diff --git a/cosipy/ts_map/preliminary/2023.07.19_TSmap_v2.pdf b/cosipy/ts_map/preliminary/2023.07.19_TSmap_v2.pdf
new file mode 100644
index 00000000..b23f78f5
Binary files /dev/null and b/cosipy/ts_map/preliminary/2023.07.19_TSmap_v2.pdf differ
diff --git a/cosipy/ts_map/preliminary/TSmap_3MLfreeNormalization_mhealpy_miniDC2.ipynb b/cosipy/ts_map/preliminary/TSmap_3MLfreeNormalization_mhealpy_miniDC2.ipynb
new file mode 100644
index 00000000..0c20f301
--- /dev/null
+++ b/cosipy/ts_map/preliminary/TSmap_3MLfreeNormalization_mhealpy_miniDC2.ipynb
@@ -0,0 +1,3968 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7773e6e7",
+ "metadata": {},
+ "source": [
+ "### This notebook documents initial experiments on how to accelerate the TS grid method using HealpixMap.\n",
+ "\n",
+ "The following code was developed in July 2023 and organized in March 2024. If anyone in the future is confused or encounters errors when trying to merge the below code into the TSmap class, please contact ak119ka@gmail.com (Chien-You Jason Hunag) and perhaps I can explain my logic to you."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "9c09befd",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
18:17:07 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
+ "available \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m18:17:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=763327;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=211647;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it functions.py:69\n",
+ "will not be available. \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=323048;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=128371;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n",
+ " warnings.warn(msg, NumbaDeprecationWarning)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:36\n",
+ "available \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=990433;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=22412;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=442274;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=314868;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=991103;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=880065;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=912590;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=87861;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964143;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=162221;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING We have set the min_value of F to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=70473;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=193152;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226069;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=784824;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n",
+ " warnings.warn(msg, NumbaDeprecationWarning)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "require the C/C++ interface (currently HAWC) \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=41947;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=477511;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=296584;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=478796;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=503926;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142125;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
18:17:51 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m18:17:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=345105;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=886787;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
18:17:53 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:17:55 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:17:56 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:17:58 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:17:59 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:01 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:02 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:04 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:05 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:06 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:07 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:09 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m18:18:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=119945;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=386236;file:///Users/jasonpbu/miniconda3/envs/env_cosipy_3_miniCD2/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 16.2 s, sys: 950 ms, total: 17.1 s\n",
+ "Wall time: 17.3 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "\n",
+ "# Fill up zero-order HealpixMap\n",
+ "fill_empty_value(m, range(m.npix))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "1b533e6e",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG4CAYAAAAjaRGjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAACu5UlEQVR4nOzdd1hUZ8LG4d80eu+CiIoIiIqKomBXsPeWZqpZU3fTd7PJJpvt32azm957sknsvYuCSrchKoKIoqiA9A7DlO8PItGsUYGZOTPDe1+XVwww5zxJDDxz3ibT6/V6BEEQBEEQBIsmlzqAIAiCIAiC0HWi1AmCIAiCIFgBUeoEQRAEQRCsgCh1giAIgiAIVkCUOkEQBEEQBCsgSp0gCIIgCIIVEKVOEARBEATBCohSJwiCIAiCYAVEqRMEQRAEQbACotQJgiAIgiBYAVHqBEEQBEEQrIAodYIgCIIgCFZAKXUAQRC6h9bWVhobG2loaKCpqYnGxsb2X83NzajValpaWlCr1f/z+2s/1trailarRafTXffXq790Ot11HwOQy+XIZLKb/pLL5SgUCpRKJSqVCqVSiY2NTfvfX/119e9tbGywtbXF3t4eOzs77OzssLe3b//7G31cJpNJ/F9BEARrJtPr9XqpQwiCYP70ej0NDQ3U1tZSV1dHbW3tL/6+rq6OhoaG6wpca2trh+95tTxd+8vW1hYbGxtUKhW2trbY2tri5OSEvb09jo6O2Nvbo1AogLYyB6BUKjl8+DBXv93JZDL0ej11dXXU19dTV1dHXV0dzc3NhvsX9jNyuRwnJ6df/OXs7Nz+excXF1xdXXFzc8PNzU0UQkEQbosodYLQjWm1WmpqaqiqqqKysvJ//nrt72tqatqffF1LLpdjZ2fXXkQcHBxQqVQoFIr2J19KpbK9aCmVSuzs7K4rZjY2NpzLLQa9HJlOj6ujI/6BPZDL5GjUWtTqVlqb2361NLXQqtagbtagblHTXN9MbVU9NeU1VF2poa6yAZ1OB3pA31aEptw9kV0/7P0ptKwtt7O7E+4+rrh6ueLi7oSdox0yedvn9eiQyWVtv7/ap2R6mhobyT1+mitXysHFHmRaRsWF0dzcTHNzc/uTx2t/dfXbrI2NTXvB+/kvd3d3vLy88PLywtPTE1dXV1EABaGbEqVOEKyUWq2mvLycsrKy9l9Xrly57u8rKyvbCtA17OzscHNzw9PTE3t7+/ZhR1tbW5RKJXK5HAcHh/ZhxfO5pdRU1lNWXEV5cQ1N9RpkOgUynQL0V/8q/+nvaSsccp2e8H7u+PXxue7+er2e8stVnD54hvrqRoP8u5hy/3h2fb3PINdycnOg/4h+ePm7t5enq99Gi89dISejAAL82r9ejx5kOvQyLcg06OU//VUv08A1fx07M4K6ujpqamqorq6mpqYGtVrdoXwqlQpPT088PT2vK3uenp74+Pjg6+uLj48PNjY2Bvn3IQiC+RClThAsVEtLC8XFxdf9unz5MqWlpZSVlVFVVXXd1zs4OODj49P+NO3q0KVCocDBwQF7e3sqLtdTW9VA0bkrlJyvQN+qQKZTIdMq2/6qUyLTd3x9lRI9kYN74Obt0l6AdBodpzLPcCm/2CD/Pm7GkKXuZgJDexAa3a992BegpryOI3tPoOvhd5NX3lh7IZS3opdrQN7a9nuZpv1jwyf2paKigvLycqqrq2/72p6envj5+eHr64uvry9+fn7tf+/n54eDg0OH8wqCIC1R6gTBTOn1eqqqqigqKuLixYvXFbfi4mIqKyvbv1alUuHn54eHh8d1hU2lUuHs7IyzszPH0s5QcPIitRXNyDQqZFqbtl86ZfvTM0Px9HQkMtK//UmWVqvl6J4TVFyuusUrjcNUpe5GPP3dGTp5YPvws16v50hiDlVKe4PfS8+PBVChvuavauIXR7Y/qS0tLaWlpeWW13J1dSUgIKD9V8+ePdt/L4Z4BcE8iVInCBJrbGzk4sWL7eXtwoUL7b+vr68H2uZ/+fj44OPjc92KSltbW9zc3CjMLSX3WCHVJY3INLbItDbItSowQmG7ERcXO4YNC2gvLtVltRzcnvU/Q7tSkbLU/ZxcLmfE9CF4+LoAoNXqydyVTZ29s0nu3/b0T4Ne0YJOoUavaEGvaCFmWgglJSWUlpZSW1t702s4OTldV/ICAwMJCgqiV69e4gmfIEhIlDpBMJG6ujrOnTt33a+LFy9SVlbW/jVeXl706NEDBweH9nlrbm5uODs7s3N1KpfPVSHX2CLT2CLX2oJOYZLS9j/UrfTv40bQgIC2f7bqRtI3HUKjMY8S93PmVOp+TqmUM2rOcJzd2srQ+ZxLnDp8Dnmgv2SZ9DItekUzOkULemUz0+6O5OLFi1y6dIkrV67c9LW+vr707t2boKAggoKC2n/v4uJiovSC0H2JUicIBtbY2EhhYeH/FLjy8nKgbag0KCgINzc3nJycsLW1xdHRETc3N/ZvOcL502XINXbIW+3anrqZyx7h6lZGxvTGxdMZ9DryDp3lbPYFqVPdFnMudT/Xd3AvQof3BZmcmvJa0rZlSVrwfk6PDr2yGZ2iGb2imelLh1BUVERhYeH/zOO8loeHB0FBQfTt25fg4GCCg4Pp27cvtra2JkwvCNZNlDpB6CS9Xk9FRQX5+fmcPn2a/Px88vPzKS5um/ivUqkIDAxsL2/29va4urpSUljNsfR8mqr0beVNY4dMZ6b7gKtbiR4VhKtX21OWzO1HJZsX1xWWVOqu5envTvS0SABqKurNruD9nF7Wik7ZhF7ZhE7ZxLCJvSgsLPzFp3tyuZyePXvSr18/+vXrR3BwMP369cPLy0vM2ROEThClThBug06n4/Lly+3F7eqvq4sVPDw8CAwMxNnZGUdHR5ydnSm5UE122mmaa2TIW+3bnrzpzbS8Xevq0GpEIAAZW49QWVItbaYustRSdy0PPzdGzhwGwPmTRZIP0XaEXqZFp/ix7KkaiRznz5kzZ6ipqbnh17u6uhIcHExoaChhYWGEhobSo0cPUfQE4RZEqROEGygvLycnJ4dTp06Rk5PD6dOnaWhoQC6XExAQgLe3d/spAB4eHqQlnODCqTLkagfkrfbIdCqp/xE6zM3FlujYvgCcPlTAmaOF0gYyIGsoddfqN7Q3IcP6IpPLSNt2lFpbJ6kjdZgePchb0Skb0akaGD8/lIKCAi5cuHDDTa5dXV0JDQ29ruh5e3uLoicI1xClTuj2GhsbycvLay9wp06dal+8EBgYiK+vb/vebu7u7mz9Ppm6KxrkrT8WOL1C4n+CLlC3MiSyBz5B3tRW1JG8LlPqREZhbaXuWuMWjsTJw4mSwjKOJuVYzNO7X9I2Z68JnaqB6fcNIi8vjzNnzqDRaP7naz08PAgLCyM8PJyBAwcSHh4uVt8K3ZoodUK3otfrKS4uJjs7m+PHj3Py5EkKCwvR6XTtQ6iurq44OTnh4eHB7rWZVF1qQaF2RNZqZz6LFrrIRq5n/ORQZAoFx5JyTLIBsJSsudRdFRDSg8gJA9BrtexdnYnG20vqSAajR9f+RC/+rnDy8vIoLCz8nyd6CoWC4OBgBg4c2P7L19dXPM0Tug1R6gSrptVqOXv2LNnZ2e1Frry8HKVSSd++ffH09MTFxQU3NzcOH8jjfE45CrUjcrWDZT+B+wV+PVwYHBmARq1h73cHzHYLEkPrDqXuKqVSzoS7RmNjZ0PWvhxKNZY3FeB26NGiUzWiU9Uzdl4wJ06cuOGCDC8vr/aCN2jQIEJCQlAqLWBuqyB0gih1glVRq9WcOnWqvcSdOHGChoYGHB0dCQ4Oxs3Nrf3g+Q1f7EdTZ4O8xRG5zrrPwewX6ku/vp6UXSwnY1uW1HFMrjuVumuNnDEE755e5GUVcra8Y2fIWiKdvAWdTT1zHo7kxIkT5Ofn/8/TPAcHBwYPHszQoUMZMmSIKHmCVRGlTrBoWq2W/Px8jhw5wuHDh8nOzqalpQUvLy969eqFu7s7Tk5OFJ4qIedgEYoWJ+RqR6t8Cncjg4YFEeDryLkTRZxMzZM6jmS6a6m7atCYMIIG9OR8XjE5RXVSxzGZtqd5Dehs6hgxNZDs7Oz2U1quEiVPsCai1AkWRa/Xc/78eQ4fPsyRI0fIysqirq4ODw8P+vbti7u7e9tQ6v5cLuZWI29xQt7qIM2pCxKKGNKLwABncjPyrWoVa2d191J3Vb+hvRkwqj/nci51q3J3lR49emUjWptaRs4IJCsr6xdL3vDhw4mOjiYoKEjMyRMshih1gtmrrq4mMzOTzMxMDh8+TEVFBS4uLvTp0wcvLy9cXV3JzjjDhRNVKFpcflzQ0D2/CYdFBNC7txunDxZw+vBZqeOYDVHqrtc/qi/9RwRTcLyI08WNUseRzO2UPG9vb0aMGMGIESMYPnw4rq6uEqUVhFsTpU4wO1qtllOnTpGRkUFGRgZ5eXkolUr69++Pp6cn7u7u5B+/SP6REhQtzm3Dqd20xF3VM9CDQZE9KMg6T07aaanjmB1R6m4sIjaU4Mggju7L4XKzdazs7oqfSl4NkZN8yM7ORq3+aS6iTCYjNDS0veQNHDhQDNUKZkWUOsEsVFZWkpGRQWZmJgcPHqS2tpaAgAB69uyJh4cHzs7ObPwiGVmjE/IWJ6vZWqSrnB1UjJ0cRmlhabdcAHG7RKm7uZEzhuAb5MO+dZnUO7pIHcds6NGhs6ll3mORHDx4kLNnr3/67eDgQHR0NLGxsYwaNQo3NzdpggrCj0SpEySh1+spKCggOTmZlJQU8vLysLGxITQ0FC8vL9zc3EjecYyaizoUzS5Wvzq1w9StTJwajl6nJ+G/B6ROY/ZEqbs9cfeMRSaXkfB9CvKgAKnjmB2dXI3OpoZxi/pw6NAhqqur2z8nk8mIiIggNjaW2NhY+vTpI+biCSYnSp1gMhqNhuzsbJKTk0lOTqakpARfX1969+6Nh4cHjo6ObPw8pa3EqZ26/ZDqLxk0LIjAABf2/pBCfVX9rV8giFLXAU7uTky6azSFORc5eaH7Laa4XXr06JQN3PlcFKmpqeTn51/3eT8/P0aPHk1MTAxDhgzBxka8MRWMT5Q6wagaGxvJzMwkJSWFtLQ0amtr6du3L/7+/nh6enL4QC5XzrSgbHK1yPNSTcnV2Zaxk8PITT9N7sECqeNYFFHqOi5sRDBho/qTuCpNDMneBp28Ba1tNVFTfTly5Mh1c/EcHR2JjY1l/PjxjBw5EltbWwmTCtZMlDrB4BoaGkhJSSExMZGDBw+i0+no379/+xmqe9cfpKXCDkWzS7fZL65L1K2MnRiCQqEg4Tsx1NoZotR1XtzSsWhbtSStyRBDsrdJL9Oitalhyr39SU1NpbKysv1zdnZ2xMTEMG7cOGJiYsRZtYJBiVInGERjYyOpqakkJiaSkZGBXq9nwIAB+Pj4YG9vz44fDiJvcPlxkYMYVr1dvYI8iRzWk/1r0qm4XCV1HIslSl3XePq7M27hSA7vOcElsUq2Q/To0anqmftYBPv27aO0tLT9czY2NowYMYIJEyYQGxuLs7OzhEkFayBKndBpTU1NpKWlkZiYSFpaGgDh4eH4+PhgZ2fHjv8eQtnkjqzVXhS5jlK3Mnn6AGrK60nfcljqNBZPlDrDiJ0ThbOHE7u+TRZP7Trh6jy8RU9FkpSUxKVLl9o/p1QqGTlyJHFxcYwePRo7OzsJkwqWSpQ6oUM0Gg0ZGRns2rWLtLQ0tFot4eHh+Pr6olQqSViRJYpcF/UK8iAyqhe7v9kvFkIYiCh1huPi6cTkpeM4knCci03i//HOuron3p3PR7Fv3z7OnTvX/jl7e3vGjRtHfHw8w4YNE3vhCbdNlDrhlvR6Pbm5uezatYs9e/ZQW1tLeHg4/v7+2NrasvP7QygaPZCLItc16lbGTepPc2MLqRsPSZ3GqohSZ3ixc4dj52BL4qp08dTOAHTKRhY/E8nu3bspKSlp/7i7uzsTJ04kPj6eAQMGiG1ShJsSpU74RaWlpezatYudO3dy4cIF+vbtS69evXB2dmbnikPI69y65bmqxuDuas+4uFD2rUmn/GLlrV8gdIgodcbh3dOTcYtGkrgqnRo7J6njWIWrc/CmLwshMTGRmpqa9s/5+/szdepUpk2bRo8ePSRMKZgrUeqE6zQ2NpKUlMTOnTs5evQo3t7e9OvXDy8vL/ZuOIym0rFt1aoocgYzZGRfPB0V7BSlw2hEqTOuKfePp+xSFdlnq6WOYlXaTrSoYdwdvUhOTqapqan9c1FRUcyYMYNx48aJLVKEdqLUCe3Dq1u2bCEhIQG9Xs/AgQPx9vbmxMECSk+rUTa6i+1HDEymbmXa/CGcySrkVHr+rV8gdJoodcYXPiqE4MjebPs8EVkvf6njWB29TIvWtopBk105fPinxVNOTk7ExcUxY8YMQkNDxfBsNydKXTdWV1fH7t272bJlC2fOnKFfv3706dMHuVzO3pUnUDZ6INeKd4DG4OFmz/j4cLZ9toeG2qZbv0DoElHqTMPRxZ4ZD09m76o0qm0cpY5jtXSKZu58YQg7duy4bv5d3759mTFjBlOnTsXV1VXChIJURKnrZvR6PSdOnGDTpk0kJSWhUqmIiIjAx8eHxE1H0JQ5ib3kjGxgZE98Pe3FcKsJiVJnWlMfmMDlc1fIKRKrt41Jjx6dTS1jlwSwf//+9lMsbGxsmDhxIvPmzROLK7oZUeq6icbGRnbs2MGGDRsoLCwkLCyMoKAgdDod+1blomz0RKYTy+aNbeKMwVzJvcCxfTlSR+lWRKkzvcgJEXgGeLAv7bzUUboFvUzD46+PZ/PmzZw+fbr94yEhIcyfP5/Jkydjb28vYULBFESps3JFRUWsW7eOHTt2ADB48OC2RQ/rD6OtcEGudhRP5UxAodEw+84RpG46xOWC0lu/QDAoUeqk4d/Pj5hZw9jw/m4IFKs1TaFt9WwDE+/pyd69e9uf3jk5OTF16lTmzZtHUFCQxCkFYxGlzgrpdDoyMzNZu3YtGRkZBAUFERISgk6nI3ltPsoGL7HowYTcnG2ZNGMgG97bgbq5Veo43ZIoddKxsVMx78lp7P4uhVp7se2JKellrTz4p5Fs3LjxutMrhg0bxqJFi4iNjUUuF8e+WRNR6qxIfX0927dvZ/369RQXFzNw4ED8/f1J2XWMlhKxFYkUevfxJGyAH1s+2i11lG5NlDrpzXokjhNp+RTVix85ptY2966GEXO8SE1NRafTAdCzZ0+WLFnC1KlTxdCslRClzgqUlZWxZs0aNm7ciFwuZ/DgwTg7O7NnTRaqem/kGnGGoBQGRwXhbAv7VqZJHaXbE6XOPIxfEkNtRT3Z52pu/cWCUejkLSx4OpxNmzZRX9+2kMXFxYW5c+cyf/58vLy8JE4odIUodRbs3LlzrFixgt27d+Pt7c2AAQMAOLA6v23hgxhilcyoCaE0lpRzZPdxqaMIiFJnToZOHoiDswPp2SW3/mLBaPQyLcv/Hsvq1au5fPkyAEqlksmTJ7NkyRJCQkIkTih0hih1Fkav15Odnc0PP/xAamoq/fr1IyQkhKz0XCpPK1A0u4ohVolNmhXJhSOnyc0okDqK8CNR6sxL6IhgeoYGkJRaKHWUbk+PHq1tFWHj7cjOzm7/+PDhw1m6dClDhw4VW6JYEFHqLIROp+PAgQP88MMP5ObmMmjQIHr06EHSlsNQ4YlCLSYgS65FzdR5Q8jen0NR7mWp0wjXEKXO/ASG+TN43AC2fZ6IPChA6jgCoFXVM2aJL0lJSWi1WgAiIiK49957iYmJEeXOAohSZ+a0Wi1JSUl88803FBUVMWTIEDw9Pdmz9giqOl8xX85ctKiZdccIUtZlUHapUuo0ws+IUmeevHt6MnrecDZ+mCCKnRnRKZqZ9qvebNu2rX1LlODgYJYuXcqECRNQKMTUHnMlSp2Z0mg07N27l2+++Ybi4mKioqJwcXEhcU02qjpfZDqV1BGFq1rUzF86il3f7qOmrE7qNMINiFJnvly9nYlbOo517+wQxc7M6OVq5j0VyoYNG2hqajvOMCAggPvuu4/4+HiUSrFhvbkRpc7MaDQaEhIS+OabbygtLWX48OHY2tqSsvE0qjofZHrxP5FZaVGz4P4Ytny0m8a6ZqnTCL9AlDrz5uhiz8zlcax+c5sodmZIL9Nw1+8Hs2bNGmpra4G27VAeeOABJk+eLJ7cmRFR6syETqdj7969fP7555SXlzNs2DBsbGxI3XgGVb2PWMlqhmTqVhbcF8Omj3bTVNckdRzhJkSpM3/2zvbMfjSO1f8Rxc5c6WVa7v9jFD/88AM1NW3b0vTq1YsHH3yQiRMnio2MzYAodRLT6/WkpaXx6aefcuHCBYYPH45SqSR981lR5sxZi5qF98ey6cNdNNWLJ3TmTpQ6y2DvZMfsx+JFsTNzepmWpX8YwooVK6ira5ty0qdPHx566CHGjRsnFlRISJQ6CWVlZfHJJ59w6tQpoqKisLW1JX1zAap6X1HmzFmLmvn3jmLbp3toqBVP6CyBKHWWw9HFnhkPT2bN29tFsTNzV4dlV65cSUNDAwDh4eE89thjDBkyRNpw3ZQodRLIz8/no48+4tChQwwbNgwXFxeSN55CVeeHTCfmzJm1FjWz74pm738PUFMhFkVYClHqLIurpzMT7xrNxg93i2JnAfQyDYueD2fNmjXtCypiYmJYvnw5wcHBEqfrXkSpM6GysjI+++wzduzYwcCBA/Hz8yNxXRaq2h7IdTZSxxNuw8w7R5L8XRIVl6ukjiJ0gCh1lsfT353YuSPYtjNX6ijCbdLL1Uxd3ovNmzej1WqRyWRMmzaNhx56CF9fX6njdQui1JlAY2MjK1asYMWKFfj5+dG/f3+SNh9FUeGHXGsrdTzhNk2eM4STCUe5mFcsdRShg0Sps0wBIX4MiA1l74FzUkcROkCnaGLUYneSkpIAsLGxYcmSJSxduhQHBwdpw1k5UeqMSKvVsn37dj7//HMAhg0bRua+bFqK3MUJEBZmdFw4l7PPkX/4rNRRhE4Qpc5yhQztg1+wH6lHLkkdReggraqOsElKjh07BoCnpyePPPIIU6ZMEStljUSUOiM5fvw4b731FkVFRURHR1NXV0fO7loUTW7ibFYLEzmiN5qqGo4lnpQ6itBJotRZtsgJEciUco6frZE6itBBevT84fM5vP/++1y+3HZ8Ynh4OL/5zW+IiIiQOJ31EaXOwCorK/noo4/YsWMHw4cPR6VScXhbEcp6H2SIdyaWpm+IDz7utiSvzZA6itAFotRZvrELoyk+V865ao3UUYRO0KPj/teG8fXXX7cvppgyZQqPPPII3t7eEqezHqJlGIhGo2H16tXcc8895ObmMmHCBLKSCjm2phFVvZ8odBbI092efn09RKETBDNwYG0m/Yf2xl3dIHUUoRNkyPnmtSw4H86MGTOQyWTs2rWLpUuXsmrVKjQaUdYNQTQNAzh27BjLli3jiy++ICYmhorL9aSvLMG2qrc4o9VCKbUaxk8ZwLbP9kodRRCEH237fC8T74hBfkksVrJUMp0NSV9UYlMWQUREBE1NTbz33ns88sgj5OTkSB3P4olS1wV1dXW8/vrrPPXUU/j4+BAeHs7+VfloC4LEQggLN+fhCax7Z7vUMQRB+Jn17+5g7pPTpI4hdJFC48TZPU688MILODs7k5+fz2OPPca///3v9lMqhI4Tc+o6Qa/Xk5SUxNtvv429vT3BwcGkbsvBpqan2DzYCsTPHcrhTRlcuVAudRTBQMScOuvi3dOToZMHseeAWI1uDfTyVsbf582OHTsAcHd358knnyQuLk4cOdZBotR1UGlpKW+++SYHDx4kJiaGk1lnaDjjjKLFWepoggEMGdGblvJKju8XG55aE1HqrM+gMWEo7WzIPlstdRTBQLSqWvyGNXD+/HkAYmNjee6558RCig4Qw6+3SafTsX79eu677z4qKiqIiooibXM+TSf9RKGzEn6+zrjay0WhEwQLcDw5Fw9fF3zkrVJHEQxE0erClQxfli1bhlKpJDU1lfvvv5+tW7cinj/dHlHqbkNpaSnPP/88H374IaNHj+Z87hWOra/DpjZArGq1EvJWDaPGhbDnu2SpowiCcJv2fJfM6NnDoEgsnLAWMuT88LeTKEsGEBYWRn19Pf/85z957rnnKCkpkTqe2RON5Cb0ej3btm3jgQceoLGxkYEDB7J/dR7yi32Ra+yljicY0KwHxrL5w11SxxAEoYM2f7Sb2Y/GSR1DMDC5xoHzSa489thj2NjYcOjQIe6//342b94sntrdhJhT9wvKy8t54403OHToEGPHjiU54RDykkDkGjupowkGFj22P1dOFXLmaKHUUQQjEXPqrFvwkN549/TkYE6Z1FEEI9Apmug/WU92djYAo0eP5re//S3u7u4SJzM/4kndDRw4cIAHHniA8vJyBg0axP61uSgu9hOFzgr5+DhhJ9OIQicIFqwgqxB7Zzu89M1SRxGMQK61J3+XPU888QQqlYqUlBQeeOAB0tLSpI5mdkSpu0ZLSwv/+c9/+OMf/0hUVBSXz1aQs7UZm7oe4rxWa9SiZvSE/uwV8+gEweIl/pDCuPnR6M5fkjqKYAQyZHz5ymEUxWH06dOHqqoqfve73/HGG2+0HzsmiFLX7uzZsyxfvpy0tDSioqJI3ngK3bkg5K1i7py1mnp3DDu/TJI6hiAIBrLz6ySmPTBe6hiCEck1jpSkebNkyRIANm3axMMPP0xBQYHEycxDty91er2e9evXs3z5cry9vXFzc+PY5sq2jYTFvx6r1T/cj5KT56mtrJc6iiAIBlJbUc+VC+UEe9lIHUUwIhlytrxzgTfffBNvb2+Kiop45JFHxCIKunmpa2ho4NVXX23fquTwvjyK9tqhaHGVOppgREqthtAwXw7vzpY6iiAIBnZ4dzYDRoYguyi2ObF2L9+1kvoTvRg1ahRqtZp//etf/OUvf6GxsVHqaJLptqXu3LlzLF++nDNnzjBgwABS1p3BtrwfMp1K6miCMWm0PPi7mWz+aLfUSQQTCgjpIXUEwYS2fpLAr/5xJ5RXSh1FMDKZXsWxDXoeffRRFAoFCQkJ/OpXv+q2w7HdstQlJCTwyCOP0NTURFBAX3K2N6Kq9xWLIaycp6cj8x8YTfHZUjRqjdRxBBMZPiWS8ycuMDx+oNRRBBNpbWnl8tkrLHgsDk+VTuo4gpHJkPHNa1kor4RdNxy7c+dOqaOZXLcqda2trbz11lv8+c9/prm5mdi5M8haX4tC7SR1NMHIIqP7MCS6D+ve3UlTQ4vUcQQTcXZ3wquHK3u/P4BXgCdOrmLhU3fRXN/M2vd2MXRcGIPDxNmh3YGi1Zn6k0GMHDkStVrN3/72N9577z00mu7zJr7blLrq6mqeeeYZ1q1bB0D0Q4vJ/rpMDLdaO42WqXMiaa1rIOH7FABk8m7zx77bi79vLDu+TARgxxd7ib9vnMSJBFORydtGXnZ/n4pG3crUqeFiOLYbkOmUtJT247777gNg1apVPP/881RXV0sbzES6xU+3goICli9fTnZ2No6OjlTOGkLv8z0pOyd2H7dmLi52LHxwNKlbjnAyNb/943qdGI7pDsYsiCZjy+HrPpa57Shj5g2XKJFgSnrdT6sgT6adIW1bFgufmIKLXi1hKsEU+vf1ZvUHRfzlL3/B3t6eI0eOsHz5cvLz82/9Ygtn9aUuJSWFxx9/nJKSEgL8NHzw13NMGxdH4pqDUkcTjGjAkF7ETAhlzTs7qa0Q25Z0N/7BvsiBS/nXr4C8lF+MXCHHv48YjutuasrrWPPODmKmRRIR7CF1HMGIkrZkER8/gLGhD/P+Xy4QEBBASUkJjz/+OAcOHJA6nlFZbanT6/X88MMPvPTSSzQ1NTE0ooUP/15O/Jml9N6ppbFeHCdjlTRaJk+PQKHTsOPr/Tf8kpamVuydxJFv1ixm1jD2r7nxEUL7V6cRM2c46LQmTiWYir2THc3NN34it+ObAyiUcuImh4rhWCtVX9uMnb2K6TPupm8vDR/95TDR0dG0tLTwhz/8gVWrVlntfnZWWeo0Gg3/+te/+PDDD9Hr9cyJb+BfL1fi4qRnZs+B7Ft3SOqIghE4OqhY+OBojibmkL3v1C9+XU5mAZFxg02YTDClWcvj2P753pt+zY7P9zDrkXgTJRJMLXJiBCcOFv7i54/tz+Vo0kkWPB6Pg7r77mlmzZK2ZDFxYigAzk56/v7MRubOnYter+e9997jrbfessoFFFZX6pqamvjDH/7Ali1bkMvl/ObBGp55uBalsu3zTipb6mvFOXHWJjQigPHTB7HmnZ1UFFff9Gsriqtx9XI2TTDBpIZMjOBs9jkaa2/+g7qhtomzxy8wZHy4iZIJpuTq4URVac1Nv6b8cjVr393JhPnRhPYSG85bm/raZhyuGZFRKuDpuz/i8ccfRyaTsX79el5++WWr26jYqkrd1RWuqamp2NjY8OfnylkwvRHZj9vP3XHyJWr+z/onSnY3E2cPwdFOztbPEm/7NWIFrPXx8HPDt5cnOamnb+vrc1Lz8O3tjbuPKPjW5urK19ux9YskHF3smTAhxIiJBCmczi7imRd/1/73MhksmfAKf/rTn7CxsSEtLY3f/OY3VrUy1mp+sl2+fJknnniCnJwcXJx0/OeVy4wZcf1+ZMFOvhQcLZQmoGBwdrYKFt47ipP7cziccELqOILEJi8dy84vb7/YA+z8MpG4pWKbk+7u8J4TnErPZ+GSKGwb6qSOIxjImZOX6NPT7X8+Pi7sV7z1x8u4ublx+vRpnnzySUpLS00f0AisotSdPXuWxx9/nKKiIny9NLz75woGhrZKHUswor6hfsTNGcLad3dRWii2punuZi2PY8ennTv6becXe5n1q0kGTiRYmpLz5ax9bxdT7hlDsL/YkN7aDQhp5d3XTuPr68uFCxd44oknuHDhgtSxusziS11eXh5PPfUUlZWV9O3Vyvt/rSCo5/9Ofnww74+UvnJSgoSCoY2dNggvdzs2f7K30yuYik6XEDKyv4GTCVIYPiWSgqxz1FU1dOr1tZX1FBw7T1ScOEbMGvQb2ocL58o79Vq9Xs+mj/fg5efGuDF9DZxMkMKxjAJe+surN/xcoL+Wd/+YTa9evbhy5QpPPPEEeXl5Jk5oWBZd6nJycnjmmWeoqakhLFjN269V4OVx441l/WzdKfnZnlWCZVEpZMy/ZyRnD58hY/uxLl0r99BZgiODDJRMkEpASA+c3Ow5lX578+h+yan007h4OuPfV+xfZ+n6DQki9+DZLl0jfXsWBccuMH/xMFR1YjjWkhWfr8DX7ZePB/Tx0vHOq5mEhYVRU1PDU089xfHjx02Y0LAsttQdO3aMZ555hvr6egaGqvn3K5U4O1nnvjMC9OrrzYzFI9j0UQIXT5cY5Joy2e1PphbMj1KlYNSMISStSDHI9RJ/SCZm9nCUCvHnwpJ1ZJHEzVw8U8KmjxKYcf9YgrzEvpbWzM1Fz39+n8TQoUNpbGzk+eeft9hiZ5Gl7siRI7zwwgvtmwq//nIljg43L3Q6xNFQliomLoKeAa5s+HA3Go347yi0mffr6Wx8b4dBr7nxve3M+/V0g15TsFwajY4NHyYQ0NeH2GjxZN9SabW3/rnhYK/nH89uIyoqiqamJostdhZX6o4fP87vf/97mpubiR7SzP/9vhIHu5sXuvtzX6XyNcseJ++O5Do9c++MpiSviJRNh2/9gg46vPckMfNHGfy6gvHF3TuW/atS0LQadvNQTauWA2vTibtnjEGvK5hG7NzhZCbmGvy6KZuPUHzuCvMWDEVeWW3w6wvGlXv0PL/70x9u+XV2tvC3p7cwbNgwiy12FlXq8vLy+O1vf0tTUxMjIlv4y/NV2Nrc+nV+dm5czrts/ICCwfj5uzL3vhi2fbmPs9lFRrlHRXE1bj4uRrm2YDxDJg6kpKCEKxc6Nxn+VkrPl1FaeEVsTGyBXL2cb7npcGedPVHEtq/2Me/Ryfg5WNSPzm7v4rkyfF1/eV7dtexs4e/PbG0vdi+88AInT1rOIkuL+ZN59uxZnnvuORoaGogMb+Evz1feVqED0IkRO4syLKYf4QP9WffuTtS/cH6j0D0Fhvnj4uHAiWTDP4251vEDp3DzdiEwxNeo9xEsS0uTmrXv7iQ8ui/DBvlJHUfoiA7slHC12F2dY/fCCy9w9mzXFt+YikWUuqKiIp599llqa2sJD1HzjxersLOVOpVgcBot0+YNobGihr0r001yy8xdxxl352iT3EvoGntne6ImDWT/6jST3C9pVSpR8ZE4ON7mu0dBUmMXjiRtt2meqOxdmU5TbRPTZ0RAeaVJ7imYVlux205ERAT19fU8//zzFBeb/w4aZl/qKioqeO6556isrKRf71Ze/30lDvYdW+UqToQyf85Otix8aAwpGw9zKuOMye5bXVaLs7ujye4ndN6cRyaz4b3tJr3nhve2M/uxKaDTmvS+Qsc5uztRW1FvsvvlZBaQsvkIi56cgrO25dYvEKTVid0O7O30/OO5PfTp04fy8nKeffZZKivNu8Sbdd1pbGzkxRdfpKSkBH9fDf96WWxbYo3CBgUyOi6MNW/voLbSdN+Ur2pqbMXJ193k9xVu37wnp7L5w12S3HvTh7uY96RYEWvOnD0caVKbvnjXlNex+u0djJk9jLAgN5PfXzA+Fyc9r/8uHT8/Py5dusQLL7xAfb3pf07dLrMtdRqNhtdee428vDxcnXW8/nIl7q5icpy1GT8zEnsb2P7lfskyHFh/iDFzh0t2f+HmJt09msytR2isa5Lk/k11TRzcmcXkO2Mkub9wa6PnjuDA+kOS3X/bl/twcLJlwrh+kmUQjMfbQ8cbv8/Gzc2N/Px8Xn31VTQaw668NxSzLHV6vZ4333yT9PR0bG30/OPFSnr6ieEPa6JSyJi/dBS5KbkcSTghaRadTodSqZA0g3BjI6YNofRsKZcLDLPhdGddyi+muLCMEfGDJM0h3JhCpUAn8Yq4w3tPknuogIVLolDW1kqaRTC8nj20vP5iPnZ2dhw6dIh33nmn08dUGpNZlroVK1awefNm5HI5rzxVxYCQ1i5dT6x+NS+9+ngxY8kINn6wm5JzV6SOA0DWgVxGzo2WOoZwjbDofijkek6mmscekzmpeShUCkKHizNBzcnImUPJSjXdPNybKT5XxoYPdzPrwfEEeojVfGbFAAWsf18Nr7zyCjKZjA0bNrBu3ToDBDMssyt1mZmZfPzxxwA8eX8VY0Z0fQKqWChhPkZODCOwlzsbPth9W7t8m0rxuTJ8Aj2kjiH8qEewLz1DfEnfckTqKNdJ33KYwNAe9OjjJXUU4UfePT0pPlcmdYx2Go2O9R/spld/P6KH9ZQ6jnCVgY6FHB3yEI8++igA7777Lunpptmp4XaZVd25ePEir732GjqdjpmTGpk/rdEg1xVP6syARsusxVGUFRSTvEG6uS83cy7nMmGxYVLH6PYcXR0YOS2ShG+lm2d5Mwnf7mfkjGE4OosnMVILHRHMudOlUse4oeSNhym/VMXsuZFi2xNzYMCh0iUTXmXGjBnodDpee+01zp8/b7Brd5XZlLrGxkZeeukl6uvrieiv5qllNYYq1oLEvLydWPBALAnfp1Bw7ILUcX7RqcwC+g3pLXWMbk2hkDPrV5PY8K5pty7pqA3vbmfWI/EoZOY3p6Y76Te0N6cyC6SO8YsKss+T8EMKC5+YgodSPF2wFjIZPLP0c4YMGUJjYyOvvPIKjY2GeQjVVWZR6vR6PX//+98pLCzEy13Ln5+rwkZluOuL4VfpDBzemyEjerP23V001Zv/Xk7lJTUERPSSOka3teDpGax7e5vUMW7L+ne2s+DpmVLH6Lb8Q/yoKGuQOsYtNdY1s+adHQybEM7AEE+p43RfBn5KpFLCq4/vxNPTk8LCQt544w2zWDhhFnVn3bp17N+/H5VKxZ+fr8LTXbyjsXgaLZOnRyBrbmb3dylSp7ltB3dlEzUpQuoY3dKsR+NJ+DqJ1pauLYwyFXWzmoT/7mfW8slSR+mWouIGk7krW+oYt233dynIgLhJ/cVwrJXwcGsbflUoFCQkJLB+/XqpI0lf6vLy8vjggw8AeOze8i6vdBWkZ6uSs+DB0WTtzyX7gHmsXOyIiwVl9BsRInWMbmXyPWPISsim6opxDmM3lqrSGrL2nmDyXbFSR+lW+g3tw6XzFVLH6LDs5DyyknNZ+MQUbBvMdwNb4fYN8l3UvnDivffeIycnR9I8kpa6xsZG/vSnP9Ha2sro4c3Mn2qcMWkZYnKeqfTq483UBVGse3cX5Rct893osf2niIjtL3WMbmP03OFczL3IxdOXpY7SKRdPX+bi6WJiZw+TOkq3MSAmhKx9p6SO0SllRZWse28X05aOoZeHOFfYVORGnKS/aNwfGD9+PBqNhj//+c+Szq+TtNS9+eabXLx4ER9PLb97vNpoCyNe7vsJuv8MNM7FhXYjxoYS2MuNjR8lmMXcgq44c+wCERPEnxljGxY3iIbqBvIOmu9k99uRd/AMjbVNDBND90Y3cEwoZ3Is8w3AVTqdjg0fJdAr1J8RQwOkjmP1+ob7s+Dpr412fZkMXnhwJb6+vly+fJl3333XaPe6FclK3d69e9m5cydyuZw/PFWFixHPdHXWnSKyh4/Rrt/tabRMnz+U6stlZrtdSUflHjpLyJAgqWNYtfBRIdjYKMhKlPZEEUPJSjyBjZ0N4dHBUkexav2G9Cb34FmpYxjEgQ2HqLlSw4wZA8U8OyPqNyCAXnrjTgVyctDz8ssvI5PJ2Lp1KwcOHDDq/X6JJKWuqqqKN998E4Cl82sYHGb8eXRiCNY4nBxtWPjQGJI3HuL0oXNSxzGoI4mnGL1InPdpDH0GBuIb6EH6lsNSRzGo9C2H8O3tTe9wf6mjWKXR84ZzMClX6hgGlXekkAObDrHwiSk4qM1jWwxrI5Ob5uf/YL/F3HnnnQC8/vrrVFSYft6nJKXurbfeoqamhuCgVu5daJrJonosezjQHAWH+TF+2kDWvL2D2grrm/R7qaAUjx7u2Lg6SR3FqvgGeRE2vC9JK1OljmIUSStSCB/VH19xQolBqexUePT0MavTIwyltqKeNe/sYOLCkfTt4Sh1HKuj15nu5/+Ds/5Dv379qKmpkWSbE5OXusTERBITE5HL9bz4eDUqpWnu+0r/rRT9Wew/ZigxcRF4uduz5bNEqaMY1a5vDzD13jFSx7Aart7OxMwcxvYv9kodxai2f76HmNnDcfVwkDqK1Zj24ER2mukpI4ay5bNEfPzdiY0WUz8MxcHZnsXPmu77jY0KXno0DaVSSUpKCvv27TPZvcHEpa6mpuaaYdd6QvpoTHZvR/V+pgT3Mdn9rJZGy+zFURTnFpG+LUvqNEan0eioKKmhV6T4s9NV9k52TLl3HBveM+/TIgxlw3vbmfLABOztTfTO1Yr1CvOn/EodGo3172Gati2L4nOlzJozWMyzM4DYuAEEaE37ZqBvLw133303AG+//Tb19aYbyTJpqfv000+prq6md6Dphl1/okYpV5j4ntbF1c2BhQ+NYfcPqZw7XiR1HJPJ2CE2JO4qpUrBnMfiWP3GJqmjmNTqNzYz58npKMW3ni4ZFh9Jxo5jUscwmbMnLrJ3ZRqLnpyCm0zs3doVcrkcUJv8vvdM+Sc9e/akoqKCTz75xGT3NVmpy8vLY/PmzQA8s6zWZMOu1xKLJTqvf0QAo8aHsObtHTTVNUsdx+QO781hzJLRUsewSHK5nMXPzGTtf7ZIHUUSa/+zhUXPzUYu5vV2ypgF0RzeZ12LI25HQ20Tq9/ewcgpkfTv5SJ1HItlqkUSP2drA88//zwAGzdu5MQJ06zyN0mp0+l0vPXWW+j1euLGNBE5wPStGeD5oN/T69Nxktzbko2Oj8DFScWOr6x7PsvNXCooxdHNEbdAL6mjWJxFz7Sd56pp1UodRRKaVg3r397Goudmg657/jvoLDcfFxw9XblUUCp1FMns+GY/ru5OjI4R8+w6asy0QcQ99hfJ7j/E/w6mT5+OXq/nnXfeQacz/vQBk5S6HTt2cPLkSeztdDy6tNYUt7whT1kTHs5iB+/bpm5l9pLhXMy5wMFuNPTxSxK+T2HSYnEcVEcsenYmWz7eTUtTi9RRJNXSpGbLx7tZ9OxsqaNYlEl3jWb395ZzdrSxZO7K5tLpEmbPFfPsOsLZ1YEIpbTbxPxq/lc4ODiQm5tLQkKC0e9n9FLX1NTUPp78wOJ6vDyknej6YsgWiv4kVsHeipOdksXLx7Pnh1QKT1yUOo7ZOJacy6h50VLHsAhzn5xGwtdJNNaKvbcAGmsb2fPdfuY+Hi91FIswcuZQslLPSB3DbJzLucSelWksenIqjq1NUscxe44u9sz5jfS7M3i46Vi6dCkAH3/8Mc3Nxp2+ZPRSt2bNGiorK/H31bBgeoOxb3dLzuo9zArtJ3UMs9Y72JvxsyJZ9eZ2GmrFN49rFeZcwtPfEydfd6mjmLWZyyeTuj6D6jLpnsybo6rSGtI2HmLmw5OkjmLWHN0c8erlS2HOJamjmJWGmiZWv72dSQtHEuRtL3UcszZm6iCCtLuljgHAwnF/wtfXl7KyMlatWmXUexm11NXW1vLDDz8A8OCSOkkWR/wvHQq5pEfemrWo2H74+7uy5VPr3kesK3Z8s59p946VOobZmr5sElkJxykrKpc6ilm6UlRO1t4TTHtgvNRRzNa0B8az/ZvuO4f3VjZ9upeefX0YHtlD6ihmS6GQAeaxBY6tDTzyyCMAfPfdd1RVVRntXkZtN9999x319fX07dXK5NHms2LyqZ5/wfcjcfzTddStTJk9mIayalI2WdfRTcZwcM8JsRr2BqbcP56TyTlcOlMsdRSzdulMMTnpp4m7R2xs/XNjF44kc+8pqWOYveRNh6mramTK1HAxz+5noieGM/6RN6WOcZ2JEY8RFhZGU1MTK1euNNp9jFbqysvLWbduHQAP31mHOT0c85KVE+ghjn66SiXTs3DZOA4lnOBUZoHUcSzCxfxSFDYKAsIDpY5iNibdPZr8Q2e4cEoMmd2OCzkXKcgqZPKd4g3mVf4hfsjtbLv1ateOyD1YwOE9J1j4xBSUtWKqw1XePdwYpDCvP0MyGTzwwAMArF+/nurqaqPcx2hVa/Xq1bS0tDAgRE1MlPmtfHuq90co3xwidQzJ+fo6M+vuUax/fxcVl433SNgaJW84TMzsKOT2dlJHkdyEO2K4cPIC545fkDqKRTl3/DwXci8xYdFIqaNITiaXEbtgFAc2HJI6ikUpv1TF+vd3MWfZBHzszejpiUT6Dw5k8iPfSh3jhkb2uZ+QkBCamppYvXq1Ue5hlD8B9fX1bNrUtnP80gX1yMxwz18PbQ5DAryljiGpiMhAIob2Yt17u9BqzWPugaVJWJHK1Pu6996HYxZEU1JQwpmjhVJHsUj5R85RUljG2HnDpY4iqWkPTmDXf5OljmGRtFoda9/bxcBRwUT085A6jqRCBvYkTHZc6hg3dO3TurVr11JrhKerRil1mzdvpqGhgd49Wxk11Pye0l31dO8v4N+DpY4hiTFTIlDJdOz5IVXqKBatrrKB4nNlDJrcPf8cxc4dTuXlSnIzxdYTXZGbmU9FSRUxs4ZKHUUSg8aFcbmomvpqsf1NV+xZkYaNjZKxsd3zrOrgAQFMftR489UMIbbfQ/Tr14/GxkbWr19v8OsbvNSp1er2x4p3zGkwq7l0P+euzWJ4oK/UMUxL3crMRVEUnTjP0cQcqdNYheOppwns36PbnTYxalYUtWW15KTmSR3FKuSknqa+qoFRM7pXsXP3c6XngCCOp4g/R4ZwJDGH87mXmT0vststoAgf2oswzHuhn0wGd955JwAbNmygtdWwZ/savHLt2bOH8vJyvNy1xI0x/z3OfhP0IbZvdo9vovYqOYuWjydpTTqFJ8VkdkPa+W0y8Xd3n5WMI2cMpbG6jhPJYpWiIR0/cIrGukaip3WfJ79x94xl57cHpI5hVc6fukTiqnQW/3oqdk3S7w9rCmFDghi3/DupY9yW8QOewMPDg4qKCpKSkgx6bYOXuqtz6eZPazCTfeluzlN3isie1j+3zq+HC1MWDmfNWzuorxJDHMaQsCKN6Y9MkTqG0Y2YNoTmhmay94tCZwzZ+3JQN7UyPH6Q1FGMbsbDk9m9Kl3qGFaprqqB1W/vYNrSMfg5KqSOY3T9IgIYKLOM4yxVSpg/fz7QdkCDIRm01BUUFHDy5EkUCj3TJpr/U7qrHgv4Cz0+st49x8IHBTAgsicbPtyNXq+XOo7Vqq2o59K5KwyZMkTqKEYTFT8YbYuaY4knpI5i1bIST6DVaBkeN1DqKEYzZOIAigquUFsp3mQai16vZ/0Hu4kYGUx4Hzep4xhN9KRwYpe9I3WMDpk16u8olUpOnTrFmTOGm5Ns0FJ39SndmBHNeLpZzmpKH9kV/h19iLw/WN/u3KMmhOFgp2DPD2lSR+kWTqbm4x3oSY+wAKmjGNywuEHI9DqO7DHPlWXW5uie4yCTMXTCAKmjGJxfHx+8e/txUuyLaRIJP6Ti6GTPqGjr21dToVRw31/PMURZJHWUDnF31TFmTNuUnW3bthnsugYrdWq1mt27285Zmx1nee+8XFu2cNcgK/rm+eMJEeXnSzm0S/wQNqW9K9MZO28kNs4OUkcxmCETBqBUyDi0yzKGN6zFoZ1ZKG2VRI4PkzqKwahsFIxdEsseMexqUgcTjlNeVMnUaQOsagHFlEUj6Ksx/CpSU5ge03ZAw+7duw22YMJgpS4jI4P6+nq8PLQMHag21GVNqJln+66l4f8s/5unQqtl/kNjObj7OPlHCqWO0y1t/GQPcx6NlzqGQQwePwBbexWZ249KHaVbOrj9KPaOdkSODZU6ikHMfXI6Gz8RZ0tLIT/rPIcSjrPg8XjkldVSx+ky/z7eTHpiN2A+x5B2xPDIFry8vKipqSE11TDbixms1CUkJAAwKbYJhRlvY3Iz7poDxPXrLXWMLnG2VzF/2Vg2f7KXyuJqqeN0Wxq1hrRtx5h8/wSpo3TJwDFhODjZkrH1iNRRurX0LYdxdHVgYEyI1FG6ZPI9Y0jbfgyNWiN1lG6r/FIVmz7Zy8In4nHSWmYZuip6XBgR+gSpY3SaQg7x8W1v/hMTEw1yTYPUr8bGxvaWOdkCtjG5mWX+fyToE8s8IaBnoDvjZg5m9ZvbaW0x7N43QseVnC+jsrSWyPhIqaN0SkRMf1zcHUjfLI5tMgepmw7h4uXMgJHBUkfplMHjB1BRVk/xhQqpo3R7rS2trHprOxPmjSDATSV1nE4ZM20QQ+5/U+oYXTZ+0LsApKWl0dLS9cMaDFLqMjMzaWlpIcBPQ/8+lv0OrIesnL8O28uVP/eVOkqHhA3qSUi4H1s+FcMa5iQ7OQ/vnl4EDgqSOkqHhI3sh7uPC6kbD0odRbhG6saDePZwJ2y4ZZ0Y0DPUH+/ePmSnnJY6inCNzZ8lEhIZRHgfd6mjdIiHtwsLX8km2sIWR9xIaHArfn5+NDU1kZGR0eXrGaTUpaW1rawcPbzZLM957SiP1u3Mj7Cc+SsjxoTg5KBg70ox8dgcJa5OJ3raEJx8LeMbZ+iIYLwD3Ele3/VvMILhHViXgXcvb/oP6y11lNvi6ObIiBnDSFyTKXUU4QYSV6Xj5OrAiKGWs2J//KxIQrUbpI5hEDIZjB8/HoD9+/d3+XpdLnU6na691MUMM99zXjvqoR5/JOhT8x+GnTBjMPVl1RzckS11FOEmNnyYwOxfxSG3t5M6yk2FDO1DjyAvDqwRbxDM2YE1afgH+xIypJfUUW5KJpcx54lpYmGEmcvceYyG6gYmjO8ndZRbGj1tMIOXvit1DIOKCf8AaBv11Om6th1cl0tdbm4u1dXVODroGBRmiateb8xPVsZfhu6g7v/M9ImdupWZi4aTf+gMOeniMHVLsPmzvcx7zHxPnAgeEkRgf1+SVhlmFZZgXEkrU+kZGkDwYPPde2z+r6ex6TPDTAAXjOtk+hnOHDvPzDmDzXbLkx69vZj38kFGqs5JHcWgIvqrsbe3p7q6mvz8/C5dq8ul7siRtlVxUQNbUFrAsWAd4dm6hxmh5je3TqHVsmDZWJI3HORiXrHUcYTb1FTfTObubOIfnCR1lP/RZ2AgvcMD2PtDitRRhA5I/CGZ3gN70WeA+Q2dxd83joyEkzTVW/YKy+6kKK+Y5A0HWfjEFBRV1VLH+R8xkyKI0Btuo15zoVJCVFQUAAcPdm0ec5dL3dGjbXtXDYmwnqd017rX+9dEfm0+T1fsbeQseHgcmz7aQ3VZrdRxhA4qPldG8flyRsweLnWUdkEDetIvshd7vhOHqluiPf/dT7+hfegVZj4n4oyYFsnlC5UUF5ZLHUXooOqyOjZ+vIcFj8dj32w+BwlMv3MUIXf9WeoYRjNixAgADh8+3KXrdKnUaTQaTpxoOwMycoB1lroAhZanwj7C+Z0RUkfBy9ORqQuHs+o/22gV+zxZrFOZBdjY2RIysr/UUQgM8ydsRF92f9v1CbqCdHZ/u4/wkSH0DPGVOgohUX1QOdpz6uBZqaMInXR1y5NpS8fgqdJKHYdBI/sx6pH1jLc1z2FhQxgU8BIAOTk5aLWd/3fepVKXn59PU1MTzo46+gRab8nw1Z3k/dGZXPmrdEOxgb08GDE2hPUf7JYsg2A46duzCBnWB9/+0g2b9QzxY2BMCDu/FHOerMHOLxMZNCYM/z7ekmXwCfIiOKof6WLhllVY9/4uouMjCXS3kSyDm48L9/37AiMU1r14K6inBkdHR5qamjh7tvNviLpU6k6fbttzKDxEjdxCT5G4XZ7qLeyeWUnOy34mv3dIuB/9wv3Y9uU+k99bMJ6d3yYzdt4ISbY68evjw+BxYWz/XKxKtCbbP9/LkEkR+AV5mvzejm6OjFscy67vxLxMa7LtyyRChgQR0tPZ9DeXy/nTRjsidCtNf28TU8hhwIC28+ePH+/8ee0GKXWWvuHw7XJr3sj9QyNMes9Bw4Lw9nJi74o0k95XMI31H+xm1sOTUTo6mOyevkFeRMUNZNune0x2T8F0tn26h6gpkfj0NN2bBZWNgtmPT2Xdh5Z7ZJPwy/asSMPb351B/b1Met+Zd44kpPV7k95TSldLXVdWwBqk1IX06S5HUtXySM936PFhrEnuNnxMCCqZjpRNXZs4KZi39R/uZtFT00xyL68AD0ZOH8LWj8UwvjXb+vFuRs2KwsvfzST3m//UDFHorFzK5iPY2KqIivQ3yf1GThrA0Ie/B+pMcj9z0MfjLQAKCgo6fY1OlzqtVsu5c217xfTr3V1KHfTQn+Ufw7eif2OQUe8zJn4ATRW1HE44YdT7CNLTqDXs/C6FeU/PNOp9PHu4M3pOFJs+2GnU+wjmYdMHOxk9dwTuPsYdNpv35FR2rUhDIxZvWb1DCcdpaWhmdKxx55f3HRDArNeOEqvMMup9zE3foLYuVVhY2OlNiDtd6kpLS1Gr1aiUevx8pF8dY0remmT+OymPy3/qbZTrT5o9hOIzxZxIFeckdhe1FfUc2nOSKcsmG+X6bj4ujFsYzcb3dxjl+oJ52vj+DiYsicXV09Eo14+/bxwHE09RW2k+W18IxnU85TQl564waZJxNuZ39nDk0U/riML69qO7lQA/LTY2NjQ3N3P58uVOXaPTpe7ixYsA+PtqUFj5Iokb8WhZy57ZtZx6ybALJ6YuHM6ZQ2c4c6TQoNcVzF/xuTKKTpcwZslog17XxdOJuLtGs/6d7vdNUoD172wjbuk4nF3tDXrdMQuiOZ9fKvai64bOZBVyJquQqdMNO8dcplDwx60uDNR+bdDrWgqFHAIC2nZEkKzU9ezRvZ7SXcujZQ2/GjHYMBdTtzJjYRTHEk9wPueSYa4pWJzTRwtprG9h2LShBrmek5sjU+8fz5o3txjkeoJlWvvmFqYvm4SDk61Brjd08kAaG1s5k11kkOsJluf8qUtk7zvFzNmDoKLaINece18sA1q/Msi1LFWPHm2biBcXd+60qE6XupKSkrYAPt15HkUDS33+RPiXXRwyU7cy+94YMnccpbig1DDRBIt1bP8pHFwcGDC+a++C7Z3smLFsIqvf2GSgZIIlW/XGJmY9Go+9fdfOcxwQ2x97NyeyDuQZKJlgqS6fu0LGjmPMWTa+y8UubsFw+t79IdC9h/L9/NpG/652rI7qdKmrrGzb2dnLo3OT+axFoLycZ8M/6PyKWHUr8x4YQ/KGQ5RdrDJsOMFipW3LwjfIm37RnTt1wtbehrmPxbPqXxsNnEywZKte38icJ6dja9u5YtdvaG98+viKzYWFdmUXKzmw8TDzlk/sdLEbOTmCqCe3EGfbtcPsrYGPw1dA27qFzuhyqfNw696lDsBff5q/Rm3E/q1hHXuhupWFy8axd0UalSU1xgknWKz96w7Sb0gQvQb37tDrlDZK5j85lVX/Ek/ohP+1+l+bmP+b6SiVsg69LjDMn+BhwezfILZYEq5XWVLNnlVpLHh0UoeL3YDhfZjyyiHGK8VerPBTp6quru7U6ztd6ioqKn4M0H3n1F3LT5vOB6NTaP3nwNt7gbqVhb8az45v9lFT0X324RE6Zvf3qUSOH4BPv9vbG0qplLPoqems+temTi+JF6ybTqdj9RubWPTMLJS3+RPAp5cnQ+IGs1tsgi78gtryenZ9l8KiJ+Jvu9gF9fdjyX+KiJGLVflXuTq3fd+uqencg55Ol7r6+noAnJ3ED46rfDQJ/BCXS+XfQm7+hepWFi0fz7bPE6mvbjJNOMFibftyH2Pnj8A14OZHPykUchY9O5M1/94sCp1wU1qtjjX/3syi52ajkOlv+rUuXk6MXRTL1i/3myidYKnqqhrY8kUii5+8dbHz7OHG8i+aiGa1acJZCBepSl1TU1sZsbe7+TeE7sZTvZ4t00soeq3Xjb/gx0K3+eM9NNY1mzacYLE2fJjAtPsnYO/hcsPPy2Qyljw3i7VvbkWjEU/PhVvTaLSsfWsri1+Yg0x/4zcB9k52TH84nvUfiyPlhNvTVNfM5s9uXuwcXBx4fo0dQ3VfmTSbJXB2bPt/sa6ucyN4nS51zc1thcTOVpS6n/Ns+Z6kuY3k/+FnQ2bqVhY+PI6tnyfS3KiWJpxgsda+u5N5j09B5fS/58QueX4m697eSmtL9zndRei61pZW1r+9nSW/nQu6698MKG2UzHt6Jmve2yVROsFSNdU3s+WLRBY9Efc/xU5pq+LVHZ5Eaj+UJpyZs1G1dSqNpnM7i3Sq1Gk0mvYbilJ3Yx7N/yV9ofqnzYnVrSxYNpYdX++nsVY8oRM6Tq/Xs/6D3Sx6eiZye7v2jy95bhab3t9FS5N4oyB0XEtTC5ve38GSF34qdnKFnMUvzGXd+7vR68X3eKHjGmub2f71fhY8Nrm92MkUCv6W6MdgzfvShjNjKlXbX1tbWzv1/16nSt2183Xk3fA0idvTikfzSg4uaibndz2Y98Bodv03mfrq7r0Hj9A1rWoNmz/bw+KnZyC3s2XR09PZ9mkCTfVibqbQeU31zWz7NIGFz8wCvY5Fz89h06d7aRXnuQpdUF/dyO7vU5i/fBJU1/K3/T0YpPkMEFNEfonumh53de1CR3SqksmvaXLiTdzNNOKp3sJns+aQuCqDusoGqQMJVqCpvoVd36XwxxW/IeHb/dRXiz9XQtfVVzeQ8N8DvLb2eXZ+n0JTQ4vUkQQrUFtRz97V6bz61aMM0X5Ld99c+Fbk1+w01Jkh2E6VOpnsp7uKUndzb1a+yPrXkhm7OEbqKIIVGTM3iu//sZGxBj4nVujexi8ZxQ+vb2bcrA7uuSkINzF2bhTffZPK61v/LnUUs6dU/FSq7O07fl5zl5/UabUd28CyO/lnxV849pdSziXlkr4vj5mPxEsdSbACU+4ezZHdWZw+VMDBnceY9ehUqSMJVmDm8jgydx7n9NFzHEk8zpQ7xRtRoetmLZtI+rFizpwuJW/LKf664R2pI5k1teanTmVjY9Ph13f6Sd3VBtnULErdjfzpyqucfaOOssyzAJSX1nI4rYAZj8RJnEywZBMWjSQ38zSX89uOkCk9X07W/lNMf1j8uRI6b/qyyRw7kEdpUdum8pcLrpB3uIAJ84dLnEywZDMfHM+hnFLKfpx6dPl8BZeTCnll1ZsSJzNfTU1tncrBweG6B2i3q9PLHBwc2rZVaGgUpe7nfl/yIpUfabl44PR1Hy+9XE3WwUKmPTxZomSCJYudNYxLeRcpPF503ccv5ZdwMuMMUx6cJFEywZJNfXAiJzPOcOnsles+XnjyIpcLSomdPliiZIIlm37fOI7kllNy5fr91s6dLqEx6wrP//efEiUzb43XlLrO6HSpc3R0BKChSSx/vdavi55F/609Z3advOHniy9UcuLoBaYtEz+Ahds3fPJAakqryMssuOHni3Ivk3+0kLj7J5g2mGDR4u4dR96R8xTll9zw83mHCqirqGf4+DATJxMs2dR7x3L8XBXFV2pv+PmcrPPYnKvn8c/+YuJk5q+xua1TmbzUOTs7A1BbJ0rdVcsKn8B7sw/HNx696dddOl/B8awLTP+VGDITbm3Q6P7oWtUc33/qpl9XePIi505cZNLScSZKJliySXePpTCnmPO5l276ddnJuejQM2hksImSCZZs+v3jOHGuiouXq2/6dUfTCgiolbH0nVdME8xCVNe0dSo3N7dOvb7TjczLywuA8kpR6gCW5D9EeFI/Mr5Pv62vv3y+kqOZZ5n12BQjJxMsWWhUbxydbDi0M/u2vv5s9gUu5pcy4a6xRk4mWLIJS2IpOlNKwYkLt/X1h3cfx9ndgdDBgUZOJliyWcsmkHW6nEvFt3duaXJCDlG2rsz/52+NnMxylFe1dSpPz5uf9f1LulzqyioUnb2E1ZiRs4RJx4aT+Nm+Dr2u9FI1mQdOM/fJaUZKJliy3gMC8O3pQeqGQx16Xf6Rc5SeLxfb6Ag3NG7RKEqKKjlz7HyHXpey6TB+fX3o3d/XSMkESzb3kclkZJdQfKVjZ5bu2niEaT0DmfjKr42UzLJUVLZ1KpOXOh8fHwDKKrt3qZtwYh4L8yez+a3OnY9YVlJLcsIp5j81w8DJBEvm19uLkEE9SVqR2qnX5x4soKKkltELRhk4mWDJRs+Pprykjrwj5zr1+qRVafQf1ocege4GTiZYsvmPx3PgYFH7KteO2vBdGvcOCmfUbx81cDLLU940H5Cg1Pn5tZ1perm0e5e6qd5xbHt/T5euUVleR+K2bBb9di4yh45vNihYF1cvZ6ImhLPzq449+f25U+n51FY1EDMv2kDJBEsWM2cEtVVNnDp4pkvX2fnNfqLiBuHmLr5XCbDo1SUkppyjsqZrRxVuWZXJA5ERBkpluYqK2nY3CAgI6NTrO13qevXqBcCFy8pue6rEX8v+TO7rBTQ3dv0g9ZqqRravymTx09NRODkaIJ1giVS2KiYvjmbzh7sNcr0TyXk01rcwcpbYb6w7GzlzGI0Nak6knb71F9+GzR8nEHf3GGwUYkur7koul3PHa3ewfeMRquu7fqRcU6OazOTTvLbxbQOks0x6PVy8eBH4qWN1VKdLXc+ePZHJZNQ3yKms6X6LJZ67/DsqPmmlPKNzwxg30ljfwqZvU1j09DRs3JwMdl3BMuj1euYvn8C6t7Yb9LrZ+06hbtUyfNpQg15XsAzDp0ai1ujJTs416HXXvr2d+U/EQ2urQa8rmD+VjZIlry1h/apMGgxQ6K4qPl9BfWYJv/nmHwa7piWpqpFTX1+PTCYz/ZM6W1tbevToAcD5i8rOXsYi3Xd2OR6bPTm9/bjBr93S1Mraz/Yz7/EpOPqJeSvdhV6vZ8Gjk9nw3k50Op3Br5+19yTI5URNFcWuO4mKjwS5gqykHINfW6fTsfGjBOY/OVUUu27E0cWeBS8tZPV3aahbOn7g/K2cPHqeHpV67nj7JYNf29wV/tilevToga2tbaeu0aVHbMHBbfsWnT6r6splLMq0nMXEHBlC6redm8B+O7QaLas/SWLqvePw7ONntPsI5mPGA+NIWplmkKH8X3J493EUKiVDJkca7R6C+Rg6aRAKWxsO773xRuiG0FTfzL41GUx/aILR7iGYDw8/N6b+eiYrv01FqzH8m8+r9u86wSTPHox7tXutiL3apfr379/pa3Sp1IWHhwOQV9B9St1kr4lsfdsw851uZf2XB4iZNYyAiM6NrQuWYcKiaI7vz6GiuMro9zq48xh2TnYMnjjQ6PcSpBM5IQJbJ3sO7r69/Q27oqK4ipNppxk/L8ro9xKkExDsS+zSCaxbkWGS+238IZ37IkJNci9zkXdpLgChoZ3/5zZIqcvtJqXunxV/5cjf8tCbcGXI1h/SGTA6lODoEJPdUzCd6KmDKS4o5kLOzXf1N6SMbUdxdHNi4Dix0swaDRwThoO7Mxk7j5nsnudzLlF6oYzoyeLPlDUKHhzIgOnD2bL+sMnuqdfrSdpxkj9tecdk95RaXl4eAGFhnT+Wr0ul7mqbLL6ipLLauhdL/KboWa58pqH2cMc27DSEhHWH6RnqT8QE8Q3TmgyI6Ye2uYVTqfkmv3f6liO4erswYLQ409OaDIgNxdXHnfRtNz+q0BhOpZ9Bp9USMaKvye8tGM+AUSEERIeze7vxn/r+XEVpDQ0HS3nky7+a/N6mVl4p5/Lly8hkMumGX52cnAgJaXuClJVj05VLmbU5p+6hz/4gcjdnSZZh//bjOHq5MmKWGOKwBgH9fPH0dubgDtM9Tfm51E2H8fT3JGxU9xrisFZhI0Pw7OlN6tYjkmU4uCsbT383AoI8JMsgGM6I+ME4BfuzP/Hm504b0/GD5xigsWfK35+RLIMpHPuxQ4WEhODs7Nzp63T58drQoW2r6Y4c79xKDXM37vh8ZuWNI+HDRKmjcDApl2YNjLsjVuooQhc4utozbGwo+1amSR2F5A0H8e3tQ8gIMbxvyfoPD8anty/JGw9KHYV9q9OJmjwIB/vutSuCtRm/MJomB0cy089KHYUd6w+zpE8w0S89JnUUo8k6dx8AQ4YM6dJ1ulzqoqLanhwdOWGdT+piXWM58E2y1DHanTh0jkuXapj28CSpowidoNfrmb50DBs/6Nyxcsawf20GPUN60C8qWOooQieEDOtDQP8ADmyQvtBdtfGj3cxcNklsdWKhpt03jos1Gk6cuCh1lHaJO7K5o1cfqWMYzZEjbU/Yhw0b1qXrdLnUDR48GIVCweVSJReLrevIsF8VPoF8fQuVHTyg2NjO5hZzJP0cC1+YI44VszDzHotj0wc7pY7xP5JWp9NrQCB9h4r5UJYkeEgfAgf0ImmtaVYkdsSmj3Yx7/EpUscQOkAmk7Hw5UUczb1CwbkyqeNcp7KsnurKBu75+FWpoxjchcsKLl26hFKpJDKya1tOdbnUOTo6tg/BJh+06+rlzMbE4wsZejiCY6sPSR3lhspKati2MpMlz0zH3stV6jjCbZh8Zwzpmw4adS+6rkhckUrfwb3pM9h63w1bkz4De9EnsjeJq9OljnJDzY1q0rcdIW6JOHvYEtg72rLktSVs23iE0ooGqePc0KHkfMY6eDHq1celjmJQqYfautOwYcNwdOzaMaEGWbI6ZswYwLpK3QSP8ew2g3l0N9PcqGbNp/uZuWwi3n17SB1HuIkR8YO4mHeR4oIrUke5qT3fJxMS1YdeAwKljiLcRK8BPQkZ0Y89K4y3CbohFJ8r4+KZEkZMDJc6inATXgEezHh6Nqv/m05Tk3kPmW9fd4h7gzu/OtQcpWa3dajY2K7PlzdIqRs9ejQAJ0+rrGJrk8cvPE3NfytQN5v3H25oO6pn7ef7iZ4xhL5iTpRZChkShFyvk2Trks7Y/d9kBsSG0TNcFDtz1DPUn7BRYez+PkXqKLflVPoZFEoF/QZ27ixLwbj6DurFyDvGsHZFhlGOKDQ0dYuG8wVXWPbln6WOYhAV1XJOnDgB/NSlusIgDczX15ewsDD0ehlJaZb9tG7yiQUMyAghb7N0W010xrYVGQRGBBIZN1jqKMI13Hxc6DvAn7TNptu00xB2fr2PQWPDCegvfhCbk4B+fgwcF8Hu7w5IHaVD0rYeoV9kEO4eDlJHEa4ROTaMwFFhbN1o+n0Nu+L4oUKGK1yJ/qPlr4bdm2KHTqcjIiICX1/fLl/PYI/VpkxpmxC7a79lT9wf7TqevZ8kSR2jU/Zvy0bhYMeYxaOkjiLQttJ18qJotn9u3sP4v2THl0kMmTQQv2AxtG8OevT1JTIukp3f7Jc6Sqds/zKJyXeNFitizcTYecOR+3mxb690e9B1xc71R1gaZPlbMe3JGAlAXFycQa5nsFI3efJkFAoFuQU2XLhsmatgHzr3KOp19bSY+ZyCmzmaeobLxbXMWG6YPyBC5819ZDKbPzSfrUs6Y9vniQyfOgSf3l1/Byl0nm8vb6KmDmX7l0lSR+mSLZ/uYc5j8VLH6PZmPjiBy/Vajh4x/QlJhtLS0kp5SQ13fPQHqaN0WtFlBbm5uSgUCiZNMsw2ZQYrde7u7kRHt61y2plkmY/Y+9hGcHy1+ez11FnnckvITM5n0e/monLp2koaoXPGzI3iyO5jZrvStSO2frqHUbOi8O7lI3WUbsk70JORc0aw9QvLfOJ7rab6ZrKSTjJ29lCpo3RLKpWCxa8uJj37MgXnyqWO02UHk/OZ4OgtdYxO25bY1pVGjBiBu7u7Qa5p0FUNM2bMAGBboj1qC3vY9Wrpy5x+q1DqGAZTcaWOjd+kMu+JKXgEiR/GptR/WG+aquu5kHNJ6igGs/njBGLnReMR4Cl1lG7F09+d0fNj2PzpHqmjGMz5nEs01TUROlgsxDElDz835v1+AetXHaSiuknqOAaTmZzP8+vekDpGh6lbYVtS25zl2bNnG+y6Bi11o0ePxsvLi6oaBQcyLGfBRPzJhXgk+VGZWiB1FIPStGpZ8+k+YuZE0Xd4P6njdAtO7g70HeAv6ZmuxrLpw12MXxKLWw9xrqcpePi5MW7JaDZ+vFvqKAZ3cFc2fSN74exsncdLmpvgwb2IuWccq79LR9OqlTqOQZUUVdK7RkHMn5+QOkqH7M+wo6amBm9vb2JiYgx2XYOWOqVSyZw5cwBYv9Nyhv1GOY8l6ZN9Uscwmm0/ZNCjvz/DposhD2PS6/VMvSuWbZ/ulTqK0Wx4byeT7xqDq4+b1FGsmouXCxPuHseGD62v0F217fNEpt43TiycMLKoSRH0iAph6wbLWuHaEbs2HeHOAMs6DWdT0ngAZs2ahVJpuHOSDb6p3KxZs1AoFJzIs+HUGZWhL29w8/OWYrdHS2uLRuooRpW66wRqvYxJS8dKHcVqTb13LLu/tcyViR2x7t0dxN83AWdxkolRuHg4Ef/ARNa/b37HyRnanu+TmXr/OKljWK1JS0ahdnYmef9pqaMYVWuLlubGVuL+/azUUW7LydMqsrOzUSqVBh16BSOUOi8vr/alud+tdzL05Q0u0jGa1M8ta8+nzjp5qJDTuSXMf3a2ODPWwAbG9udS3iWqr9RKHcUk1r69jenLJuHk7ix1FKvi6OrI1IfjWPfuDqmjmERlaQ2XzpQyaKRlPWUxdzKZjPm/X0juxTqOn7Ceub03k7Q9m3meljFP84cd84C2reC8vLwMem2jHP9wzz33IJPJSD5oR+FFwz1WNLQ7ztwP26xnwujtuFRYwY41B1n81DRc/A37h6m7cvNxoUegO8f3W+Z+T521+j9bmbE8DgdX83/zZgkcnO2Z+egU1ry9XeooJnU8OZcefXxwcxdvNA3BxdOJxa8uZvumo1wu7R5vMq+qrmhgxtsvSB3jpgovKklOTkYmk3HXXXcZ/PpGKXW9e/duPw/2hw3mO7cuzDaKg9+kSR3D5Job1az+dB/jFkXTRxwt1mUTF49k51fWOyfzZta8uY3Zj0/B1skytzEyF7YOtsx+cnq3K3RX7fxmP5Pu6Pq5l91d34GBjHtwMqv+m0azBRxzaWgpe3KY4Wrep+Cs3H0fAGPGjCEoKMjg1zfaQa1Lly4FYHeyPcVXzG8z4oX596Dcbfl7iHXF1u/T8e/vz4iZUVJHsViT74wh0cKObDIkvV7Pmv9sZf6vp6OyEysZO0Nlo2L+U7NY/eY29Hq91HEkk7Q6nbgl0VLHsFjR8YPwHx7ClvVHpI4iqbqaRia/aZ5z6y6VKNi1q21D+nvuucco9zBaqQsPD2fEiBHodDK+WGl+wzMD7UaS/kWy1DEkl7r7JHVNrUx9aKLUUSxO30GBVBdXUllcLXUUSel0eta8uZVFz85CoTL/xVHmRKlUsOj5Oax5u3sXOoCK4ipqyusJHiCOpeuoqfeOpVZlS/KBfKmjSG7/zhPMczPPuXVfbrobrVZLdHQ0AwYMMMo9jFbqAJYvXw5AQrI9+YXmM7cuPmcBzqLPtcvLvsiR9AIW/XYuKjcx8f12KBQyIqL7WuV+dJ2h1epY89Y2Fj8/B7lSFLvbIZfLWfTCPNa8sx2tVid1HLOQuSOLiNhQlHrr2kvNWFS2Kha/spjDOSXk5pVKHcdsaFu1jPybee1bl39OSUJCAvBTNzIGo5a60NBQJk+ejF4v45PvXIx5qw6JchhDyufWv/VER5RfqWfjNynMfngiPcLMe06COZjx0ES2fmI9u/wbgqZVy/r3drL4hdkgN78pF+Zm8e/msf6DXVa3GWxXbf1sLzOWGeYcTGvWo7cPs5+fw7qVmZRXN0sdx6wkbs9miZfh56t1xWfrZgEQFxdH//79jXYfo5Y6gF/96lcolUoOHrPlULaNsW93W1RyOepm696XrjM0Gh3rv0pmwOgwBk0cJHUcsxU5Lozc9Dw0avFn6OfUzWo2f5TA4hfmiGJ3E4t/N5/Nn+xB3dy95/XeiEatIfdQAUNixSk4v2TQ6P4MmD6MdSsyxVPeG1C3aFCpzGd08OgJGzIyMlAoFCxbtsyo9zJ6qfP392fu3LkAfPCNCxqJ35Q+felpSr4Wj6lvZu/Goygd7Zhw12ipo5gdla2KgD5e5GVa15FyhtRU38yur/ax4OmZotjdwIJn57Dj63001YunK78k79BZAvr3wEYhkzqK2ZmwKBplDy/27DopdRSzlnfiEg99/1epY6DRwDvfDgdgzpw5BAQYdyTM6KUO4P7778fFxYWzF1Ss3yHt1gfO2j5c3tm99hPrjKz0Agryy5j39CzkjmK7iqum3TeWbZ9Y7zFghlJbWc++NenMeWyK1FHMyuzHprBvbQb1VQ1SRzF7O75IZJo4baKdXC5n3osLKChp5OjRIqnjmL2zucUMaZb+Z9e6HY6cO3cOV1dXoz+lAxOVOjc3Nx599FEAvljpTFmlSW77P+Jz5uGSIt753a6LheXsXHeQBU9OwT3IR+o4khsQ048zhwvQ6cRwx+2oLK7m4K5spv8qXuooZmH6w5M5uOs4lSXVUkexCBqNjjPHzhMxvLfUUSTn4evGwpcXsn1LFkXFNVLHsRg6jY6ofzwu2f3LK+V8udoXgEceeQQXF+OvLTBZu5oxYwYRERE0Ncv54BtpFk2E2sRw+Lt0Se5tqZobW1n7+X5GzhhK6OgwqeNIRqGQERzmz8mUPKmjWJSSwjJOpuUT/0D33jIn/r7xnEw9TenFSqmjWJSTaacJHhzUrVfDho3oy8g7x7D6+3RamrrfhsJdkZaUy3w7f8nu/9Gae2hqaiIiIoIZM2aY5J4mK3VyuZxnn30WuVxOYqo9mVmmXzThpLKhrrrR5Pe1BjtXH8TF150xi2OkjiKJqfeOY+tnYti1M4ryLnP2eBHj7xwjdRRJTFgSS8GJixQVXJE6ikXa+kUiU+4fL3UMSYydNxznfj3ZvkVsndQZtdWNODpKsyl6RpYtCQkJyOVynn76aeRy09Qtk46DhoSEsGDBAgD+9bEb9Y1iKNSSHNqfR1FRFfOentmt5tn17O/HlfNXxGrXLjibfYErRZXEzBspdRSTip0znJKLFZw7eVHqKBZLo9ZQdrGSnn26z1nVV+fPna9UczDznNRxhA6qa5DxxqehACxYsIDQ0FCT3dvkk9t+9atfERAQQFmFgve/Mt0w7LOXnqb0S7HqtasunLnCjrWHWPDkFLz6+kkdxySGjh9A5rajUseweLmZZ2hqaCFq6lCpo5hE1JRIGhtayDtcKHUUi5e5I4thEyOkjmES3gHuLPj9ArZvyuLCpSqp41i83OOXeGilaVfBvv+1C2VlZfTs2dOoGw3fiMlLnb29PS+99BIymYztSQ6kHjLNo1E7TW+uJOSa5F7WrqWpbZ7dsMmDGDhhoNRxjGpE/CCOJoihD0M5lpSD0kZFxBjjHJFjLgaODkNpa8Ox5NNSR7EaR5NOEj3ZuovdwNgQhs6PYc2KDFpaxPw5Q7hQcIXBtXYmu1/qYVt2JDkgk8n4/e9/j52d6e4NEpQ6gEGDBnHHHXcA8K+PXampE8Owlmj3+sOonO2ZeM9YqaMYhUIhw9vflQs5l6SOYlUyd2ThFehJ8NC+UkcxiuDI3nj18iJzV7bUUazKhdzLeAd6WO2iiYmLR6Ls4c2u7celjiJ0UnWtjH9/FgLAHXfcwaBBpt/EX5q9RYBly5YRFBREVY2C1z90o5ufZW2xstIKyMu5zMLnZ6NycZQ6jkFNWTqGXV+J4+SMYf+aDPoN60uPftKtTDOGHn196TesL/vWHZQ6ilXa9c0B4u+zrr3rVDZKFr60kNyLdWRlif3nLJVOB//8fD4VFRX06tXLJHvS3Yhkpc7W1pZXXnkFlUpFyiE71mw1XiG45+y9aLaIVa/GUlxUxabv0pnzSBw9wgOljmMQzh6ONNc3iWOcjGjXN/uJnjEUV183qaMYhLuPKyNmDGPX9ylSR7Fa6mY1LU1qnJ2lWdFoaP59fJj9wlw2rjtM8ZU6qeNYrYqyOqZ89Fuj3mP1VkfS0tKwsbHhtddew9ZWmj+jkpU6gP79+/Pkk08C8NF3zuTkq4xyH39ZJHmrDxnl2kIbTauWdV8eIHxUCEPiI6WO02Xj549gz3+TpY5h9TZ9uJsp90/EzsmyV1PbOdgSd/8ENn8qtr0xtj3fpzBuYbTUMbps6IQBhE9tO79V02qdQ8rmIivzLHFaD6NdPydfxSffuwPw61//mn79pDu3WNJSBzBv3jwmTpyIVivjT2+5UVdv+Pl1CrkCjUacAmAKiZuz0MjlTHnQcjeb9erpTsXFcqljdBtr39rG/N9MR640zps6Y5PL5cx/aiZr390pdZRuo6qkGm8/aTaxN4SpS8eicXFmz25xfqspaNRaVCrjnENd1yDjz+8ORKvVMnHiRObMmWOU+9wuyUudTCbjhRdeICAggNIyJX9/zw1Dn8KkFxP2TOrk4fMcyTjLot/OxcHbTeo4HTZySiQpG8STXVPR6/Wsf28nC5+dBXLjfOM1poXPzWbdB7vF9xkTStl0mOhpljciYO9kx+JXFnE4p4TjJy9LHadbMcb/nlod/O3jeZSUlODv788LL7yATCbtwk/JSx2Ak5MTr732GjY2NqQdsePzFc5SRxK6qOJKHWu/OEDcPaPpO1y6R9Ed1bO/H8VniqWO0e20NKnZ830ysx+zrHNiZz86hT0r08TcSwmUnCsjMNhb6hi3LXhQIPGPTmX19xmU1zRLHUcwgM9+cCY9PR0bGxv+9Kc/4eTkJHUk8yh1AKGhofz2t20TGb/b4MSeZNPu7SIYx+b/puHb15fRC0dJHeW2DI4N5dBOsS+dFKpKazi27xQT77aM1Y2T7hrDsQO5VJWKA9alcGh3NoNGm26n/q4YPTsK38hgNq0/InUUwUD2JNvxw8a2Evfiiy+a9NSImzGbUgcwZcoU7r77bgD++aEbuWcMM8dGjIpIK33vKS5frmbeM7NQOJnvtieuXs7UlFVLHaNbK8orpuxSJSNmDJM6yk2NmDaU0ouVFJ0Rp9RIqa6qATd3e6lj/CKFQsGCF+dzuU5DalqB1HG6NZ0Bi0DeWSX//MgXgHvuuYe4uDiDXburzKrUQdsxYjExMahbZfzhX+6UV3Y9osRD3AJQmH+FHWsOMu/xOHxDA6SOc0OxM4dwYE2G1DG6vZOpp1HZ2hA6sr/UUW4oLLofClsVOZnih7TU9q/NIGaWeb4B6BHkzbzfzWPrpmOcK6qUOk63JzdQEbhSIecP/x6AWq1m1KhRPPzwwwa5rqGYXalTKBS8+uqrBAUFUV6l4Hf/8KC+sWv/McSTOvPQ0tTKui8OEDE6jGFTh0gd5zoKlQKNmBdlNtK2HCEwvCf+Iea1ObF/sB+B4YFk7BBD9OZC26pFKTOvb/LDJkYQPnUoa1dmiuO+zIQhntTVNcj43eujKCsro1evXrz66qsoFOa1uMvsSh2Ao6Mj//znP/Hw8KDgvIo//Msdtfj/wmokbjpKixamPzoFmYN5DJ1MWjyKPWLTWLOy57tkRs6MwtHdPBZOObk6MHJWFAkrUqWOIlwjcVU6E5eYx5xdmUzGjKdm0WzvwN49p6SOIxiQuhVeecOdc+fO4enpyRtvvGEWCyN+zixLHYC/vz+vv/46Dg4OZJ205R9d2OpEDL+an5ysC6TtPcXC30zFJcBT6jgoFHI0ao3UMYSf2fD+TmY9Go9MoZQ0h0wmY+ZjU9nwUYKkOYT/pW5Wo1BK/7TExdOJxX9YRErKGXLySqSOI/xMV4ZfdTr4x/tuZJ20xcHBgddffx0/Pz8DpjMcsy110HbixF//+leUSiWJafa8/41Lp4ZSxfCreaqpbGDtZ/sZO28EoaPDJMsxIKYfuRmnJbu/cHMb39/FgqemS5ph/lMz2CgKndnKO3SWiOG9Jbt/2Ii+jL13Iqu+T6emqkGyHMIv6+zwq14PH3zjTGKqPUqlkr/97W+EhIQYOJ3hmHWpAxg+fDi///3vAVi7zZGvVnf8cad4Umfetq3MxNnbjQl3j5Hk/r369eDssfOS3Fu4tZYmNSmbDjPlAWlOKYm/bwIpmw7T0iTmXJqrs8cvEBgqzfzLiYtH4tjbn62bsyS5v3B7Ovuk7ouVTqzZ9tPWJVFRUYaMZXBmX+oA4uPj+fWvfw3A12uc+W59x7bFEE/qzN/h5NPk55aw8LnZqNxMN4dKJpOhVYsf1uau9Hw5F/JLTL7VyYhpQ7l4ppgrl6pMel+h4/R6PXKt6c5QVdmqWPjSQk5frOPwEfGm0Nx15kndf9c58u26tp9HTz/9NFOmTDF0LIOziFIHsHjxYpYvXw7Apz+4sGqL+e53JnTO5QuVbPoujZkPTaDX4N4mueeYOcNI2XDQJPcSuiYvswBbezv6DuljkvsFRwZh42BD7uFCk9xP6JrUTYcZPW+4Se4VGNqDWc/MYsOaQ1y6UmeSewqmtXqLI5+taDtf+LHHHmPBggUSJ7o9FlPqAJYuXcpDDz0EwAffuLBuh8NtvU4Mv1oOjUbHxm9SCBrUi5FzRhj9fo4udtRXNxr9PoJhpGw6xIDYMFyNfKawi6czYTFhpG7NMup9BMOprazH0cX4q+ljpg+hT+wA1q8+hFZr4IPKBaPpyPDrhp0OvP9NW6FbtmwZd911l7FiGZxFlTqA+++/n3vvvReAd75wva1it7j3PkqXBxk7mmBAyTtPUFHVwNzfzDDaticKhQy1mCdlcbZ+uodpyyaC3HgrHqc/HMe2L5OMdn3BOLQaLUq9cYZgZTIZc5+fR5ka9u8XC6ssib2zHTZ3X76tr1291YG3PncF2h4k3XfffcaMZnAWV+pkMhkPP/xwe3N+5wvXW86xG04CMbHmtYmpcGsFp0rYvfEIC389FZ9+hv/vN3r2MNI3Hzb4dQXj2/zJXuY+MdUo157zxDQ2f7bXKNcWjCt182Fi5hh+CNanlyeLXl7Irp3HOVNYYfDrC8Y1fHQ/nnT+5JZf9+06J97/uq3Q3XXXXfzqV79CZmFDfRZX6qCt2D366KM88MADQNscu0+/d77JgogGnFW2poonGFBTg5q1n+9n8Phwg59CYecohl4tVVNdE9kHchmzKMag1x2zYCTHk3Npqm826HUF06ivbsTB2c6g1xw6IYLBM0aw+ocMmhrFk31L5GBvA/zyVjN6PXz6vTOfr2hbFPHQQw/x6KOPWlyhAwstddBW7B566CEee+wxAL7b4MS7X7p0eoNiwbzt2dh2CsUMA55CoRfLoi1a4cmLaDU6+kUFG+R6/Yb1RavTU5hbbJDrCdLQ6wzz/7VMJmPmM7NQOziQsPukQa4pmB+dDt772oXvNrRtW/L444/zwAMPWGShAwsudVfdddddPPvsswCs2+HIPz9wRXODgwHmBaVy+aFeJk4nGFJO1gWSE06y8NdT8Qjy6dK13HxcqL1SY6BkglTStx5lQGwYDm5dO67Hyc2RAbGhpG8XZ7pautqKetw9bm8R3S9x93Vl0UsL2Z90mpPidAiLZmtvg+LOsht+rlUDf3/PjbXb2qZwPfvss9x5552mjGdwFl/qAObNm8fLL7+MQqFg534HXvw/Dxoar2/Z0Wxh0gRR6ixdXXUTaz/fz4hpQxg8aVCnrxM1cQAZW48aMJkglc0f7WbWI/FdWjgx45F4Nn8q5tFZg4ztWQybPLDTrx88JpSRi0ezekUGdbVNBkwmSCF2Uhi/dn73fz7e0Cjjd//wICHZHoVCwUsvvcS8efNMH9DArKLUAUydOpW///3v2NnZcSjblt/80ZPyymv/8RqxU6gkyycY1q61h8BWxdSHJ3dqOFaukKMTY/VWY+8PqUx9YHynXjvlgYnsWZFm4ESCVHQ6HQpFx3+0yWQypj05A5mHGzu2HzdCMkEKtnYq4Pq50+WVcn7zR0+OHLfF3t6ef/7zn0ybNk2agAZmNaUOICYmhnfeeQd3d3cKzqt4/GUvzhX9dBD43F4HKF/eW7qAgkEdP1hIZnI+C38zFRd/T6njCBKqKK6itKiCgeMiOvS6QWPDKS2qoLKk2jjBBEnI5B2bD+Xs4ciilxaQkXmWYydvb+sLwfw5utijX1R63cfOX1TyxB8HU3BehYeHB++88w7R0dESJTQ8qyp1AGFhYXz44YcEBgZypULBk694cvi4DQDRsnXEjTfNbvSCaVSX17P2s/2MmR9N+Jjw236dpU6CFX7ZsaRTBA0IxNnT5ba+3sXDiV4RvchOzjNyMsHUOrJYIjw6mLH3TmT1ikyqKn55haRgecZNieBp1zfa//7gMRueeLUPpaWlBAYG8sEHHxAaGiphQsOzulIH4O/vzwcffMDAgQNpaJTzwt88WLfDAb1eh0L8MLdK21dmYO/hzOR7bz0EZ2uvoqVezJWxRts+38vUByfe1tdOeWCi2GDYSqmbW7FR3Pp7/eQ7Y7Hr6cO2LWKBjDVq+3GvQ6+HNdsc+N0/vKmvr2fgwIG8//77+Ptb3/61Mr0V7+vQ0tLCG2+8wc6dOwGYNbmR4Ls8OJD9FHkvJkkbTjAKbz8Xxk0bzLZv9tN4pfqGXzNsYjjnj1+grEhsImqNvAM9GTS6P3u+3feLXxO3dBzHDuRSXiJWQFsj3yAvAvr5cfTAjU9+cHSxZ/qTM9i/PZsrtWJPQms0dspACuYf5KOA9bz1mStb97atiJ4+fTrPPfccNjY2Eic0Dqt8UneVra0tL730Eo899hgymYwtexxI/HcNHgFSJxOMpayklrVfJTPpjlj6j+p/w6/x8HUVhc6KlRVVUF/TRN8hfW/4+eDIIOpqGkWhs2Kl58vx8ne/4ef6D+3NpIfjWbMyUxQ6K+bu6ci/3Tfy3F882LrXAblczuOPP86LL75otYUOrLzUQdvcqbvuuov/+7//w9HRkexTtuR/9ikDXjX8UTKC+dj6QzquPTwYf+doqaMIEsjcnsWQSQNRqK5f8a5QKIicNIjMXWJ1Y3c0YdFIXEMC2bxRbGdkzcZOGUh6v5088vJgsk/Z4ujoyP/93/9x5513Wv18aqsvdVfFxMTw0Ucf0bNnT87nVxJQXkTp5Fb0WO3oc7d36MBp8vNKWPDsbGw9nNs/LpN3mz/23dqWT/Yw69H46z4289F4tnyeJE0gwaSu/eFta2/Lwt8v5HRRDQcPF0oXSjA6nQyUY4q59O5xSktL6dmzJx9++CGjRo2SOppJdKufbkFBQXz88ceMGTOGTZu2MC/Agxa3AvQyrdTRBCMpLqpi43/TmHbfePr+eJyUXuxP1y20trRyJus8gye2bUQbOSGCgmPnaW1plTiZYApXp4v3HRjItCens37NIS6Xi9Wt1kyPllbbHLa9vgaNRsO4ceP45JNP6N27t9TRTMaqF0r8Er1ez4oVK/jiiy9wdnamorgBu6oQ5BrDnCkqmKeRk8JQ6nTYKWGXWPXYbcxaPpnkdemMnhfN1i+SpI4jmMiUe8fS3Kyl1dGR9IyzUscRjEwna0RtfwK9vAGFQsEjjzzCHXfcYfXDrT/XrZ7UXXV1nt0bb7yBXq9HYd9Kk/cJWu3LxHCsFcvYm8uFC1UED73xBHrBOm37LJH7X1vCti9/eTWsYH2CBwdxvqJJFDorp0ePRlmM3CsbvbwBT09P3nrrrW4xf+5GuuWTumtVVlby5z//mdzcXBobG1E0emJb0xuZXnnrFwsWqWeQJ4GBbiT/cEDqKIKJTLl3LLu+S5Y6hmAiY+aN4EJFC0ViuNWq6Wml1fY0WtUVAIYOHcqrr76Kp2f3PWGoWz6pu5aHhwf//ve/ufvuu7G1tUXrUEGT93G0NnVSRxOM5OL5CmzdnPAbECR1FEEQDMw3yAuVn5codFZOK6/Grd8ZtKorKBQKli9fzn/+859uXehAlDqgbZuD++67j7feegt/f39UDtDsmYPa+aIYjrVSSVuOMXb+CKljCIJgYGPmRZO078abDguWT4+OVtU5NE7HKCkpISAggPfff5+lS5eiUCikjic5UequERERweeff87EiROxsbWh1fkSzV4n0SnFkVLWKHHbMaY+MkXqGIIgGMjU+8aRtO+M1DEEI9HJGmixP4LGthCdTsfUqVP5/PPPGTBggNTRzIYodT/j6OjIyy+/zIsvvoiTkxNyhxaavI/T6lgsntpZmaryBiprmgkdP1DqKIIgdFFoVF8qWuVUtogtqqyNHj2tqgvo3bPQK+pwcnLilVde4eWXX8bBwUHqeGZFlLpfEBcXx5dffsmwYcOws7dF7XqBZq8cdArx1M6aHEk5Q3hsKHa+HlJHEQShk+wcbAmbMozDWUVSRxEMrG2rkiNobAtQq9WMGjWKb775hvj4+Fu/uBsSpe4mfH19+de//sVvfvObtncDdo00+ZwQT+2szNbvM5i1bJLUMQRB6KSZD09i88YsqWMIBqRHj0ZVhN79KDpFLY6Ojrz44ov885//xMvLS+p4ZkuUuluQyWTMmjWLr7/++sendjY/PrU7iVYpVldZA51OR8a+XCbcP0HqKIIgdNCEJTGkH75IN9+dy6ro5HW02B+m1fYMarWa4cOH89VXXzFjxoxuufdcR4hSd5t8fX3597//zZNPPomjoyMKRzXN3idQu1wQx4xZgcsXKmnWyAgT8+sEwWKEDg+mUWXH5cpGqaMIBqBHS6vNGTTOR9vnzr3wwgv8+9//xtfXV+p4FkGUug6QyWTMmTOHb7/9ltGjR7etkHUqpsn7OBrbaqnjCV10cH8eIdEhuPYW3zwEwdy5eLkQMnEwB49ckDqKYABaRQUtDplobIrQarVMnDiRb775htmzZ4uncx3Q7U+U6IrU1FTefPNNampqaG5uRtHkgU1NEHKdjdTRhC5Y+PA41vxnK7oasQG1tRAnSlgXmUzG4tfuZPWKTKmjCF2klzXTalPQfiqEr68vzz77LDExMRIns0ziSV0XxMbG8vXXXzN37lxsbGzQ2lfS5HMMtdNl9Oikjid00s7Vmcx5ZLLUMQRB+AWzH4tn+9ZsqWMIXdC2ifB58DyKVnUFuVzOkiVL+Prrr0Wh6wLxpM5ATp8+zZtvvsm5c+dobGxEprHDpiYIZYub1NGETgjq501gTzf2fSsOgbcG4kmd9Ri/cBQXKlsoLKmVOorQSVpFBa22+ejlbVuEDRo0iKeeeor+/ftLnMzyiVJnQDqdjl27dvHRRx/R2NjYNiTb7NY2JKu1kzqe0EFDY4JRV9eRvStL6ihCF4lSZx0GjQnDtoc3h09cljqK0Ak6WROttvnolBVA29nrjz/+OPHx8WLenIGI4VcDksvlTJs2je+++4558+Zha2uL3qGWJp/sH1fJaqSOKHTA0bQCvPr2oPeIEKmjCEK3FxQRiHdEH1HoLJCeVlptzqB1PYROWYFCoeDOO+/ku+++Y8qUKaLQGZAodUbg6OjI448/zmeffcbw4cOxs7el1amYRt9jP25cLObbWYp9W48xeOIgPIL9pY4iCN2Wh58rkTNGkLj/tNRRhA7Qo0OjKkLV4xgamyI0Gg0jRozgyy+/5PHHH8fR0VHqiFZHDL8amV6vJz09nY8++ojS0tIf59vZYlMbiKLZAxniHYolWPTweDa+v4PmK1VSRxE6QQy/Wi5bexvm/W4hq1aKla6WQo8enaKMVtsC9PJmAPr06cMTTzxBdHS0xOmsmyh1JqLRaNixYwefffYZLS0tNDQ0IFc7YlPbC4XaRep4wi0oFHIWPjyOVf/ajFZsdWJxRKmzTAqFgiWv3cnqlZlotWKEwxJo5VVobM+iU7QtZPHw8ODhhx9m+vTpKBQKidNZP1HqTKyxsZGVK1eyYsUK9Hr9j4spXFHV9UTR6iR1POEm7BxsmHVHNCv/vErqKEIHiVJnmZY8N5tNe/JpaWmVOopwCzp5La02Z9Ep20Yz7OzsuPPOO7nzzjvbzk4XTEKUOomUl5fz1VdfsXPnTnQ6Ha2trSia3LGp64lcI/4HMFduHg6Mix/A+jc2SR1F6ABR6izPvCemcuBAAZWt4keUOdPJG34sc+VA29PV2bNnc9999+Hl5SVxuu5HlDqJXbp0ia+++oq9e/ei1WrRaXUomjzbyp3YBsUseXk7MXJsPza9vU3qKMJtEqXOssxeHkfGoYuUNYkndOZKJ2tEY1OIzuYKer0euVxOfHw8Dz74IP7+YmGZVESpMxOFhYV88cUXpKSktJc7ZZMXqjp/5Fp7qeMJP9MjwI3IqF5sfX+H1FGE2yBKneWYuWwSWSdLuVzTLHUU4QZ0sgY0NufR25ah07XNcxw/fjzLli2jd+/e0oYTRKkzN3l5eXz++eccOXIErVaLVqNF0eyBTV2AGJY1MwFBngyMDGCbKHZmT5Q6yzDjwYkczyvjYlWT1FGEn9HJ62m1KUSvKudqbRg1ahTLli0jNDRU4nTCVaLUmalTp07xzTffkJmZiV6vR6PRoGhyR1UfgKJV7O1jLvx7eRA5NJAt722XOopwE6LUmb+ZyyZx7NQVLolCZ1baFkCcb58zBzB27Fjuu+8+UebMkCh1Zu7MmTN8++23pKSkoNfr2xZUNLuiqvdHrnYW+9yZAf9Ad4aMCGKzmGNntkSpM2+zl8eRdaJEPKEzE3r06OQ1aGzOo1NWAiCTyZg0aRJLly4lODhY4oTCLxGlzkIUFhby3//+l6SkpPZyJ1c7oqrvITYxNgM+vs7ETAhlnVgVa5ZEqTNfC349jdS0QkobxKIIqenRoVWWoVEVoVe07cepUCiIj49n6dKl9OrVS+KEwq2IUmdhLl68yKpVq9i2bRtyuZzm5mZkGhtUDT1QNnoj04vNHaXi6u5A3JwhrH13p9ig2MyIUmd+5HI5i19Zwu61h6jSih9DUtKjQasqRqO62H4ChI2NDdOmTePuu+8Wq1ktiCh1Fqq6upoNGzawbt06WltbaWhoAJ0CVYMvygZf5DobqSN2Sw5Otsy6J4Z1b2+jpaxa6jjCj0SpMy+29rYs+P0CNmw8SnOjeEInFb2sBY3qIhrVZZBpAHB1dWXBggXMnz8fNzc3aQMKHSZKnYVraWlhx44drFy5kqqqqrZyp5ehaPJA1eCHvNVRDM2amFwuZ+GyMez4IpHqwlKp4wiIUmdOXL2cmfbkTNasPty+JYZgWjp5LRrVRbArR6vVAhAYGMiSJUuYNm0atra2EicUOkuUOiuh0+lISUlh5cqVnD59Go1Gg0ajQa52RNngi7LJExlyqWN2K7PvieHIriwuHCmQOkq3J0qdeQgM9Sdq3ig2bjomdZRuR48WrfIKGtWl9vlyAJGRkdxxxx3ExsYil4ufEZZOlDordOrUKdavX8/evXtRqVRtT++0SlSN3igbfZFrxbswU5kwawil+Zc4kSB+iElJlDrpDRodis+gvuzdd1rqKN2KTtaEVnUZjaoYZG1D3SqViokTJ7Jw4ULCw8MlTigYkih1Vqy6upqtW7eyYcMG6uvrfxyaBUWzG8pGXxQtrmJo1gSixvTDBj3JPxyQOkq3JUqdtMbMG4Ha1p6D2ZekjtIt6NGjU1S2PZVTVbZvFuzr68vcuXOZOXMm7u7uEqcUjEGUum5Aq9WSmprK+vXrOXbsGAqF4sdVs7YoG71RNnoh14mnd8bUt78v4UMC2fLpXnS19VLH6XZEqZOGTCZjzvPzyTlSyJnLNVLHsXp6WQsaZTFaVXH7KlaA4cOHM3/+fGJjY1EoxA4J1kyUum7m/PnzbNiwgZ07dyKXy6mtrW17etfihrLRG0Wzm5h7ZyTObg5MWzyCLR/vpv5S+a1fIBiMKHWm5+TqwKxn5rBt+wnqasWmwsaiR4dOUdG2gtWmun3xiaOjI9OnT2fevHlif7luRJS6bqqlpYV9+/axZcsWTp482f70Dq0SVZM3ygZv5Fp7qWNaHZlMxqy7R3HywEnyU3KljtNtiFJnWv2G9iYifhibt2QjfsQYh07W0La3nLIE5D9tCzN48GBmzpzJhAkTsLcX38O7G1HqBIqKiti2bRvbt29HrVZTX982PChvcULZ5NW2clavlDildRk5IRSFVsOB78U8O1MQpc50xs6PRuvkRNqh81JHsTp6WtEqy9CqitEpats/7uHhwbRp05g5cyaBgYESJhSkJkqd0E6j0ZCWlsbWrVvJzMzEzs6ureDpZW2LK5q8xPCsAQUFezFkZDBbPtuLukLMNzImUeqMT2WjZM7z8ziSfJrCsgap41iNn4ZXS9ApKkDW9iNboVAwatQoZs6cyahRo1AqxRtvQZQ64ReUlZWRkJDArl27KCoqAkCtVoNOgbLJE2WTJ3K1s1g920VKlYKZd43k2J7jFKTnSR3HaolSZ1zBg4OInDmCzVuz0bRqpY5j8fTo0cmr0apK0SrL2k97AOjTpw9Tp05lypQpeHl5SZhSMEei1Am3VFBQwK5du0hISKCxsZGmpiZ0Oh0yjU3b07smD+QaB1HwumDkxDBs5XoSv0qUOopVEqXOeCbeEUuLjZ0Ybu0iPXr08ga0ylK0ylL08pb2z3l7exMXF8eUKVMIDg6WMKVg7kSpE26bVqvl2LFj7Nq1i6SkJGxsbKiurgZAprFD2eQhCl4X+Pi5MHryABJXp1FRUCx1HKsiSp3hefq5MeGhOFJ3n6CkXpzf2hltRa6+bZ6c8gp6+U+rhB0dHZkwYQLx8fFERkaKrUiE2yJKndApLS0tJCcns3fvXjIyMrCzs2vbHgXa9r9r8hQFr5MmzxlKbUkl6WvTpI5iNUSpM6yRM4bi2tef3XvECu6O+qnIXUGrLLuuyKlUKkaOHMmUKVOIiYkRZ7AKHSZKndBljY2NpKamkpiYSEZGBg4ODtc8wbNte4LX7IG81VEUvNvUO9ibyOg+7F2dTvW5EqnjWDxR6gzD1duFuIenkJWaz9krYhPt29VW5OqueSL308bANjY2jBw5kgkTJhAbG4ujo6OESQVLJ0qdYFCNjY2kpaWRmJhIenr69QVPq0LR7N72q8VFrKK9DXHzhlF/pYqUlSlSR7FootR13eg5w3EK9GXXXvF07nbo0aJTVKNVlqNVVMA1c+RsbW0ZNWoUEyZMICYmBgcHBwmTCtZElDrBaK4WvH379pGRkYFKpaKxsRGNRgM6OYoWVxTN7ihb3JDpVFLHNVsBQR5ExfYjc+cxLh07J3UciyRKXef5B/sxcvFoDh/Io6hSnAxxM3qZGq2iAq2yHJ2iCmQ/rQS2t7dvL3KjRo0SGwMLRiFKnWASarWao0ePkpKSQkpKCg0NDeh0urZTLPQgVzu37YXX4oZMYy+GaW9gdHwEjvZKdv03GW1NndRxLIoodR0nl8uZ9uuZ1Nc0cSBDvJm4kbZh1Ua0inJ0ynJ08lqu/dbl5eXF6NGjGT16NEOHDhVz5ASjE6VOMDm9Xs/p06fbC965c+dwdnamqqoKAJnWBkWza9uTvBZXcZrFNRyd7Zg0dyhFx89zeMshqeNYDFHqOmbYpIH0GtGf3XtO0digljqOWdHTik5RhVZZiU5Red3WIwAhISHtRa5///7IZOINqmA6otQJkispKSElJYW0tDSysrKws7P7aZhWD3K1E4oWNxQtrmKxxY+Cw/wYOCSQtG1ZFJ8U+4Pdiih1t6dHHx9i7hjLiUPnyL8kTjmBq0/jatEqKtEpK//naZyNjQ1DhgxhzJgxxMTE4OvrK11YodsTpU4wKy0tLRw7dozMzEwyMjK4fPkyTk5O7U/x0CrbnuCpXdoWW2htu3XJGz11IG5OtiSsSKGxpFLqOGZLlLqbs3e0Jf6x6VRX1HMgvXsPterRo5c1o1NUtT+Ru/ZEB4BevXoxcuRIoqOjiYyMxM7OTqK0gnA9UeoEs1ZSUkJmZiaZmZkcPnwYmUyGTqejsbERAJnGBoXaBXlLW8mT67rfnBW5XE78gmFom1rY/X0Kulqx1cTPiVJ3YzKZjGlPzkQml7EzIRedTid1JEno2ktcNTpF1f8MqTo5OREVFUV0dDTR0dHiaZxgtkSpEyyGRqPh5MmTHD58mCNHjnDy5EmcnZ1pbGxsO5eWtn3x2ubiuaBQu3SrVbUOTnZMmjuEutIaktZmiHJ3DVHqrieTyZj4qyk4uzmQkJhHY33LrV9kRfSyFrTXlbjm6z6vUCgIDw9vL3Lh4eEolWJur2D+RKkTLFZTUxPHjx/nyJEjHD16lLy8PFxdXamvr6e1te3YIpnGDoXa+cd5ec7ItHZWP1zr5unE6CkDqS6uJHnjIVHuEKXuKplMxrgH43DzcmJ/SgHVlQ1SRzK6tuHURnSKmvZf157iAG1Pu0NDQxk6dCjDhg1j4MCBYu84wSKJUidYjfr6erKzs9tLXkFBAa6urjQ1NbVtnQJtc/Kuljy1848LL6xzE2QvP1dGTgynoaKWxNXp3brcdfdSJ5PJmLx8Kg7O9qRmnqOizHq3xNGjRSevu6bE1YLs+rNpZTIZISEh7SVu8ODB4iQHwSqIUidYrbq6Ok6cOMGJEyfIzs7m1KlT2NjYAG0FEAC9rK3gtTohVzsib3Xi/9u79/Co6gP/4+9zJpnM5AIkQIRwCffLQgBbUVlFUFvFlIvKFrGtPmyquz7Wy+7iiu62BXHXgq6oj/u47bobWa206NoKpiC6FlB/WgUrhIsCQYiBEIWEkNvkMjPn98fMOZlJJjcEk4yf1/PMM3O+3/P9nu9cMB/P5XuMgDuu9ual9Utm5pwcmmp8/HH9ezRWVHX3kL5239RQl5jo4jt3XEdiUiLb3j1E9Zn4mjw4tBeuAcusIuiqCoU4sxqM6D9rbrebCRMmkJOT4zzS0tK6adQi549CnXxjNDU1cfDgQfbs2eM86urq6Nu3L6dPnw5NoQKhvXlNqZiNqZhNKbgaUzCs3n9unifZzazvTSUhGOT/FXxEeVFpdw/pa/NNC3UZg/px2c2zCFgWW7cfpL6+qeNGvYBFI0FXNUGzynnGbP3e0tPTmTx5shPgxo0bR2Ji7/83LNIRhTr5xrIsi2PHjrF3714++eQTPvnkE4qKivB6vSQkJDj3rIXQBRihPXopmE3JmE3JvTroXXbNJNKS3RzdX8K+twq7ezjn3Tcl1P3FpWMZdelEqs7U9fqpSUKT/NYQNKuxzGqCrqpWFzRA6KKGUaNGMWHCBCfIDRkyRJP+yjeSQp1IhIaGBoqKivj000+doHf8+HH69u2LZVktgp4b05+MGRn0etm8eWMnZTF67AU0NfrZ9soHNJ6q7O4hnRfxHOoSkxK56sffJdGdQNH+4xwoqezuIXWJPS+cZdaEQ1wNllndaloR27Bhw5g4cSITJkxgwoQJjB07VrffEglTqBPpQHV1tRPyDh48SFFREaWlpfTp08fZo+fM7xV0OQEvFPi8mH5vj7/VmduTwOzcqZjBIJ8fOM6eN3Z195DOqXgMdZMvm8CI6eMIBIL88Z1DNDb4O27UzSz8WGYtQbM2FN7CIS7yxveRBg0axNixY50QN378eJ0LJ9IOhTqRs1BTU8Phw4c5dOgQRUVFHDp0iCNHjuB2u0lJSeHMmTPO3HkARiAxtCfPHwp5PTnsjRx3AeMmDgbgo7f28sUnn3fziL66eAl1mcMHcNENMwA4WFjC4bKeeRWrRRNBs84JcJZZi2XWtbn3LTExkZEjRzJmzBjnMXr0aAU4kS5SqBM5R5qamiguLnaC3pEjRyguLqa8vJzk5GS8Xi+VlZXOHHoARsCN2eTF8HswA57Qs9/TYw7jTp81nvQ+SRimyY4tuzl56Hh3D+ms9OZQNyArnYsXXgZARXkNH3xc0s0jCrEIhq88rcMyfQSNOiyzjqBZC2Zjm+0GDBjAiBEjGD16tBPgsrOzNbmvyDmgUCdynlVXV3P06FGKi4s5cuRIVNhLTU0lOTmZqqoq59ZnAFhG6OKMiKAXCnuebpty5ZKrJtAvLXSPy13b91O65+jXPoaz1dtCXdaoTKbNuwSAyooa3t/ZPXtLm6cMqcMyfOG9b77wcn2rqUMiDRw4kJEjRzJixAhGjBhBdnY2I0aM0N43kfNIoU6km1RXV1NcXMzRo0c5duwYx44do6SkhOPHj2NZFqmpqbjdbk6fPh11KBfLCAW7QBKmPyn0HAg9G/4kjGDieQ9937psDAMyQjPuV3xxhh1bCgnW9Ny7E/T0UGcYBpfcNJOMgX0AOPnFGXbuOf9TzlhYYDQQNOqxzPrwBQvRz+0FN7fbzZAhQxg6dChDhw5l+PDhjBw5kuzsbE3mK9INFOpEephgMMjJkyedkBf5XFpaimmapKSk4PF4aGho4MyZM9E3Yo8MfQF3+LU7FPYiX5+j4HfBkHSmzRiN1RAKnkf2lnBwV3GPuoNFTwt1hsvF+CunMnLC4NDUG6bBn/eU8sWJynO2jVBgawztabOfzYbwsh3aGtoNbQAJCQlkZWU5wW3YsGHO64EDB2Ka8XlHFpHeSKFOpBcJBAKcOnWKsrIyysrKOHHiRNTzl19+GRX6AoFAq4s2ALDACLoxAi2CXjARI5gQKg8vY5ldCoDjpg5jxOhMrIbQSfFln5dT+Pan3bonr7tDneFyceG8S7hgaHpo2TT5rPQMB/Z17RxFCwsIYBlN4cDWFA5sTVGhLVTX2GFgg9A8b5mZmQwaNIjBgwczaNCgqMeAAQN0vptIL6FQJxJH/H5/VOg7deoUJ0+ejHquqKjA5XKRlJSE1+vF5XJRX19PVVVV9B4/W9AMBb1gRNALusJlCRiWC+zXkcvhIDhkxAAmXjgcIyJYHvj4KMWflH5te/O+zlBnuFyMnDGR8dOynbIgsO/QSY5/Xu6UWQQBP5bhB6MJywi/xh8Obf6o0IbzHOM7aoNpmmRkZDBgwADnMXDgQAYOHOgEuAEDBuByuc7dByAi3UahTuQbxu/3c/r0aU6ePOkEvVOnTlFZWcnp06ejHg0NDbjdbjweD263m6SkJAKBADU1NdTV1cUOgbZwGMRyhYOeiRF+nTNtEkOHDoYmC4IGVhCsAOz7qIgTR74gWFOPYRkQDD8sI5RlIsq6svewq6EudOiS0J4u0wLDwjLDy3ZZgkFWzigmfWsMrgSwQgMEl8Wxsi8pLNxPaK9aKLxhBLAIhMOav8252TojKSmJ9PR0+vXr5zz379/fCW39+/dn4MCBpKenay+byDeIQp2ItMnn80WFPDv4VVdXt/moq6vDNE3cbjcJCQkkJiaSkJDgPPx+Pw0NDTQ0NNDU1ITf7ycYDJKQkMDo0aPJyMjANE1n75HL5cLlcmFZFiUlJZSWllJTUwMWoQeEwh72shFRHlq+LvdaNm/a0lxo50Gj7eXUtFSysrLIzg7tcbMsi0AggGVZBINBgsEg5eXlHDp0qPm+wWchJSWF1NRU0tLSSEtLc16npqY6oc0Obvay1+s96+2JSPxSqBORc8rv91NTU+OEPJ/PR11dHT6fL+p1rLLGxkYaGxudwNfY2Og8NzY2OnsG7YBon6Qf+dyyDEJ7tqqrq4n8z5392u7TfrYsC8uyooKay+XC7XaTmJjoPOxlt9vtzENoPzweT6sy+xEZ4FJSUrQnTUTOGYU6Eek1/H5/VNiL3GsW+bD3qkUuG4bhhL5YryOfI4NbQkKCzjkTkV5BoU5EREQkDmiCIREREZE4oFAnIiIiEgcU6kRERETigEKdiIiISBxQqBMRERGJAwp1IiIiInFAoU5EREQkDijUiYiIiMQBhToRERGROKBQJyIiIhIHFOpERERE4oBCnYiIiEgcUKgTERERiQMKdSIiIiJxQKFOREREJA4o1ImIiIjEAYU6ERERkTigUCciIiISBxTqREREROKAQp2IiIhIHFCoExEREYkDCnUiIiIicUChTkRERCQOKNSJiIiIxAGFOhEREZE4kNDdAxCxWZZFfX19dw9DRKRLPB4PhmF09zBEFOqk56ivr+faa6/t7mGIiHTJli1b8Hq93T0MER1+FREREYkH2lMnPZL7w0wMK/z/HIaJYRpgmGAaYBgYpl0XLjcMMA0Mex2nznDaOA+IKDOj60MNnTLLMJr/1yeiD6fcaN5WZJllhLpx6sxQv6Fyw6mz21jhMqcemvsww+vb9URvI6pNePiWGaMuan2ixthcZrSqa9WGyHG0qKeN8jb6a2scrdq0169TbrVuH9HGqY/oywqXE9EuVGdFjCdUb0TWOevadZbTpxG5vmE5dc5PzC63uwuvE/opWM6y3cYML4fqQst2O6fOsDBobmeGy5wHltPONIgqD7UPNrfDXj+Iy24TXm7uK+j054ro30Wo3GX356wbxGX3iT2OYPP6NPcd6jOISWj7obpQf65wmUEQl90+oo0LQu0Ibcf+POzl0Las8GvCdRZm+HNxYWACrvCXbWKEywxchoGJiRH+5poaXSy8fRAiPYlCnfRMASP8n1dCoY5wAAv/tWyuM8BsTjBGKCGFO7H/upu0+qvdnJiik4TdZ6u/8rQoi9wGMcpatqM5zEWEulZlESEscrnlEKPXj9HGbKeurbfRahxtvO326tr6qM62v4g+YwW+8xrqYtXTctly+o4cR+Q2Y9U5IZCIdSLXb9XGirEtK+oRGeqag2L40VYddvALdRkZAO3wB3Y4wwlFkXWhUBdsDkVGZCgKvTYNIxS4ws84rw2nXagfwn3abQm3C5fHqoto4woHUpczTjvUWR2Gusj+XPbnQXSZSeQYI75DkR5Ch19FRERE4oBCnYiIiEgcUKgTERERiQMKdSIiIiJxQKFOREREJA4o1ImIiIjEAYU6ERERkTigeeqkZ3JZWFZowtHQvGtGxLPRYkJg+zniNZFlVsTrTtRFTFrWPEVsW+XNz1bUa6LaWQCWXd7cp4UBFk7byHqnj6jJ1SLHEmPZihpSi8+jjUfLdTszF117dZ3eVifrIjfZbjurgz6tNsbY9uTD0XPLRdQ565795MPN44iYp46zn6fOormdZVjRD0LPoTqiyoOGBUawuU/sbQUj5tMLrxOut4yg0x9R/Yef7W2Fl83wOvYz0KosGPHP2n4dNCBI8zx1wXCZQVvz1BnOhMEumr8ze9kMt2k5913nJx82aJ58ONa/S5HupVAnPVLjxV929xDOD/tv5llqmUlEbJE/rWB3DuSsRaZqHUQSORv6lyMiIiISBwzLsnSvE+kRLMuivr6+u4chHaivr2fBggUAbNiwAY/H080jkrOl7/Lc8Hg8GIb2nUv30+FX6TEMw8Dr9Xb3MKQLPB6PvrM4oe9SpPfT4VcRERGROKBQJyIiIhIHFOpERERE4oBCnYiIiEgc0NWvIiIiInFAe+pERERE4oBCnYiIiEgcUKgTERERiQMKdSIiIiJxQKFOREREJA4o1ImIiIjEAYU6ERERkTigUCciIiISBxTqREREROJAQncPQER6j7q6On7729+yfft2ysrKME2TYcOGcdVVV7Fw4UISExO7e4g93ubNm/nFL37R4Xpr1qzhoosuill3/Phx1q1bx44dO6ioqMDr9TJu3DjmzZvH7NmzO+z7wIEDvPTSS+zatYvKykrS0tKYNGkSN954I9/+9rc7bP/nP/+ZV155hX379lFdXU2/fv2YNm0aixYtYvz48R223759Oxs3buTQoUPU1dWRkZHB9OnTufnmmxk6dGiH7UUkNt0mTEQ6paysjHvuuYeysjIAPB4PwWCQxsZGAMaOHcuTTz5JWlpadw6zx7NDnWma9OvXr831HnroIaZOndqq/P3332f58uXU19cDkJKSgs/nIxgMApCbm8uyZcswDCNmvwUFBTz++OMEAgEAUlNTqa2txf5TsGTJEvLy8tocV35+PmvXrgXAMAxSUlKoqakBwOVysXTpUubOnRuzrWVZrF69mk2bNgFgmiZer5fa2log9Jt66KGHmDFjRpvbF5G2KdSJSIf8fj+33XYbn332Gf379+ef//mfueiiiwgGg2zdupXHHnuMuro6Lr30Uh599NHuHm6PZoe6QYMG8dJLL3WpbWlpKX/913+Nz+cjJyeHBx54gGHDhjl7UO2wdccdd/CDH/ygVfu9e/dy9913EwgEmDlzJvfeey+ZmZmcOXOGZ599lo0bNwKwYsUKrrrqqlbt//jHP7JixQoA5s+fz+23307fvn358ssveeqpp3jnnXdwuVw8/fTTTJ48uVX7devW8ctf/hIIhcfFixeTnJzM559/zqpVq9i7dy9er5fnnnuOrKysLn02IqJz6kSkE15//XU+++wzAB5++GHnsKBpmlx99dXcd999APzpT3/io48+6rZxxrv8/Hx8Ph8ZGRmsWrWKYcOGAZCcnExeXh7z5s0D4IUXXqC6urpV+1/+8pcEAgFGjRrFQw89RGZmJgB9+/blvvvu4+KLL45aL1IgEHAC2SWXXMJ9991H3759AcjMzGTFihWMHDkyar1I1dXVPP/880AoEObl5ZGcnAzA8OHDWb16NRkZGfh8PvLz87/yZyXyTaRQJyIdev311wG48MILY+6Bufrqqxk8eHDUunJu+Xw+tm/fDsD1118f8zD3j370IwBqa2t55513oupKS0spLCwEYPHixSQktD6l2m5fVlbG7t27o+p27drlHHr/4Q9/2KptYmIiixcvBqCwsJDS0tKo+rfffpu6urqo7URKS0tjwYIFQOicO5/P12odEWmfQp2ItKu+vp69e/cCcOmll8ZcxzAMLrnkEgB27NjxtY3tm2TPnj00NDQAOJ91S4MHDyY7Oxto/T1ELrfVPicnx9l71rL9zp07gdBewZycnJjtI38fbbUfMWIEgwYNitneHldDQwN79uyJuY6ItE1Xv4pIu4qLi52T8EeOHNnmenZdRUUFVVVV9OnT52sZX29VWVnJbbfdRklJCYFAgP79+zN58mTmzp3LhRde2Gp9+/A3wKhRo9rsd9SoURQXF3PkyJGocns5PT2d9PT0mG1dLhfDhw/n008/bbN9dnY2LpcrZvv09HT69etHZWUlR48ejTn+9n5Dke/ryJEjzuFgEekc7akTkXadOnXKeT1w4MA21xswYEDMNhJbfX09Bw8eJCEhAcuyOHHiBG+++Sb33nsvq1atwu/3R61vf6ZpaWkkJSW12a/9PZSXl8dsH/k9xWJ/x1+1fcvfgN1fe78hj8dDampqzPYi0jHtqRORdtnnQQHthgmPxxOzjUTr378/S5YsYdasWQwbNgy3200gEGD//v0899xz7Ny5k02bNuHxePi7v/s7p519jlnk5xyLXd/yO7CXO2pvf8fnq317vyG7/5qaGv2GRM6C9tSJiHyNLr74YvLy8hg9ejRutxsIHfbMycnh3/7t37j88ssBePXVVykpKenOoYpIL6NQJyLtsk+cB5wT9WOxJ8Nt2UY6zzRN7rzzTgCCwSDvvfeeU+f1eoHozzkWu77ld2Avd9Te/o7PV/v2fkOR/es3JNJ1CnUi0q7Ic6hOnjzZ5nqR50B1dN6VtG3o0KHO/G+R04LYn2l1dXW7wcj+Hvr37x9Vbrfv6Fw1+zv+qu1b/gbs/tr7DdXX1zt3p9BvSKTrFOpEpF3Z2dmYZug/FS2viIxk12VkZOjK1/Mg8srQyCthW2rrKlN7+fTp01RWVsZsGwgE+Pzzz9ttX1xc3GpiYltk3yNGjIg5/vZ+Q5Hvq72rZEUkNoU6EWmXx+NxJhz+4IMPYq5jWRYffvghANOnT//axhaPjh8/zpkzZwCcCZ0hNIecfZGB/Vm3VFZWRnFxMdD6e4hcbut73LNnj3OBQsv29l1E6urqnHkLW4rst632xcXFfPHFFzHb2+8rKSmpzbnwRKRtCnUi0qE5c+YA8PHHH7N///5W9Vu3bnUOFdrrSmsd3WrbsiyeeeYZIHR+3V/+5V86dV6vl1mzZgGhiyjsw5SR1q1bB4TOR5s5c2ZUXVZWFlOmTAFg/fr1raZMAXjxxRcBGDRoEFOnTo2qmzZtmjNpsL1eJL/fz/r16wGYMmVKq3u3XnHFFSQnJ2NZVsz21dXVbNiwAYBZs2Y55xCKSOcp1IlIh+bMmcOoUaOwLIuf/exnzv1dg8EgW7du5bHHHgNCdwT49re/3Z1D7dHKysr4m7/5GzZs2EBpaakT8oLBIPv27eMf//Efndt7zZ8/n+HDh0e1z8vLw+v1Ul5ezgMPPOBcHevz+Vi7dq0Tim699daYtxH727/9W1wuF0VFRaxYscI5v62qqoo1a9Y4e9ruuOOOVhMMu1wu7rjjDiB0j981a9ZQVVUFhM6TW7FiBYcPH45aL1JaWhq33norABs2bGDt2rXONC0lJSU8+OCDlJeX4/V6ycvL6+pHKyKAYXX0v44iIsCJEye49957nft/ejwegsEgjY2NAIwdO5Ynn3wyZpiQkBMnTnDTTTc5y263G6/Xi8/ncz5HgNzcXO67776Y92d9//33Wb58uXOVaGpqKj6fzznPLTc3l2XLlmEYRswxFBQU8Pjjjzvrp6amUltb6wTMJUuWtBuq8vPzWbt2LRC6PVxKSoqz19DlcrF06VLmzp0bs61lWaxevZpNmzY563u9Xqe9x+PhoYceYsaMGW1uX0TaplAnIp1WV1fHb3/7W7Zv305ZWRmGYTBs2DCuvvpqFi5cSGJiYncPsUdraGigoKCAffv2UVRURGVlJdXV1bjdbgYOHMjkyZP53ve+1+H5ZMePH2fdunXs2LGDiooKvF4vY8eOZf78+cyePbvDcRw4cID169eze/duKisrSUtLY9KkSdx4442d2tP60Ucf8bvf/Y59+/ZRXV1Nv379mDp1KjfddBPjx4/vsP22bdvYuHEjhw4dwufzkZGRwfTp07n55psZOnRoh+1FJDaFOhEREZE4oHPqREREROKAQp2IiIhIHFCoExEREYkDCnUiIiIicUChTkRERCQOKNSJiIiIxAGFOhEREZE4oFAnIiIiEgcU6kRERETigEKdiIiISBxQqBMRERGJAwndPQAREemad999l4KCAj799FOqqqro06cPEydOZMGCBVx66aVn3e+xY8d499132bVrF4cPH6aiogKXy8WAAQOYMmUKN9xwA+PHj++wn+PHj7Nu3Tp27NhBRUUFXq+XcePGMW/ePGbPnt2lMfn9fm677TY+++wzAObMmcM//dM/nc3b65QdO3ZQUFDA/v37OX36NAD9+/dn0qRJzJ8/n2nTpp23bYt8VYZlWVZ3D0JERDoWCAR45JFHePPNNwEwDIPU1FTq6uoIBAIALFy4kHvvvbfLfe/Zs4ef/OQnUWXJyck0NTXR1NQEgGma3HLLLfz4xz9us5/333+f5cuXU19fD0BKSgo+n49gMAhAbm4uy5YtwzCMTo0rPz+ftWvXOsvnK9RZlsXjjz/Oxo0bnbKkpCQAGhoanLJFixZx1113nfPti5wLOvwqItIN8vPzueKKK8jPz+90m//6r/9yAt1f/dVfsXHjRv7whz+wadMm7rzzTlwuF6+88gr/+7//2+Xx+P1+XC4XM2fOZOXKlbz22mu8/vrrvPHGG/zqV79iypQpBINB/ud//oeCgoKYfZSWlrJixQrq6+vJycnhxRdfZPPmzWzatIklS5YAsGnTJn7zm990akyHDx/m17/+NVlZWWRkZHT5PXXF5s2bnUA3e/ZsXnzxRd58803efPNNfv3rX3P55ZcD8NJLL/H222+f17GInC2FOhGRXqCyspKXX34ZgJkzZ3LPPffQt29fALxeL4sXL+amm24CQoGxtra2S/0PGTKE559/nn/9139l9uzZTt8ul4uJEyfyxBNPMHr0aABefPHFmH3k5+fj8/nIyMhg1apVDBs2DAjt8cvLy2PevHkAvPDCC1RXV7c7nkAgwOrVq/H7/SxduhS3292l99NVW7ZsAUKfw89//nNn7ADDhw9n5cqVZGVlAbB169bzOhaRs6VQJyLSC3z00Uc0NjYCsHjx4pjr/OAHPwCgpqaGd955p0v9Z2ZmRgWZlhITE7nmmmuA0DlzLUOZz+dj+/btAFx//fWkpaW16uNHP/oRALW1tR2Ob/369Xz66adce+21TJ8+vUvv5f333+enP/0pN954I1dffTW5ubncddddvPrqq86h5JbKy8sBGDNmDAkJrU83T0hIYMyYMUDovYr0RAp1IiK9wBdffOG8HjFiRMx1+vTpQ3p6OhA64f9ci9xbZp/DZ9uzZ49z7tkll1wSs/3gwYPJzs7ucHwlJSXk5+fTr1+/Lp2/1tDQwM9//nOWLVvG22+/zalTp3C73dTW1lJYWMiaNWu45557Yu4lHDx4MABFRUX4/f5W9X6/n6KiIoBOXSwi0h0U6kREehn7ooP26uyrRc+ljz/+GAhdDWofnrVFbm/UqFFt9mHXHTlyJGa9ZVmsXr2axsZG7rrrrlbbac9jjz3Gtm3byMrK4mc/+xmbN29m8+bNvPHGGzzyyCNkZWWxb98+Vq1a1art9ddfD4T2Qq5cuZJjx445dZ9//jnLly+ntLSUIUOGsGjRok6PSeTrpClNRER6gUGDBjmvjxw5EnNqjfLycs6cOQPAqVOnzun29+7dy7vvvgvA3LlzW129am8vLS3NuWo0lgEDBjhjjeV3v/sdhYWFXHzxxc7h3s7YvXs3b7zxBunp6Tz11FNccMEFTl1SUhKXX34548aN45ZbbuGdd97h0KFDjB071lnnsssu46677uJXv/oV27ZtY9u2bVFXv6ampnL99ddz2223kZKS0ulxiXydtKdORKQX+Na3vuUc/nz++edjrvPCCy84r+vq6s7ZtisrK1m5ciXBYJChQ4dy8803t1rHPs/M4/G025ddH2t8J06c4D//8z/xeDz8wz/8Q5fG+Ic//AGA7373u1GBLlJmZiYXXnghAB9++GGr+kWLFvEv//IvziHshoYG55Cy3+/H5/NRU1PTpXGJfJ20p05E5Dx56623ePrpp2PW2SFo/fr1UXOjRXr44YfJyckBoF+/fixcuJDf/OY37Ny5k4cffphbb72VIUOGUF5ezu9//3t+//vfk5CQgN/v7/Q8cB2pq6vjwQcfpKysjOTkZFauXElycvI56bulxx57DJ/Px5133ulcadpZe/bsAULh7v/+7//aXM8OZZHnKALU19fzi1/8gq1btzJhwgR++tOfOnvyDh06xLPPPsuWLVv405/+xJNPPulcCSzSkyjUiYicJ42NjVRUVLS7js/na/NqypYn7N9+++18+eWXvPXWW84capEmTZrEmDFj2LBhQ8yrT7vK5/OxbNky9u3bh9fr5dFHH3WuAG3J6/UCOJMOt8WubxkMCwoK2LlzJ+PGjeP73/9+l8dqH86tra3t1HQuLcf5zDPPsHXrVoYPH87TTz8ddQh5+vTpTJkyhby8PEpKSnjiiSf493//9y6PUeR8U6gTETlPrrvuOq677rqYdfadEpYsWUJeXl6n+ktISGD58uVcc801bNmyhaKiIhobG8nMzOTKK69kwYIFrF69GqDd6Uk6ww50u3fvxuv1snr1aqZMmdLm+va5ctXV1TQ0NLR5Xp197l3//v2dspqaGp555hlM0+Tuu++OuoODzb75USAQcA7dejweTDN0FpF9gcjSpUtZsGBBl95rXV0dr732GgA33HBDzLEnJSVx44038tRTT1FYWMjp06edw7QiPYVCnYhILzNjxgxmzJgRs+7AgQMATJ48+az7twPdrl278Hg8rF69usN7nkZe8frZZ58xceLEmOvZV8mOHDnSKauurnYOi959993tbidyD+V///d/O4dIMzIyKCsro6ysrP03F0NJSYkzRUt7h32HDh3qvD5x4oRCnfQ4ulBCRCROHDx4kKNHjwJw7bXXnlUfPp+P+++/n127djmHXDtzE/ucnBxnD1esixAAysrKKC4uBujyhMIdsUPse++91+W2kecftjzXLlLkofTzdV6hyFehUCciEgfq6+tZs2YNELp3qT3Jb1fYgS7ykGtnAh2EzqmbNWsWAK+++mrMq0TXrVsHhALRzJkznfLBgwfz9ttvt/uwp3SZM2eOUxY5Jcn8+fOB0HQvr776aofvM/LOEtnZ2U4gLSgoiDn5cCAQcA7RpqWlfeXD2yLng0KdiEgvsX//fl544QWOHj3qhJKmpiY++OADfvKTn7B//34yMzP5+7//+5jtH3nkEa644gquuOKKVnX19fU88MADTqDr7B66SHl5eXi9XsrLy3nggQcoKSkBQiFq7dq1bNiwAYBbb731nFzIEWnatGnk5uYC8MQTT/D0009TWlrq1Dc2NrJv3z7+4z/+g0WLFnH69GmnLikpiblz5wKhvZ0PPvgghw8fJhgMEgwGOXz4MPfffz979+4F4Pvf/z4ul+ucjl/kXNA5dSIivUR5eTnPPvsszz77LIZhkJaWRm1trXM+2MiRI1m1atVZneu1bds2544RgUCA5cuXt7t+5HQrtqysLFasWMHy5cspLCzkhz/8Iampqfh8PmeMubm5Mee5OxeWLl2KaZoUFBTw8ssv8/LLL+P1eklISKC2tjbqThwtp3y54447OHbsGB988IHzsOcFtO+5C/Cd73yHW2655byMX+SrUqgTEeklxo0bx80338zu3bspKyujqqqKPn36MHr0aK688kquu+66mDej7wz76lLo3FQssQ5RQugijueee45169axY8cOKioqSE1NZezYscyfP5/Zs2ef1fg6IzExkfvvv5/c3Fxee+01CgsLOXXqFD6fj379+pGdnc3UqVOZNWsWAwcOjGqblJTEo48+yvbt23njjTc4cOAAlZWVGIZBZmYmEydOJDc3t80LVER6AsOK/JcsIiIiIr2SzqkTERERiQMKdSIiIiJxQKFOREREJA4o1ImIiIjEAYU6ERERkTigUCciIiISBxTqREREROKAQp2IiIhIHFCoExEREYkDCnUiIiIicUChTkRERCQOKNSJiIiIxAGFOhEREZE4oFAnIiIiEgcU6kRERETigEKdiIiISBxQqBMRERGJAwp1IiIiInHg/wPzoNvLmhx/rQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Visualize zero-order HealpixMap\n",
+ "m_plot, m_ax = m.plot(ax_kw = {\"coord\":'G'})\n",
+ "m.plot_grid(plt.gca(), linewidth = .1, color = 'white');"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "230c3258",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def split_map(old_map, threshold_condition):\n",
+ " \n",
+ " # Find log(likelihood) threshold for further possible split\n",
+ " if threshold_condition > 0: # Rank case\n",
+ " \n",
+ " # Make sure top_number is an ceiling integer\n",
+ " top_number = int(np.ceil(threshold_condition))\n",
+ " \n",
+ " # Extract top_number_arg_array\n",
+ " top_number_arg_array = np.argpartition(old_map, -top_number)[-top_number:]\n",
+ "\n",
+ " # Define threshold\n",
+ " threshold = min(old_map[top_number_arg_array])\n",
+ " \n",
+ " else: # Ratio case\n",
+ "\n",
+ " # Define threshold\n",
+ " threshold = min(old_map) + ((max(old_map) - min(old_map)) * threshold_condition)\n",
+ " \n",
+ " # Extract may_split_arg_array\n",
+ " may_split_arg_array = np.argwhere(old_map >= threshold)\n",
+ " \n",
+ " # Calculate min nside from min uniq\n",
+ " min_need_split_uniq = min(old_map.uniq[may_split_arg_array])\n",
+ " min_need_split_k = np.floor(np.log2(min_need_split_uniq/4)/2)\n",
+ " min_need_split_nside = int(np.sqrt(4**min_need_split_k))\n",
+ " \n",
+ " # Calculate next used_nside based on k of min uniq\n",
+ " used_nside = int(np.sqrt(4**(min_need_split_k+1)))\n",
+ " \n",
+ " # Calculate max nside from max uniq\n",
+ " max_need_split_uniq = max(old_map.uniq[may_split_arg_array])\n",
+ " max_need_split_k = np.floor(np.log2(max_need_split_uniq/4)/2)\n",
+ " max_need_split_nside = int(np.sqrt(4**max_need_split_k))\n",
+ " \n",
+ " # Decide wait_flag by comparing min and max nside just for checking\n",
+ " if max_need_split_nside != min_need_split_nside:\n",
+ " wait_split_flag = True\n",
+ " else:\n",
+ " wait_split_flag = False\n",
+ " \n",
+ " # Create list for return\n",
+ " need_split_pixel_list = []\n",
+ " \n",
+ " # Loop all uniq which may be split\n",
+ " for may_split_uniq in old_map.uniq[may_split_arg_array]:\n",
+ " \n",
+ " # Calculate old k, p & nside\n",
+ " may_split_k = np.floor(np.log2(may_split_uniq/4)/2)\n",
+ " may_split_p = may_split_uniq - 4**(may_split_k+1)\n",
+ " may_split_nside = int(np.sqrt(4**may_split_k))\n",
+ " \n",
+ " # Only split min nside case\n",
+ " if may_split_nside == min_need_split_nside:\n",
+ " \n",
+ " # Calculate new p (only min is enough)\n",
+ " each_min_need_split_p = int(4 * may_split_p)\n",
+ "\n",
+ " # Save into return list\n",
+ " need_split_pixel_list.append(each_min_need_split_p)\n",
+ " \n",
+ " return used_nside, wait_split_flag, need_split_pixel_list"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "2312a29e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def fill_unchange_value(old_map, new_map):\n",
+ " \n",
+ " # Find splitted uniq in old_map\n",
+ " uniq_only_in_old = np.setdiff1d(old_map.uniq, new_map.uniq)\n",
+ " \n",
+ " # Loop all old_map_uniq\n",
+ " for old_map_uniq_idx, old_map_uniq in enumerate(old_map.uniq):\n",
+ " \n",
+ " # Copy value to new_map for un-splitted uniq\n",
+ " if old_map_uniq not in uniq_only_in_old:\n",
+ " new_map_uniq_arg = np.argwhere(new_map.uniq==old_map_uniq)\n",
+ " new_map[new_map_uniq_arg] = old_map[old_map_uniq_idx]\n",
+ " \n",
+ " # Create empty list to return\n",
+ " uniq_arg_only_in_new_list = []\n",
+ " \n",
+ " # Find splitted uniq in new_map\n",
+ " uniq_only_in_new = np.setdiff1d(new_map.uniq, old_map.uniq)\n",
+ " \n",
+ " # Loop all new_map_uniq\n",
+ " for new_map_idx, new_map_uniq in enumerate(new_map.uniq):\n",
+ " \n",
+ " # Transfer to arg and save\n",
+ " if new_map_uniq in uniq_only_in_new:\n",
+ " uniq_arg_only_in_new_list.append(new_map_idx)\n",
+ " \n",
+ " return uniq_arg_only_in_new_list"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "0887de76",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Run nside = 2/8\n",
+ "Run pix = 1/32\n",
+ "Change source position\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
18:18:10 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:11 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:13 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:14 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:16 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:17 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:18 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:20 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:22 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:23 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:24 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:26 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:27 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:28 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:29 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:30 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:32 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:33 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:35 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:36 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:37 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:38 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:40 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:41 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:42 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:43 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:45 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:46 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:47 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:48 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:50 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:51 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:52 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:53 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:55 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:56 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:57 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:58 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:18:59 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:01 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:02 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:03 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:04 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:06 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:07 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:08 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:09 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:11 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:12 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:13 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:14 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:15 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:16 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:17 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:19 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:20 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:21 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:22 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:23 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:25 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:26 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:27 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:28 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:30 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:31 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:32 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:34 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:35 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:36 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:37 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:38 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:40 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:41 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:42 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:43 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:44 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:46 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:47 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:48 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:49 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:51 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:52 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:53 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:54 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:55 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:57 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:58 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:19:59 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:00 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:01 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:02 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:04 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:05 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:06 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:08 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "
18:20:09 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "measurements such as AIC or BIC are unreliable \n",
+ "