSTT+zanD59On755RcMHToUjRo1wqZNm/DWW29h1qxZaNu2rSM2s8pwIoSompzffR5xA+NQnFUM70beGL5hOBq0b+DobhER1Sp5eXlYvHgxgoKCEBYWhkOHDt12W1atCrih2oNFUrVEVvVD0YpPrXR/Vq5qidXXQxgv9dSJ27+UJ4yrs8RxpWWYOK4W59FXNOLqElY3V2FckyeuCgGNpH0XSdWPjFxxO57ishkuV0zi5VWSshkuklNhD/H4W/y9hHFNoUHcjklcLaU0UFLlJ7CxMO6SIz7eNAZxFQyTr/g4cc8Ql8AoCpJUJ/ESL2+6Kh4fVw/x+CsW8fiX1BeGoZXkkM8LER8nrlfFtw+45YjLwxQ2EO93fb54e9VmcfsWV/G4uWeJ16tIylTIqsxojJL16sTLG/zFcUU8bDDUE7evSF4WuhzJeutLqsloxPFCo/j4lFWHCXXLFsZTtPXE7Uuq6hQ2FK9XSlGu/XOkSqx/y5YtKCwsxJdffommTZsCAGJiYmC1WrF582YUFBTAy8sL8+bNg5eXF2bPng2P//9eFxwcjP/85z/Yt28fOnfuDABITk5GUlISXn75ZQwfPhwA0KdPH4waNQpz5szBnDlzqnhj7y5WjSGqBke/O4olPZagOKsYwQ8GY8y+MZwEISKqBgEBAVi7di1WrVqFl19+2dHdISIicoiioiIAgJ+fffnygIAAqNVqaLVaFBUVYf/+/ejdu7dtEgS4NsHh5uaGbdu22WLbt2+HRqNBTEyMLabX6xEdHY3jx48jPT29mreoenEihKgKKYqCbf/ahrXPrIXFZEHLJ1ti1PZR8AoW/4JERER3RqfTISAgwNHdICKiWkf566oQR/0rKzVZAR06dAAAfPzxx0hJSUF6ejqSkpKwfv16DB48GG5ubjh79iwsFgvCw+1v1XdxcUGLFi2QkpJii6WkpKBRo0Z2EyYA0LLltRyHZ86cuc1xrRl4awxRFTGXmLH++fU4HnccAPDolEfR86OeUKkll+MSERERERHdQmpqqt3fAQEBCAy0v3XzoYcewgsvvIBly5Zh9+7dtvizzz6LsWPHAgCys7Ntz79RQEAAjhw5Yvs7OztbuhwAZGVl3ebW1AycCCGqAoXphYgbGIcLv12AWqvG4/MeR4fnOzi6W0REJJCVlWU7GQTKn2ASERHVJB9++KHd36NGjcLo0aPLLRccHIx27dqhe/fu8Pb2xq+//oply5bB398fgwcPhtFoBHDtCpAb6XQ6mEx/5fkxGo3S5coed2acCCG6Qxl/ZOD7x79HXmoeXP1cMeyHYQiNDHV0t4iISCI+Ph6LFy8uF9cYFKg09skSjfXEyUBdL4mTIZb66IVxxd9NGNeUiJNdqiQJ8tSl4rixsZ8wLkuyqc4tEMbNjcW3GalN4u1VF0mSk0qSrpoCJONQLB4HtZ/41lKruzjpoSJJxiq7ulybLc7KaQoRj4MsOamM1Vu8vbLkrapScbJOi6f4uDLUkxxvkotRLXrxA6WSbqqN4uVDG2UI4/kG8evFoBfvL7Nn5b6KWMW5heGaK45fbV659hWt+PhxKRIfQAY/8fi4S7IPmDwlSYcl3TSLc9JCK8nNq5Ic58XB4gd0V8X9MflKtreZ5PVeKN4AxSIeh1aB4twSnX3+FMaNkh3vohG/L8mSwPr8WcnEpwpqQLLUa/955513EBISYguLrtRISkrCJ598gu+++w7161/LRNy9e3coioK5c+eiV69e0OuvvWeYzeUTOZtMJtskB3AtH4hsubLHnVmtmghZsmQJFixYgKZNm+Lbb7+1e6w6aiWz/jKdSTyDVU+tgqnABP8wf4zYOAIB9/JedSKimiwmJgaPPvqo7e/U1NRyv7YRERHVFCEhIeXyetxo7dq1aNGihW0SpMyjjz6KTZs2ISUlxTaBcv1VkWWys7PtbrcJCAhAZmb5imdlz73x1hxnU2uSpWZkZGDZsmVwcys/pV1WK9lgMGDixImIjo7Ghg0b8O6775Zbdvr06Vi5ciUee+wxvPLKK1Cr1Xjrrbdw9OjRam+TnMep+FP4tse3+K7/dzAVmBDSLQQv/PYCJ0GIiJxAYGAgwsPDbf+u/5WNiIjIGV29ehVWa/mrykpLr13JZrFY0LRpU2g0Gpw6dcpuGbPZjJSUFISF/VVaPSwsDBcuXLBVoymTnJxse9yZ1ZqJkK+++gqtWrUSzpRdXyt5wIABGDt2LF599VXs3bsX+/btsy1XViv5xRdfxPjx4xETE4P//ve/aNCgQbk6ydXRJjmHE2tPYMWAFTi37RygAE17NMWzPz0L9wBJ0XIiIiIiInIu1hryr4IaN26MlJQUpKWl2cWTkpKgVqvRvHlzeHp6omPHjtiyZQuKi4tty2zevBklJSWIioqyxSIjI2GxWBAfH2+LmUwmJCQkoFWrVggKCqp452qgWjERcvjwYWzfvh2TJk0q91h11Epm/eW6q+RqCRInJ/4VUAH129aHRqdxXKeIiIiIiKhOi42NhdVqxcSJE/Htt99i7dq1ePPNN7Fz507079/fdivLmDFjUFBQgEmTJmH9+vWYP38+/vvf/6JTp0546KGHbO21atUKUVFRmDdvHubMmYP4+Hi8+uqruHLlCsaNG+eozawyTp8jxGKxYNasWYiOjkbz5s3LPV7VtZKDgoKqpU2q+bJOZmF5zHLkp+UDAFRqFRSrgqZRTR3cMyKium3NmjUoLCy03be8e/duZGRcS+Y4ePBgeHp6OrJ7RERE1a59+/b48ssv8c0332Dt2rXIz89HcHAwxo4di+HDh9uWCw8Px4wZM/D111/j888/h7u7O6Kjo/HSSy+Va3Pq1KkICgrC5s2bUVhYiGbNmuHjjz9G+/bt7+KWVQ+nnwhZv3490tPTMXPmTOHj1VEr+W7VX2Z5v5rjTOIZrI5dDWOeET4hPujyehfknstFaGQowmNunriIiIiqV1xcHK5cuWL7e8eOHdixYwcAoHfv3hWeCCkJ1EBxtT818j4nLg+oMomrh2iM4lMriyS5vqZI3L4iqbqiuImrJ+iuiKvAqAT3iwMAtOJ+qg3iKgwyiov4ikiroOQiIK+6YvEUL2/2FQ+ctqh8JQMAsLiLt0tWPUdxlYzn/8RX7JrCJD9eWcTVUhQX8X6UVUvRZ4vLgRgDxWVdtEXi/WX2FO8XlUVcAUOfL6keIqmKklEgruajc5FU1SkR98dFfNjCIqli45kmjlu1kjI5krDrVfE4WDWSqjqu4rhasrkWcZEcaIzi9cqq+ciqwMjal1WTcZHsX9n4uBRIjodA8fuJyk/8PvZQs3PCeKCuSBg3K+Lj5Cnvw8L43lzxj5HppgbCuGzcpBRFWsHrrqnk+lu1aoVPPvnklsu1bdsWX3311S2X0+v1GD9+PMaPH1+pfjgDp54IycvLw6JFi/Dcc8/B19dXuEx11Eq+W/WXZeX9DAZDuaQ1VHklJeKTouspioKDXx3EL2//AsWqoGGXhoj5LgYe9f+6wof74pqKjCdVDse0at3JeN54VR/VLCtXrnR0F4iIiMiJOPVEyIIFC+Dl5YXBgwdLl6mOWsl3q/6yrLyfq6srT8qryM3GsdRYio3jN+LwosMAgPaj2+PxOY8zH8hN8LisehzTqsXxJCIioopRKn1FRrX0gaqF006EpKWlYcOGDZg0aZLd7SUmkwmlpaW4fPkyPDw8qqVW8t2qvxwYGOj09ZmdVVFGEVYOXonzu85DpVah92e98dDkh6BSSa4hJCIiIiIiIqfgtFVjsrKyYLVaMWvWLAwbNsz2Lzk5GWlpaRg2bBgWL15cLbWSWX+5dks/mo75nefj/K7z0PvoMSJhBB5+9WFOghAREREREdUCTntFSNOmTTFt2rRy8QULFqC4uBivvPIK7rnnHrtaySNHjoS7uzsAea3kFStWID4+3pZZV1QruTrapJrh5LqT+OGZH2AuMsM/zB/DNwxH4H28KoeIqC7wvGCEWmWfbVCbI84DZfUWJ8dUmcXJKzWSy6tlyUbVV3LEcS/x7V1WT0l/ZMlYdeIkoWqjOAmpKitXGIfsRwI3cX9kNBclOdMk2wuzJFmtmzgbotVVHFdn54vblyST1Z0X7xeLvzh5qFUv3r+uF8XrVfTi/eKWUv7qYgAwNfEXr9cs/q3T4C/uj0W8Wmgku6UgT5zNtF6geLu0eZLkrZKr/vWSWgIuRZIkp5JvNH4psmSy4vGRtaMrECcJNXtIkuG6y5KrivuvFr/soDGJ47L9JbuLwuIqfsA1U5Ic1l3Sn4uSpMBacfu/XhUXFAi977Iw3sbjgjC+tuB+YTwt31cYV0lyRCuV/U3Tqlz750iOXn8t5rQTIb6+voiIiCgXX7VqFQDYPTZmzBhMmDABkyZNQkxMDDIyMhAXF3fTWsm5ublo2LAhEhMTceXKFUyZMsVuPdXRJjmOoijYNX0Xfv7HzwCAZr2aYUjcELj5S9KWExERERERkVNy2omQyqiOWsmsv1x7mEvMiH8hHn8s/wMA0HlSZ/SZ0QdqrdPeOUZEREREREQStW4iZPbs2cJ4ddRKZv1l55d/MR9xA+Nwaf8lqLVq9P+yPx588UFHd4uIiIiIiBxJqQFVYxy9/lqs1k2EEFXU5QOXsT52PQovF8ItwA1PrX4KoZGhju4WERERERERVSNOhFCdtPmNzdj7371QLArqta6H4fHD4dfMz9HdIiIiR1KVT6ZnaOQjXNT1UoEwXuojTibocl6c/VHx8RT3RVfJpJ+SpKiwiLMGqtTirIEWvV4YV0LFyd21V4vF680vFLd/jzgBucoizslldRVnhdReEictVZWKT23VJZLxkSR7NYUECOO6C1fF7UjupnXJFI+D1UM8zhpJcl5ZUlRtnkEYVzTi8XQpFicttWol4+ArSe6pFR9XhQbxdlncJMmC8yXJOiUvC3OReHmXEnH7Ji/xjlEkx7/aLG6nOFA8brpC8ThoxbsFrtniJL+5YeLjXJYsVVco217xdrldlmyvOJcsiu+R7Hej5H3DS9KQhEYtHreETHFS1IkNk4TxvOKu4vZLKtUdOQWOvyKDF4RUG06EUJ1itVixatgqnFxz0hbr9k43ToIQERERERHVEcwGSXWGIc+AFTEr7CZBVBoVLu676MBeERERERER0d3EK0KoTsg6lYUVA1Yg+1Q21C5qWM1WqDQqKBaFeUGIiIiIiOgGNSBZKu+NqTacCKFaL2VTCtYMXwNjnhHejbwxbN0wFFwsQMpPKWjxWAuEx4Q7uotERERERER0l3AihGotRVGw55M92Pr3rYACNOnaBENXD4VnkCfwINCoZyN4eHg4uptERERERER0F3EihGolc4kZG8ZswLHvjwEAHnjxAfT/vD80OnHWbyIiIoteA5Xa/nPCJU9StkFCUyBe3urnLYyrDeLlFTdx9Q11obgcgtXHXRhXmcXVHKxukioV+bIqJOJqEbI4isTVZDQZkqorReLtUtUXV29RvCU/ZJRKquRYJFVLvMTjpruUJ17eXVLtRVLFBhbx+KvVvuL29ZU7NTcEScZBsluskuZLxcWOoJIUAyktETek9xbvxxIXyfhLTsvcMsVxrUHcjmz/WnTigZBVyfFIl7xeXMTLG33F6RY1RnF/ZO3oc8XLl7pKls8TH+elruIBNUpqAqglb29qk6Q6jId4vYok66RKJ16+wCg54CTOmuqL12sV91Mr2S6zp+SFIWNVrv1zJEevvxbjRAjVOnlpeYgbGIfLBy9DrVWj7+y+6DiuI1SSEnlERERERERUd3AihGqV87vOY+XglSjKKIJ7oDuGrh6K0O6hju4WERERERE5E8V67Z+j+0DVghMhVGscmH8ACRMSYDVbEdQuCLHrY+Eb4uvobhEREREREVENwokQcnoWswWJryZi/1f7AQCtn2qNmEUx0HnoHNwzIiIiIiIiqmk4EUJOrSizCKuGrELqjlRABfT4sAe6vt2V+UCIiKjSdNkGqK32SUQVF3HywZKGXsK4a6Y4WaQ6XxyHIkmEl54lDJvbhArj2nyjMK4ylYrjOvEpoCyJqkqShFSWnBT3BInjRkkWw3r+wrAi6acsaSzU4qyNFj9xUlR1gXjckJMrDKu0kuyenpKkpZL9K9suRSvuv9lTvLz7OXFS1/z7xNkxXQrF+8vgL94uXa4k2ajkddE56LwwvuVcW2FclixVlmzU5CXuj0qSNNM7TXz8F9cTr1gW10gOW1k/XYrE8aJgyX6XnLbK2i8OFPfTIs7lC22ROG4Vv9yhlb1dqSVJkyVxSH6TdHcRD2hbv0vCuIska6+r3iyMW8W7Hbr8SiYeVSB/j75bmCu12nAihJzWlcNXsGLgCuSl5kHnpcOT3z2J8CfCHd0tIiIiIiIiqsE4EUJO51T8Keyfux9/bv0TFpMF/mH+iI2PRb2W9RzdNSIiIiIiIqrhOBFCTuXkupOIGxRn+7tBhwZ4Luk5uPm5ObBXRERERERUqygKYHX0rTG8N6a6iG9EJKqBjPlGbH59818BFRDSLYSTIERERERERFRhnAghp5Cdko0FDy9A7p+5AACVWgUoQNMeTR3bMSIiIiIiInIqvDWGarwzm89gTewaGHIN8GrohS6vdUH+xXyERoYiPIbJUYmIqGqY/VyhUttXF1FZxJclu10sEMZlVWYUnaQ8hqTKSen94ol+l8xCcTsWcTUQq7u4jITKLK7CIK8aI67yYPUSt68uklRjMYjjVi9JVZer+cK4pYG4KgokRWw06bnixX3F1X9Ufj7CuOImLoNhdRfH1fkGcTz9qjBuaSCunuOSL66OURwq7qdVJ67iUXiP+HiTVQkxe4rjbo3Fx3/SGfF5maIX7xiTr7j9IrO4n17nxa9Hq+TlVdBI/FXH44r4+C9qIHn9Sn46tkqqosgqfZjEh5u0fW2xpBqLZHmLqzguKboCo7+4o+pSSXUYSZUZSMY/tGGmMF5gEr9vWCXlc0J14nZaBIira53Uit8f1JJxkFIUx9+a4uj112KcCKEaS1EU/PrZr9g6ZSsUq4LGjzTGU2uegmcDyacyERERERER0S1wIoRqJHOJGRvGbsCx744BADq80AH9v+wPrZ6HLBERERERVTNeEVKr8Vsl1Th5aXmIGxSHywcuQ6VRoe+svug0vhNUKsnlgUREREREREQVxIkQqlHO7z6PlU+uRFFGEdwC3PDU6qcQGhnq6G4RERERERFRLcGJEKoxDsw/gIQJCbCarQhqG4TY9bHwDfV1dLeIiKiOcMk3Qq3YJ7c0BopLtMuSY1ZWqae4HcVFnA1Rtl6LuziLodosTlIpu9hak1MkWa84uSEkV2ta3SRJVCXrlSZFrS9Jiiq7SlSStNHcJFD8gOSyc3V2njBuDRDnKTP5iPeL3lAqjFsaifujKRQnVy1pKE4m61Iobt/sKR5pn7Pi4yGzg3jgShuIk9uG+Ij3l9lL3M55c4Awrrss/iqiEQ8DihqI97trtnj5Eslu1+eJ29GWiI8Hg594eX1u5ZZ3yxIvb/YQL68W5yiGWZJ0VSPJUWyUvIzcMsTrNYh3F6xacf8VF/FxdT5DnPy3S7M/hfFHvM4I41dKfYXxP3PF7Rvqifupz63k1eW8NaZW40QIOZzFbMHm1zbj9y9/BwC0GtIKAxYPgM6jak4yiYiIiIiIiMpwIoQcqiizCKuGrkLq9lRABUR9EIWIqRHMB0JERERERETVghMh5DBXDl/BioErkJeaB52XDk9+9yTCnxDXnyciIiIiIrprFAWwim/7uat9oGrhtBMhJ06cQGJiIg4dOoQrV67A29sbrVu3xpgxY9C4cWO7Zc+dO4cvvvgCx44dg1arRZcuXTBx4kT4+vraLWe1WrFixQqsW7cOOTk5aNSoEZ555hn06tWr3Pqro8265Piq41g/aj3MxWb4h/kjNj4W9VrWc3S3iIiIiIiIqJZz2omQ77//HseOHUNUVBSaN2+O7OxsrF27FmPGjMGcOXPQrFkzAEBGRgYmTZoET09PjB07FiUlJVixYgXOnj2LuXPnwsXlr+Ri8+fPx3fffYcnnngC9913H3bt2oX3338fKpUKPXv2tC1XHW3WFSfXncTO6Ttxad8lAEDzPs0xePlguPmJk9ERERHdLcZ6roDWPimlPlOSfVBCJUmOqTKJ47qMXGHcGiTObqioxUkwNQXirIqlPuKkpdois7h9vfjUUJbMtLShOKuiLOmnopOcenqIk4GqzBZx3Cj+lbakoTiLpPufV8XrldyKW9pE/OOMNrNAGJdlNVNcxMlDtVnidqw+4nFwlRyHxgDxmjUG8a/Ipe7i48ctXRiGyV+8v86lS5K9aiX7Sy3uj1VyOKjEzUiXt4pzBaPeUfHrLi9U3JC2RNyORbKD1ZJ+el2QHJ+B4vHXFkvGx0V8fJrFOXuhSJIFy7Ijy8ZNtl0agyQ5sm/l9rvJIh7/pNxWwvi9HleEcR9X8Q4zX5Ikw5WMsxSTpdZqTjsR8tRTT+Ff//qX3aRDjx498Pzzz+O7777DP//5TwDAsmXLYDAYsGDBAgQFBQEAWrZsiddffx2bNm1CTEwMACAzMxNxcXEYNGgQXnvtNQDA448/jkmTJuGrr75CZGQkNBpNtbVZF/wR9wfWxK6x/X3foPswdNVQqDWyHPJEREREREREVctpv4Hef//9dpMgANC4cWOEhoYiNTXVFtu+fTseeeQR24QFAHTs2BGNGzfGtm3bbLFdu3ahtLQUgwYNssVUKhUGDhyIzMxMHD9+vFrbrO2unr2KhPEJtr9VahV8Q305CUJERERERER3Va36FqooCq5evQofHx8A167IuHr1KsLDyyfgbNmyJVJSUmx/p6SkwM3NDSEhIeWWK3u8utqUycrKwqlTp2z/rp/gcSbntp/D/M7zUZJz7fI1lUYFxaogNDLUsR0jIiIiIiISKbs1xtH/qFo47a0xIj/99BMyMzMxevRoAEB2djYAICCg/P2rAQEByM/Ph8lkgk6nQ3Z2Nvz8/MqVbS17blZWVrW1KRMfH4/FixeXixsMBhQVFd30uTXFkUVHkPR6EqylVgQ9EIT2Y9sj63gWGkc0RqOejRy6HSUlkhtB6bZwPKsex7Rq3cl4enh4VGFPiIiIiMiRas1ESGpqKmbOnInWrVujb9++AACj8VpiqRtvoQEAnU5nW0an08FoNN5yuepqUyYmJgaPPvqo3TZ++OGHcHV1rfEn5dZSKza/vhn7Pt8HAGgT2wYxi2Lg4ibJyuQgNX0cnQ3Hs+pxTKsWx5OIiIiIasVESHZ2NqZMmQIPDw988MEHtgSkev21TOlmc/nM6CaTyW4ZvV5f4eWquk2ZwMBABAaKs3LXZCVXS7D6qdU4u/UsACDqwyhETI0od2UMERFRTaItKIUa9tVXSoJdhct6nskTxs3+4qofuv+Jy3IoPuLJOVWxuAqMSlKFRJF8xuouSKqlFBWL26knqVbjIy5Toc0qFMatXuJxU+dWzZWgsuoz7r+fFT/B31fcjqukeki6eP8q7uJzN1m1IHWx+Ecvq4d4fFRGcTUfc6C4up4+W3ycGALFZU6skhz9sioh7hfET7AEibfXTS/uf0Gq+Dh3kRwOGslvhfo88W0Cunxx3CypkuN5SVzVxeQlfh15n5dUP/ESt6/LFw+oS7G4fZcicfuKSnZbhKR6lElSLchNUn1G9tuAeHhgCRDvX+1F8fHs3lL8/pNlEL9PNvfMFMb9NeIDJd8oXq+supC69DaqxlhZNaa2cvocIYWFhXjrrbdQWFiITz/91G7ioOwWlLLbWa6XnZ0Nb29v29UZAQEByMnJgXLDwVb23LJ2q6PN2iTrVBYWPLQAZ7eehYuHC5764Sl0+0c3ToIQERERERFRjeDUEyFGoxF///vfkZaWhv/7v/9DaGio3eP16tWDr68vTp06Ve65J06cQFhYmO3vsLAwGAyGcglJk5OTbY9XV5u1xZnNZ7DgoQXIScmBTxMfjN49Gi0HtXR0t4iIiIiIiIhsnHYixGKx4N///jeOHz+O9957D23atBEu1717d+zZswfp6X9dknrgwAGkpaUhKirKFuvatSu0Wi3Wrl1riymKgvXr16NevXp27VdHm85MURT89t/f8H3/72HMM6JJ1yYY+/tYNGjXwNFdIyIiIiIiqjxFgaJYHfqPt8ZUH6fNEfLll19i9+7deOSRR1BQUIAtW7bYPd67d28AwDPPPINffvkFr776KoYMGYKSkhIsX74czZo1Q79+/WzL169fH0OHDsXy5ctRWlqKli1bYufOnTh69Cj++c9/2vKOVFebzspismDj+I04tPAQAKD98+0RPScaWr3THlpERERERERUizntt9UzZ84AAPbs2YM9e/aUe7xsIiQoKAizZ8/GF198gblz50Kr1aJLly6YMGGCLZdHmZdeegleXl6Ij49HYmIiGjVqhHfeeQePPfaY3XLV0aYzKsoswsrBK3F+53mo1Co89uljePjVh5kPhIiInFKppxYqjf3nuC5fnBTSKqmCpvsjVRiXJeu0eoiTb2rSc8XtSH4dVKklP65IykYrQQHidvLFSVStkqSucBWPg1qS7BV5BcKwpfk94uUlNFnidqAVj4PpHh9hXHcxVxi3+oiTOcrGX30hQxgvDWsojKskCRitavF4akrEx6HRX5wUVdHIknKKs2CWukqOH8mP0VqNuJ3iEll/xO3I2ofkVNLqIkn6Kc7lC6OPeHn3DHH/3dPF42z2EG+A61VxO0VB4q9YLiWSpK4e4n6W6sVx2XjKkr2qJMlwZcw+4u1yPSfev4aG4nEryBcn+a3nKU6y/Ht2E2E81c1fGPfWG4TxUvHbGFxzKjkQ1hqQLNXR66/FnHYiZPbs2RVetmnTpvjss89uuZxarcYzzzyDZ555xiFtOpP0o+lYHrMceal50HvrMSRuCML61q6cJ0RERERERFT7OO1ECDnOyfUn8cPTP8BcZIZ/mD+GbxiOwPtqXwUcIiIiIiIiqn04EUIVdnL9Sez5zx6k7UkDADTt2RRDVw6Fm7/4sjciIiIiIiKnpCiOT1bq6PXXYpwIoQpJXp2MVUNX2f4Oiw5D7NpYaFycP+ErERERERER1R1OWz6X7p6izCJsemWT7W+VWoXAewM5CUJEREREREROh1eE0E1lJmfi+8e/R+Hla9mdVWoVFKuC0MhQx3aMiIioiqlNClRq+2oJaqO4yoBFUjUGkuonKkk76gKjMK54Sm47VUt+w7KKqzyoXMSneqqL4ion8BKX31AXiMswKG6SKiFaST/vqScMS6vkGCTjU19cRUK2vRqDuKoFSsRVJ9SlkuoSevF+tzYOErdjMAvjKpOkP+LdCGuQeL+oJFfNmz3E468ulVQdkqzXGChe3lW8uJTaJKmKIjnMZVVOtOLdBVWpuH3Xq+L+lwSIx0dWbac4UBzXiYufwPOypIpKY/HxKas+oysQx/Oain+MrGx1GKv45Qt9jnh8Sj0kx4+beHv1buLjPy3HTxh/tMlZYdxNI27n15RmwrhO/HKEW3Ylf8RVrNL31rtGcfD6azFOhJDU2a1nsXLIShjzjPBr7ocur3dBzpkchEaGIjwm3NHdIyIiIiIiIqo0ToSQ0IF5B7Bx/EYoFgVNujbBsLXD4B7o7uhuERERERERVT8Fjk9Wylyp1YYTIWTHarFi65St+PWzXwEAbZ9piycWPAGtnocKEREREREROT9+uyUbU5EJPzz9A06tPwUAiHw/Et3e6QaVSnxfJBEREREREZGz4UQIAQDyL+Zj+RPLceXQFWj0GgxcPBBtYts4ultERER3jUpRoLrhMmhtbol42cyr4kY8PYRhxUOcXlJVUCRux1UvDFu9xdklVUZxQr3SQHGSTa1FnFXR6iW+DVbRi5MMqkskyUAlSUKt7uLtUqkqlwTW4iFuRy1J0qoulGXZFP/YY24sTsbqciVfGFcklfRk67VI9qM2S5x9U1MiTkapKRaPs6IWt1/QUHLqL/nNS1skSR5aKB5/f39x/3PcxceVtkiyv8SbBfeMSiaOlNxW4HVR3I5VK97egBPi8TcEiMfT5CXeLm2JuEMWF8kOkPRfI84hDLUkB29hQ3Hc4iZZgaQ7aqP4AUWRvI7M4tdFfb8CYbzQLH6f9NSYhHGtXrzBrlmS95lK3maiWK1QHJws1dHrr804EUK4fOgylj++HAWXCuBezx2x62PRuEtjR3eLiIiIiIiIqMpxIqSOOxV/CmuGr4G52Ix6reph+I/D4ddUXNKKiIiIiIiIyNlxIqSOUhQFv838DVve2AIoQPPezTFk5RC4+lS2MjwREREREVEtoyg1oGoMy8ZUF06E1EEWswWbJm3CgbkHAAAPjnsQ/T/vL72vloiIiIiIiKi24ERIHWPINWDVU6tw9qezgAroM6MPHpr8ECvDEBFRnWfw10LRudjFFLWXcFlVPUkSUknyylJPF2Fc6yaOW9zEp2hqkzhxnsYkThqozREnYzU1EScD1Z1JF8at9XyEcVkyUxmrZHvVBnHcEBYqjGuLxOOsLhYnVVR0kqSWzeoL47qLueJ2JElvZftXJ0kmq2jE513GRr7CuOy4MvlKkkJKdossCalF3Ayskm8KWp042W4T71xhPFstvu1a1k+reDhR1ED8o51KkiRUI9leGdn2Gn3E61VkvyFKzqu1xeJf982e4uUNOklyUslpu0q8W6TjqSkRN1TqLd4x2lzx8pZsnTDu0TxXGFdLspY2chcnoX7EK0UYP+QvzgJ7uZE4Oa+uoJLfdxQFsPKKkNqKEyF1yIH5B7D171thyDHAxcMFg5cPRvgT4Y7uFhEREREREd2hjz76CImJidLH16xZg3r16gEAjh07hq+//hqnT5+Gh4cHoqKiMHbsWLjfUOXJZDJh4cKF2LJlCwoKCtC8eXOMGTMGnTp1qtZtqW6cCKkjdn+8G1v/vtX2d48Pe3AShIiIiIiIqJaIiYlBx44d7WKKouCzzz5DgwYNbJMgKSkpeO211xASEoKJEyciIyMDcXFxuHDhAj755BO750+fPh2//PILhg4dikaNGmHTpk146623MGvWLLRt2/aubVtV40RIHXFw4UHb/6s0KuSdz3Ngb4iIiIiIiGowRQGUyt3+Vy19qIQ2bdqgTZs2drGjR4/CYDDgscces8XmzZsHLy8vzJ49Gx4eHgCA4OBg/Oc//8G+ffvQuXNnAEBycjKSkpLw8ssvY/jw4QCAPn36YNSoUZgzZw7mzJlzJ1vnUMyOWUf0+KAHgGuTIIpFQWhkqGM7RERERERERNVq69atUKlU6NWrFwCgqKgI+/fvR+/evW2TIMC1CQ43Nzds27bNFtu+fTs0Gg1iYmJsMb1ej+joaBw/fhzp6eK8Us6AV4TUEa2HtYbWTYtzv5xDaGQowmN4WwwREREREVFtVVpaim3btqFNmzYIDg4GAJw9exYWiwXh4fbfB11cXNCiRQukpPyVnDYlJQWNGjWymzABgJYtWwIAzpw5g6CgoGreiurBiZA6JDwmnBMgREREEtoSK2C+4TLoSibsN3uJqyeYPTXCuMoiXoE2zyCMl3qJy3tYAz2EcVnFA5ecEvHyEoqLuP9SavFFx9q0THH7AeKqNPqL+cK4uZ54e82Saj4umYXCuC5DHC8JCxTGNSXi8iS6zGJhvNRbsr8k4ynbL/ktvYVxtalyB6gi2Y3y6i3i9t314nIsV4rEVZbUfuJqPtYsN/Hykiowunxxf4w+4mogHlfEG2bwFx+f+lxJVRd3SXUVcfehzxO3ozGL4yVu4vbV4mGD2VccL5W8DciqBVnFb1dQmSVVjfzE/bf6izuq1YjHv4FHgTA+1G+fML696D5hvNAofn2pTeL+y95vZRSrAsXBVWPK1p+ammoXDwgIQGCg+H3qevv27UNeXp7dbTHZ2dm2Nm4UEBCAI0eO2C0rWw4AsrKyKrAVNRMnQoiIiIiIiIhqqA8//NDu71GjRmH06NG3fN7WrVuh1WoRFRVlixmNRgDXrgC5kU6ng8lksltWttz1bTkjToQQERERERER1VDvvPMOQkJCbH+LrtK4UXFxMXbt2oXOnTvDx+evq+70+mtX0pjN5S8VMplMtkmOsmVly13fljPiRAgRERERERGRHavjq8bg2vpDQkLK5fS4lV27dpWrFgP8NYlSdovM9bKzs+1uuQkICEBmZvlbGsueW5Hbc2oqVo0hIiIiIiIiqkV++uknuLm54dFHH7WLN23aFBqNBqdOnbKLm81mpKSkICwszBYLCwvDhQsXUFRUZLdscnKy7XFnxStCiIiIyGmZTCYsXLgQW7ZsQUFBAZo3b44xY8agU6dOlW5Ll1sKNeyT/ll14t+MdFfEyf5gEmcldLVYxMtrJadiWnFWS41GHFcbxetV5YiTjVqCxZdVa9xcxfEMcTvQl793HACQdVUYtoY0EMbV6eLl4SXO/uiSWSSMq0ol4yxh8XcXxt3+uCh+grs4O6bFT9yOy6VccTuS/ai4ibNXKmpx8kfNjcl9/z/dVXHyypIAcT9VsmETrxaF+eLj5B6fPGH8SlY9cfOSPJRace5ZaMU5hGGVJIG16sQb4JYl3mBFI1tenL21JFDy+pWMm7ZYsr/yxe8z7pnifhYbJBssGc/CJuK4LCmtplC8AYZ6kqsjJNtbUCQ+Tk6Y6gvju3zFVzy4qsQdDXAXvw+Y8/yFcX1e5a7uUKyoAclSb+95ubm52L9/P3r16gVXV/v94OnpiY4dO2LLli0YOXIk3N2vvS9s3rwZJSUldvlEIiMjsWLFCsTHx2P48OEArn3uJiQkoFWrVk5bMQbgRAgRERE5senTp+OXX37B0KFD0ahRI2zatAlvvfUWZs2ahbZt2zq6e0RERHddUlISLBZLudtiyowZMwYTJkzApEmTEBMTg4yMDMTFxaFTp0546KGHbMu1atUKUVFRmDdvHnJzc9GwYUMkJibiypUrmDJlyt3anGrBiRAiIiJySsnJyUhKSsLLL79s+6WqT58+GDVqFObMmYM5c+Y4uIdERER339atW+Hn54cHH3xQ+Hh4eDhmzJiBr7/+Gp9//jnc3d0RHR2Nl156qdyyU6dORVBQEDZv3ozCwkI0a9YMH3/8Mdq3b1/NW1G9OBFCRERETmn79u3QaDSIiYmxxfR6PaKjozFv3jykp6c79WW7RETkQEoNSJZ6m+uvyA8Bbdu2xVdffXXL5fR6PcaPH4/x48ffVl9qKiZLJSIiIqeUkpKCRo0awcPDPo9Ey5YtAQBnzpxxRLeIiIiohuMVIU7EaDQCAFJTUx3ck9rBYDCUSx5Et4/jWfU4plXrTsczJCSE+6OGyc7OtpUBvF5ZLCsrS/i8rKwsu7KBZRMmCgpx429viiLOAmjRSLI5ukiyD6ol2Sg1smSp4t+qrCpxUlRp1kOduJ9WlSTJqSwbJSqZ7NW1RBhWVOIks4qkn9BIEhWqJNkZZf2UsMqWl/VHK17eKknmCBdJO2rJb5Fq8X5RiXOfApLksFaI+6MukTUk5pIrHn+rRtyOVfK6cLmaK4xrJUlC1ZJhU5nE/VFLksnKlockySys4nYUi3h5lVGStFR2eEr2l9ogeR1Jl69cslStJNexIjkMJbsXLlrxOCil4uNNqxP3XyN5HeW5iuNalWS9WeJkqZrCXGFcNp6nTp0SfsYr7qXlPhPuNsVd8t5Cd4wTIU7kypUrAIAPP/zQwT0hIqp75s+fj/BwcUZ7cgyj0QgXl/JfHHU6ne1xkfj4eCxevLhcvFR9rPzCku/JpX4V7ubdoZfEvaqoncqSjs+f4nDDKlpvVamq/oiLpVSay5XKLS/76uR+rnLtVHZ58SsOaICTlWuokiTTelVGVjdEV8n9IuMmmaiQLi8uziNf3kl+Q91Z6WecEEZ9JXGZsWN34JNPPrElCfX19YWrqysM4ZXcMdXE1dUVvr6+ju5GrcOJECfSuXNnvPPOOwgODrad5NHtSU1NxYcffoh33nkHISEhju6O0+N4Vj2OadWqivHkfqh59Ho9zObyV0iYTCbb4yIxMTF49NFHbX+fOHECM2bMwJQpUxAWFlY9na1l+B5VeRyzyuOYVR7HrHLKxsvN7a/S2EFBQVi6dClyc3Md17Hr+Pr6Mt9VNeBEiBPx9fVF7969Hd2NWiUkJIS/8FYhjmfV45hWLY5n7RIQEIDMzMxy8bLbXgIDA4XPCwwMFD4WFhbG46OS+JqqPI5Z5XHMKo9jVjk3TpwHBQVx8qGWY7JUIiIickphYWG4cOECiors7xNPTk62PU5ERER0I06EEBERkVOKjIyExWJBfHy8LWYymZCQkIBWrVrx1zwiIiIS4q0xVCcFBARg1KhRwmoDVHkcz6rHMa1aHM/aqVWrVoiKisK8efOQm5uLhg0bIjExEVeuXMGUKVMq3A6Pj8rjmFUex6zyOGaVxzGrHI5X3aVSFEWWCJmIiIioRjMajVi4cCG2bNmCwsJCNGvWDGPGjEHnzp0d3TUiIiKqoTgRQkRERERERER1BnOEEBEREREREVGdwYkQIiIiIiIiIqozOBFCRERERERERHUGq8ZQnXHixAkkJibi0KFDuHLlCry9vdG6dWuMGTMGjRs3dnT3aoUlS5ZgwYIFaNq0Kb799ltHd8dpnTp1Ct988w2OHTsGk8mEe+65B0888QSGDBni6K45nbS0NCxcuBDHjh1Dfn4+goKC0KtXL8TGxsLV1dXR3aNqZjKZbIlUCwoK0Lx5c4wZMwadOnW65XMzMzPxxRdf4Pfff4fVakWHDh0wadIk3HPPPXeh545zu2O2fft2/Pzzzzh58iRycnJQv359dOnSBSNHjoSXl9dd6r1j3Mlxdr3XX38d+/fvx6BBg/Daa69VU29rhjsds6SkJKxevRr/+9//oNVqERISgjFjxuDBBx+s5p47zp2M2f79+7F06VKcPXsWFosFjRo1wuDBg9GnT5+70HPHKC4uxooVK5CcnIwTJ06goKAAb7/9Nvr161eh5xcUFODrr7/Gjh07YDQa0bJlS4wfPx7h4eHV3HO6W3hFCNUZ33//PbZv344HH3wQr7zyCp544gkcOXIEY8aMwdmzZx3dPaeXkZGBZcuWwc3NzdFdcWr79u3D+PHjkZubi5EjR+KVV15Bly5dkJmZ6eiuOZ309HS89NJLSE5OxqBBgzBp0iS0bt0aixYtwnvvvefo7tFdMH36dKxcuRKPPfYYXnnlFajVarz11ls4evToTZ9XXFyMyZMn4/Dhw3jmmWcwevRopKSkYNKkScjLy7tLvXeM2x2zTz/9FKmpqejduzcmT56Mzp07Y+3atXj55ZdhNBrvUu8d43bH7Hrbt2/H8ePHq7GXNcudjNmiRYvw/vvvo379+pgwYQJeeOEFNG/eHFlZWXeh545zu2O2a9cu/O1vf4PZbMaoUaMwZswY6PV6TJs2DStXrrxLvb/78vLysHjxYqSmpiIsLKxSz7VarZgyZQq2bt2KJ598EuPGjcPVq1cxefJkpKWlVVOP6a5TiOqIo0ePKiaTyS52/vx5pWfPnsr777/voF7VHu+++64yefJkZdKkScpzzz3n6O44pcLCQmXAgAHK1KlTFYvF4ujuOL0lS5YoERERytmzZ+3iH374oRIREaHk5+c7qGd0Nxw/flyJiIhQvv/+e1vMYDAosbGxyrhx42763O+++06JiIhQkpOTbbFz584pkZGRyty5c6utz452J2N28ODBcrFNmzYpERERyoYNG6q8rzXFnYzZ9csPHTpUWbx4sRIREaHMmDGjurpbI9zJmP3xxx9Kt27dlLi4uOruZo1yJ2P22muvKYMGDVKMRqMtZjabldjYWGXUqFHV1mdHMxqNSlZWlqIoinLixAklIiJCSUhIqNBzk5KSlIiICGXbtm222NWrV5V+/fop7733XnV0lxyAV4RQnXH//ffDxcXFLta4cWOEhoYiNTXVQb2qHQ4fPozt27dj0qRJju6KU9u6dStycnIwduxYqNVqlJSUwGq1OrpbTquoqAgA4OfnZxcPCAiAWq2GVsu7Q2uz7du3Q6PRICYmxhbT6/WIjo7G8ePHkZ6eLn3uL7/8gvvuuw8tW7a0xUJCQvDAAw9g27Zt1dpvR7qTMevQoUO5WLdu3QAA586dq/K+1hR3MmZlli9fDkVREBsbW51drTHuZMxWrVoFf39/DBkyBIqioLi4+G502eHuZMyKi4vh5eUFnU5ni2m1Wvj4+ECv11drvx1Jp9MhICDgtp67fft2+Pv7297DAMDX1xdRUVHYtWsXTCZTVXWTHIgTIVSnKYqCq1evwsfHx9FdcVoWiwWzZs1CdHQ0mjdv7ujuOLX9+/fDw8MDWVlZePrpp9GnTx/069cPn332Wa2/tLw6lH0x+/jjj5GSkoL09HQkJSVh/fr1GDx4MG/jquVSUlLQqFEjeHh42MXLJjfOnDkjfJ7VasXZs2dx3333lXusZcuWuHjxYq398nW7YyaTnZ0N4NoXiNrqTscsPT0d3333HcaNG1erv5Re707G7MCBA7jvvvuwevVqxMTEoG/fvhg4cCDWrFlTrX12tDsZs/bt2+PPP//EggULcOHCBVy8eBHffvstTp06heHDh1drv53V6dOn0aJFC6jV9l+VW7ZsCYPBwNtjagn+HEZ12k8//YTMzEyMHj3a0V1xWuvXr0d6ejpmzpzp6K44vQsXLsBisWDq1KmIjo7Giy++iMOHD2PNmjUoLCzEu+++6+guOpWHHnoIL7zwApYtW4bdu3fb4s8++yzGjh3rwJ7R3ZCdnS38NbAsJssnkJ+fD5PJdMvnNmnSpAp7WzPc7pjJfP/999BoNOjevXuV9K8mutMx+/LLL9GiRQv07NmzWvpXE93umBUUFCAvLw9//PEHDh48iFGjRiEoKAibNm3CrFmzoNVqMWDAgGrtu6PcyXE2cuRIXL58GUuXLsWSJUsAAK6urnj//fcRERFRPR12cjk5OWjXrl25eNl4Z2dn88e/WoATIVRnpaamYubMmWjdujX69u3r6O44pby8PCxatAjPPfdcrf7F724pKSmBwWDAgAEDMHnyZABA9+7dYTabER8fj9GjR7PCUSUFBwejXbt26N69O7y9vfHrr79i2bJl8Pf3x+DBgx3dPapGRqOx3O2QAGyXh8uusiqL385znd3tjpnITz/9hI0bN2L48OG1+n3rTsbs4MGD2L59O77++utq619NdLtjVnYlVl5eHt59913b5FFkZCRGjRqFJUuW1NqJkDs5zlxcXNC4cWNERkaiW7dusFgs2LBhAz788EPMmDEDrVu3rrZ+Oyuj0Wh3K1GZ2v4ZUNdwIoTqpOzsbEyZMgUeHh744IMPoNFoHN0lp7RgwQJ4eXnxC2UVKbss+sZfBnv16oX4+HgcP368Vn+hqGpJSUn45JNP8N1336F+/foArk0sKYqCuXPnolevXrwtrhbT6/Uwm83l4mX3dstuQyiL385znd3tjtmNjhw5go8//hidO3eu9Vdf3e6YlZaWYtasWejdu7ddLpq64E5fm1qtFpGRkba4Wq1Gjx49sGjRIqSnpyMoKKjqO+1gd/La/O9//4vk5GQsWLDAdqtHjx498Nxzz2H27NmYO3du9XTaien1emEekNr+GVDXMEcI1TmFhYV46623UFhYiE8//RSBgYGO7pJTSktLw4YNGzBkyBBkZWXh8uXLuHz5MkwmE0pLS3H58mXk5+c7uptOpeySS39/f7t4WbLPgoKCu94nZ7Z27Vq0aNHCNglS5tFHH4XBYEBKSoqDekZ3Q0BAgC1HxfXKYrL3fm9vb+h0utt6rrO73TG73pkzZ/D222+jWbNmeP/992t9UuLbHbPNmzcjLS0NMTExts/Py5cvA7h25cPly5dhMBiqr+MOdKevTW9v73I/YNX2z8nbHTOz2YyNGzeiS5cudvkutFotHnroIZw6dUo4wVLX+fv733S8bzcJK9UsnAihOsVoNOLvf/870tLS8H//938IDQ11dJecVlZWFqxWK2bNmoVhw4bZ/iUnJyMtLQ3Dhg3D4sWLHd1NpxIeHg4AyMzMtIuX3fvL248q5+rVq8KqO6WlpQCuJfql2issLAwXLlywVQ8qk5ycbHtcRK1Wo1mzZjh58mS5x5KTk3HPPffA3d296jtcA9zumJW5ePEi3njjDfj5+eE///lPrR2n693umKWnp6O0tBQTJkyw+wwFrk2SDBs2DL///nv1dt5B7uS12aJFC+Tl5ZX78l7bPydvd8zy8vJgsViEn3cWiwVWq5XV6QRatGiBlJSUcmNz4sQJuLq68urcWoITIVRnWCwW/Pvf/8bx48fx3nvvoU2bNo7uklNr2rQppk2bVu5f06ZNERQUhGnTpiE6OtrR3XQqUVFRAICNGzfaxTdu3AiNRiMsT0lyjRs3RkpKSrns7klJSVCr1Ux0VstFRkbCYrEgPj7eFjOZTEhISECrVq1sl8+np6eXK6HevXt3nDx50m4y5Pz58zh06JDdJfm1zZ2MWXZ2Nv72t79BrVbj008/rbVfSG90u2PWs2dP4WcoADz88MOYNm1arb1l5k6Os6ioKFgsFiQmJtpiRqMRP/30E0JDQ2vt1Vq3O2Z+fn7w9PTEzp077SaPiouLsXv3bjRp0qTO3+aRlZWF1NRU248kwLXPgJycHOzYscMWy83NxbZt2/DII48I84eQ86nd1ysSXefLL7/E7t278cgjj6CgoABbtmyxe7x3794O6plz8vX1FWYbX7VqFQAwE/ltuPfee9G/f38kJCTAYrGgffv2OHz4MLZt24Znnnmm1p7gVZfY2Fjs3bsXEydOxJNPPglvb2/s2bMHe/fuxeOPP87xrOVatWqFqKgozJs3D7m5uWjYsCESExNx5coVTJkyxbbctGnTcPjwYbsT3kGDBuHHH3/ElClTEBsbC41Gg5UrV8LPzw+xsbGO2Jy74k7G7M0338SlS5cwfPhwHDt2DMeOHbM95ufnh06dOt3VbblbbnfMQkJCEBISImwzODi4Vn+G3slxNmDAAGzcuBEzZ85EWloagoKCsHnzZqSnp2P69OmO2Jy74nbHTKPRIDY2FgsWLMC4cePQp08fWK1WbNy4EZmZmXjnnXcctUl3RVnVvbJbWnbv3o2MjAwAwODBg+Hp6Yl58+YhMTERcXFxCA4OBnBt4mn16tWYPn06zp07Bx8fH6xbtw5Wq5WVJmsRToRQnVFWY33Pnj3Ys2dPucc5EUI1wRtvvGErB7hz504EBQVh4sSJeOqppxzdNafTvn17fPnll/jmm2+wdu1a5OfnIzg4GGPHjsXw4cMd3T26C6ZOnWr7olRYWIhmzZrh448/Rvv27W/6PHd3d8yaNQtffPEFlixZAqvVig4dOmDixIm1/kqH2x2zss/Y5cuXl3usffv2tXYiBLj9MavLbnfM9Ho9/vvf/2LOnDlISEiAwWBAWFiYLTlvbXa7Y/bcc88hODgYq1evxuLFi2E2m9G8eXO8//77tfoKNwCIi4vDlStXbH/v2LHDNknUu3dveHp6Cp+n0Wjwn//8B1999RXWrFkDo9GI++67D2+//XatLJ1eV6kURVEc3QkiIiIiIiIioruBOUKIiIiIiIiIqM7gRAgRERERERER1RmcCCEiIiIiIiKiOoMTIURERERERERUZ3AihIiIiIiIiIjqDE6EEBEREREREVGdwYkQIiIiIiIiIqozOBFCRERERERERHUGJ0KIiMipFBcXY9GiRXjjjTcQHR2Nbt26YdOmTXfc7v79+zF58mT069cPffr0wZgxY5CUlFQFPSYikvvoo4/QrVs3XL582dFdqZRFixahW7duOHTokKO7QkRUaVpHd4Coqrzyyis4fPgwduzY4eiuVJlu3bqhffv2mD17tqO7Qk4uKysLI0aMwLPPPotnn3220s+fOHEizGYz5s6dWw29q5y8vDwsXrwYQUFBCAsLq5KT8ISEBHz88cfo2LEjxo4dC41Gg/PnzyMjI6MKekxEzuzy5csYNmyYXUyr1cLPzw/t2rXD008/jebNmzuod0REdDs4EUI1Urdu3Sq1fG2a/KgNDh06hMmTJwMAwsPDMX/+fOFyv/32G9566y0AKDfhs2jRIixevPim6xk1ahT69etX7gT1Zho0aICVK1dWePmbuZsTVZs2bcL06dPx9ttvo1+/fpV+/vz586HX6zF48ODbWv/zzz+P1157DUlJSejZs+dttVFVAgICsHbtWgQEBODkyZN48cUX76i9y5cvY+bMmXjyySdtxy0R0Y0aNmyIxx57DABQUlKC5ORkbN26FTt27MDMmTNx//33O7iHRERUUZwIoRpp1KhR5WKrV69GYWGh8DEA+Mc//gGDwVC9HbvLli5dCldXV0d347ZpNBqcOnUK//vf/4S/lm3cuBEajQYWi0XaRvfu3dG0aVPhYx06dICnp6fwmFi8eDE8PT0xZMgQu7inp2flNqIWSEtLw+bNm/Hss8/C3d39ttp48MEHce+992LRokXo0aMHVCpVFfey4nQ6HQICAiq07G+//YZly5bh9OnTUKlUaNeuHV5++WW7Y2r9+vWwWq144YUXAFy79cbNzc2h20hENU/Dhg0xevRou9j8+fOxdOlSzJ8/n1dvEhE5EU6EUI1044kGACQmJqKwsFD4GAAEBQVVd7fuupCQEEd34Y507twZe/fuxcaNG/HKK6/YPZabm4s9e/bg4Ycfxu7du6VtREZG3vIKBNExUTYRIjte6pINGzbAarWid+/ed9RO79698cUXX+DgwYN48MEHq6h31Wfz5s346KOP0LlzZ7z00kswGo1Yt24dJkyYgIULFyI4OBgAcODAATRp0gS//fYb5syZg8zMTHh5eWHQoEEYPXo01Gqm0yIiscGDB2Pp0qU4efIkgL9uo+nbty+mTp1abvnKXEn4yy+/YM2aNUhNTUVxcTG8vLwQGhqKAQMGIDIy0m7Z//3vf1i6dCkOHz6M/Px8BAQE4NFHH8Xzzz8PHx+fCm3LU089BQBYuHAhvv76a+zevRuFhYUICQnB8OHD0atXL+lzf/rpJyxfvhznz5+Hp6cnoqKiMG7cOOj1etsyZrMZ8fHx2LNnD86dO4fc3Fx4eHjg/vvvx8iRI3HvvffatWm1WpGQkID4+HhcvHgRRqMRPj4+aNGiBYYNG4YOHTrYLX/48GGsWLECx48fR3FxMerXr48ePXrg2WefdeoflYioenAihGoNUY6Q628n8Pb2xpIlS3D27Fl4eXmhf//+ti85mzZtwsqVK5GWlgZfX18MHjwYw4cPL7cORVGQkJCAjRs34uzZs7BYLAgNDcXAgQMRHR1d4b5W9ORGdML00UcfITExEStWrMCePXuwbt06XL58Gf7+/ujfvz9Gjhwp/OK2c+dOrF27FqdPn4bBYIC/vz/atm2LESNGoFmzZrblzGYzfvjhB2zZsgVpaWlQqVRo0aIFYmNj0bVr1wpvIwDUq1cPHTt2xE8//YSXX34ZLi4utse2bNkCs9mM/v3733QixBEOHjyI5cuX48yZM8jPz4enpycaN26M3r17IyYmxu7Wn8OHD9vdylV260phYSHWr1+P3377DRcuXEBeXh58fHzQsWNHjBo1Cg0bNrRbZ9mtQLNmzcKVK1ewevVqnD9/Hi1btkSDBg2QmJgIAJg+fTqmT59ue96tbguzWq1ITExEixYt0Lhx43KPnzp1CsuWLcOJEydw9epVuLu7Izg4GF27dsVzzz1nt2xkZCS++OILbNq0qcZPhBQXF2PWrFl4/PHH8eabb9riffv2xTPPPINly5bZ4hcuXIBarcb//d//Yfjw4WjevDl27NiBJUuWwGKx4KWXXnLUZhCRk6jqK8jWrVuHGTNmICAgABEREfDx8UFOTg5OnDiBnTt32p0r7Nq1C//+97+hUqnQtWtX1K9fH+fOncMPP/yAffv2Ye7cufDy8qrQes1mM15//XWUlJSgd+/eMBgM2LZtG95//33k5eUJb68sW8+jjz6KBx54AHv37sWaNWuQl5eHf/3rX7bl8vPz8fnnn6Nt27Z4+OGH4eXlhcuXL2P37t3Yu3cvPv/8c7Rs2dK2/Ny5c7F8+XI0bNgQvXr1gru7O7KysnD06FHs37/fbiJk3bp1mDlzJjw9PfHII4/Az88Pp06dwtKlS3Ho0CHMmjXL7hyEiIgTIVQn7NixA7///jsiIiJw//3349dff8WSJUugKAo8PT2xZMkSdO3aFe3bt8eOHTswZ84c+Pn5oW/fvrY2FEXBBx98gK1bt6JRo0bo1asXXFxc8Pvvv+Pjjz/GuXPnMGHChFv2pTInNzczZ84cHD58GI888gg6deqEXbt24ZtvvkFpaSnGjh1rt+wXX3yBlStXwtvbG127doWfnx8yMjKwf/9+3HvvvbaJEJPJhDfffBOHDh1CixYtEB0djdLSUvz666+YOnUqJk+eXOkcE/3798e+ffuwe/duu21LSEhA06ZN0apVq0q1V91+/fVX/P3vf4enpye6du2KgIAA5Obm4syZM9iyZQtiYmLQoEEDjBo1CosXL0aDBg3sjpOwsDAAQGpqKhYtWoQOHTogIiICbm5uSE1NxdatW/Hrr79iwYIFaNCgQbn1L1++HIcOHULXrl3RqVMnaDQa3HfffSgsLMSuXbvQtWtX2zoq4uzZs8jNzUX37t3LPZaSkoIJEyZArVaja9euCAoKQmFhIc6dO4cNGzaUmwipX78+6tevjwMHDlR4/Y6yf/9+FBYWomfPnsjNzbXF1Wo1WrZsiYMHD9piJSUlsFqteOmll/D0008DuDbpU1BQgNWrV9/RLUVEVLutW7cOAHDfffdVabs//vgjXFxcsGjRIvj5+dk9lpeXZ/f/06ZNg4+PD7788ku7z5WkpCS89957WLhwIV599dUKrTc7OxuNGjXCV199ZZs4eOaZZ/DCCy9gzpw56NatG+rVq2f3nAMHDmD+/Plo0qQJAGDs2LEYPXo0fv75Z4wfPx6BgYEAAC8vL6xatarc8//880+MGzcO8+fPx4wZM2zxjRs3IjAwEN988025Kzry8/Nt/3/u3DnMmjULzZs3x8yZM+2ugFm2bBnmzZuHNWvWIDY2tkJjQER1AydCqE7Yu3cvvvzyS9svDaNHj8bw4cOxatUquLu7Y+HChbjnnnsAALGxsRgxYgRWrFhh9wX3xx9/xNatW9G/f3+88cYb0GqvvXzMZjP++c9/Ii4uDr169UJ4ePhN+1LRk5tbOX36NL755hvbCcbIkSMxYsQIrFmzBqNGjbKdwOzZswcrV65Es2bNMGvWLLsThNLSUruTiW+//RaHDh3CyJEjMXr0aNsvXMXFxXj11Vfx1VdfoXv37rZ1VkTZZE9CQoJtIuTEiRM4e/ZshSaOfvnlF6SmpgofGzBgQIVzRVTUxo0boSgKZs2aVW7CoWz/BAcHY/To0baJENHtNyEhIVi7di28vb3t4gcPHsTrr7+OJUuW2BLFXu/IkSP4+uuvy+VUKZsIiYiIqFSy1GPHjgGA8LjcvHkzTCYTpk2bhoiICOG23ig8PBw7d+7EpUuXbK+ZmujChQsAID359/DwsP2/Xq9HSUlJucu+e/bsib179+L06dNo3759dXWViJzExYsXsWjRIgCAwWBAcnIyjh49Cp1OV+4HiKqg1Wpt5xrXu/5zfPPmzSgqKsKrr75abnK9Z8+eWL58OZKSkio8EQIAL774ot3VE/Xr18eQIUOwcOFCJCUllZtQGDJkiG0SBLj2ntqzZ08sXrwYp06dsp0z6HS6cpMgANC0aVN06NABv//+O0pLS+22WavVCq9yvf6zdf369bBYLJg8eXK524BGjBiBlStXCvtNRHUbJ0KoTujdu7fd5Zbu7u7o0qULEhISMGLECLsvdEFBQbj//vtx5MgRuw/kH374AW5ubnjttdfsPqRdXFwwduxY7NmzB1u3br3lRAhQsZObWxk5cqTdhISvry+6du2KxMREnD9/3vZFeu3atQCu3Tp0Y/tarRb+/v4Art1CsW7dOlsyuOsv83V3d8fIkSPx9ttvY/v27ZW6KsTFxQW9evXCunXrkJWVhcDAQCQkJECr1aJPnz43TZQKANu3b8f27duFj0VERFT5REiZ6+9rLlOZ/SNLyvrAAw8gNDQU+/fvFz7+xBNPVGkZxszMTAAoN+l2vcpsa9nxkpmZWaMnQqxWKwDgnXfesfX5ehqNxvb/AQEBuHDhQrkxKvu7oKCgGntKRM7i4sWLtmpmZeVze/XqVS3lc3v27Ik5c+Zg5MiR6NWrFzp06IC2bdvaTeICwPHjxwEAycnJuHjxYrl2TCYT8vLykJubC19f31uuV6PRoHXr1uXi7dq1A3DtSsIb3ZjbA7g2eQJcm8S/XkpKCpYvX46jR48iJycHpaWldo/n5ubazm169OiBdevWYeTIkejZsyc6dOiANm3alPvMSk5OBgDs27dPeMWiVqvF+fPnpdtMRHUTJ0KoThDdSlD2BVr2mMViwdWrV1GvXj0YDAacPXsWgYGB+O6778otX/ZlviIftBU9ubkV0YRL2S8t1594nDx5Ejqd7pa/aJ8/fx4FBQW2y1BvVHZ7we2cTERHR2PNmjVITEzE0KFDkZSUhC5dusDX1xfZ2dk3fe677757V8u19uzZEzt27MC4cePQq1cvPPjgg2jbtm2FTiBvdOjQIaxatQrJycnIy8uzm/SR3at8/YRdVSi7skM0MdOjRw+sXr0a77zzDnr06IGOHTuiXbt2wl/sypT9CleZq5ccoSwHi6+vLzp27HjTZcPDw3HhwgVkZWXZTe5kZWXZ2iAi6ty5Mz799NO7sq7Y2Fh4e3tj/fr1iIuLw4oVK6DRaNClSxdMnDjR9l5VNlFb9qOHTEWr6vn4+AivwCibGC4qKir3mOj8pWyyuWxSGrh2heJrr70GAOjYsSMaNWpku+1w165dOHPmDMxms235V155BcHBwdi0aROWLFmCJUuWQKfTISoqChMmTLC9N5dd2bp06dIKbSMREcCJEKojbvYhfbPHyn6pKCgogKIoyMzMtP0aJFKRE42KntzciihngejEo7CwEPXq1btl5Yuyk6k///wTf/75p3S52ylRHBYWhnvvvRcJCQmoX78+CgsLK5Vc9m6KioqCVqvFypUrER8fj7Vr10KlUqFDhw6YMGECWrRoUaF2tm3bhn//+99wc3ND586d0aBBA9s9zomJibhy5YrweTe7cuN2lP1yZjKZyj3WqlUrzJo1C8uWLcPWrVuRkJAA4Nq97uPGjcMDDzxQ7jlGoxEAanwG/s6dO8PDwwPLli3DAw88UO4KrOt/He3RoweSkpKwceNG2+XtVqsVmzZtgre3d4Wu8iIiAmD7rBVd7Xjj1RE3o1KpEB0djejoaOTl5eHo0aPYunUrtm3bhgsXLuCbb76BRqOxnQssXrzYLvH57crLy4PVai13znD16lUA4nOmilq6dClMJhO++OILtG3b1u6xsqs6rqfVajF8+HAMHz4cWVlZOHz4MBISErB582bk5OTgs88+s+tTYmIi8zkRUYVxIoSoAso+ZMPDwzF//vw7aquiJzdVxdPTEzk5OcITm+uVnTx0794dH3zwQZWtv0x0dDRmzpyJuXPnIjAwEA899FCVr6OqREREICIiAsXFxTh27Bh27NiBjRs34s0338TSpUsrlH3/m2++gU6nw/z588tVa/n555+lz6vqygM3/mJ2o3bt2qFdu3YwGo1ITk7G7t27sW7dOkyZMgXffvttuYm5snYqc5tQdVizZg0KCwttVxTt3r0bGRkZAK6Vs/T09MTrr7+OadOm4YUXXkDPnj3h6+uL9PR0/Pbbb2jTpo3tl8muXbviwQcfxLJly5Cbm4uwsDDs3LkTR48exRtvvAGdTuew7SQi51J29V3ZFWXXE91WUhE+Pj62z6W8vDwcPHgQFy9eRJMmTdCqVSvs2LEDx48fr5KJEIvFguPHj+P++++3ix85cgQAKvxjgMilS5fg7e1dbhLEYDDg9OnTN31uYGAgevXqhR49euDpp5/GgQMHYDQaodfr0apVK5w+fRrHjx9Hp06dbrt/RFS33PwnYiICcG2SICQkBKmpqVWaL6Ds5Oa9997DAw88gHPnzgnv8b0TLVu2hMlkwuHDh2+6XEhICDw8PHDq1Kly9+xWhV69ekGn0yEzMxN9+vSp0sme6uLu7o6HHnoIb775Jvr27Wur7lNGrVbbXX1zvUuXLiEkJKTcJEhWVhYuXbpU6b7c7FfGmyk7MU5LS7vpcnq9Hh06dMDEiRPx7LPPwmg04vfffy+3XFpaGrRaLUJCQirVj6oWFxeHhQsX2io27NixAwsXLsTChQttr9HHHnsMM2fORL169bBixQrMnj0bP//8M8LCwtC/f39bWyqVCtOmTcPgwYOxe/dufPHFF8jJycE777yDmJgYR2weETkpDw8PNGnSBEePHrUlbQauJR2fN29ehds5dOgQFEWxi5WWltre38omaPv37w93d3fMnz9feDWnwWCw5RGpqHnz5tndopKRkYHVq1dDp9Pd0a2qQUFBKCgosOunxWLBV199ZVfdC7h2FWNZsu/rGQwGlJSUQKvV2n44GDhwIDQaDWbNmoX09PRyzykoKLjlRAsR1T28IoSogoYMGYLPPvsMn3zyCd5++224ubnZPX7p0iWoVCoEBwfftJ1Dhw6hffv2dr/8i05uqsqgQYPw22+/Yfbs2Zg9e7ZdpvWyqjH+/v7QarUYMGAAvv/+e3z55ZeYMGFCudsJzp49Cz8/v9u6fcPLywuffvopCgoK0KZNmzverupy+PBh3H///eUmaspO0q7fP15eXrarEG4UFBSEixcvIicnx5as02g0YsaMGbc10VS232Trk2nXrh3UarXwsuM//vgDLVq0KJd4LicnB0D5Y9FsNiMlJQXh4eEOvzVm5cqVFVquQ4cO6NChwy2Xc3d3xyuvvIJXXnnlTrtGRHXcsGHD8Mknn+Dll19GVFQUrFYr9u7dW6kSu//4xz/g7u6O1q1bIygoCKWlpdi/fz/OnTuHyMhIW4UYX19fvPvuu/jXv/6F0aNHo3PnzmjSpAnMZjOuXLmCw4cPo02bNhXObRIQEACDwYDnn38ejzzyCAwGA7Zt24a8vDxMnjz5pjmkbmXw4MH4/fffMWHCBERFRUGn0+Hw4cPIyspChw4dcOjQIduyRqMREyZMQOPGjREeHo769eujpKQEv/76K3JychAbG2v7jGrWrBlef/11zJgxA08//TQefvhhNGzYEMXFxbh06RKOHDmCvn374o033rjtvhNR7cOJEKIKiomJwfHjx5GYmIhjx46hY8eOCAgIwNWrV3H+/HkkJyfjX//61y0nQip6clNVunTpgtjYWKxYsQIjRoxAREQE/Pz8kJmZiYMHD2LYsGF46qmnAFwrK3z69GmsWbMGv/32G9q1awdfX19kZWXh7NmzOHPmDObMmXPbeSxupwTpzcrnhoSEVHki1dmzZyMrKwv333+/bV8eO3YMJ06cQOvWre0uF37ggQewbds2TJ06FS1atIBarUbXrl3RvHlzPPnkk5g1axZeeOEFREZGwmKx2K6wCAsLw5kzZyrVr9atW0Ov12P16tUoKCiw3fIycuTImz7Py8sL7dq1w7Fjx2yXEZf5/vvvcejQIbRr1w7BwcHQ6XQ4ffo0Dhw4gHvuuQfdunWza+vo0aMwmUzlSu0SEdFfnnjiCZSWlmLVqlX48ccfERAQgH79+uG5555Djx49KtTGiy++iL179+LEiRPYvXs33NzccM899+Bvf/tbuRxbXbp0wcKFC7F8+XIcOHAA+/fvh6urK+rVq4d+/fqhd+/eFe67i4sLZsyYga+//hpbtmxBYWEhmjRpgsmTJ5crMV5ZjzzyCN5//30sW7YMP/30E/R6PR544AFMmzatXP41Nzc3jBs3DgcOHMCRI0eQm5sLLy8vNG7cGC+++GK5z/4nnngCYWFhWLlyJY4cOYI9e/bAw8MDQUFBGDp0KPr27XtHfSei2ocTIUQVpFKpMHXqVDz88MP48ccfsWfPHpSUlMDPzw+NGjXC+PHj8eCDD96yncqc3FSV8ePHo3Xr1vjhhx+wfft2mEwm+Pv744EHHrC7n1an0+GTTz7Bxo0bsXnzZmzfvh1msxl+fn4IDQ3FgAEDquQe5Mq4Wfncrl27VvlEyNNPP40dO3bg9OnT+P3336HVatGgQQOMGzfOdvltmbKrBw4ePIg9e/bAarWifv36tokQrVaLH374ARs2bICnpye6dOmCl156Cf/6178q3S9vb2+8//77+Oabb/Djjz/akpbeaiIEAAYMGIB///vf2L17t91J+MCBA+Hh4YETJ07g8OHDUBQFQUFBePbZZzF06NBySfG2bNkCFxcXu9tKiIhqu+DgYOzYsaNSzxk0aBAGDRpULi5qZ+rUqZg6dapdbODAgRg4cGCF19ekSRNMmTKlUn2U8fLywptvvok333zzpsuNHj0ao0ePFj7Wr18/9OvXr1w8MjISkZGR5eI3joFWq8WIESMwYsSICve7ZcuWePfddyu8PBHVbSrlxhsQiYioViktLcXTTz+Nhg0bYsaMGbfVRkFBAYYOHYrIyEj8/e9/r+IeEhGRo5VdHVrRWw+JiJwZk6USEdVyWq0WL774Ivbv3y9MPlcRcXFxsFqteOGFF6q4d0REREREdxdvjSEiqgN69uyJjIwMaRndW/H29sbUqVPvKFEeEREREVFNwFtjiIiIiIiIiKjO4K0xRERERERERFRncCKEiIiIiIiIiOoMToQQERERERERUZ3BiRAiIiIiIiIiqjM4EUJEREREREREdQYnQoiIiIiIiIiozuBECBERERERERHVGZwIISIiIiIiIqI6gxMhRERERERERFRn/D/uLPPMRTahMwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy_pulsar import PulsarAnalyzer\n", + "\n", + "local_fits = local_gz\n", + "cfg_path = \"config.yaml\"\n", + "an = PulsarAnalyzer.from_yaml(cfg_path)\n", + "an.cfg.local_fits = str(local_fits) # point to the fetched file\n", + "\n", + "fig = an.run(show=True)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cosipy", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}