-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerator.py
55 lines (43 loc) · 1.61 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import cv2
import os
import cfg
####TODO
def gen(batch_size=4, is_val=False):
img_h, img_w = cfg.max_train_img_size, cfg.max_train_img_size
# img_h, img_w =352,640
pixel_num_h = img_h // cfg.pixel_size
pixel_num_w = img_w // cfg.pixel_size
y = np.zeros((batch_size,pixel_num_h, pixel_num_w,7), dtype=np.float32)
if is_val:
with open(os.path.join(cfg.data_dir, cfg.val_fname), 'r') as f_val:
f_list = f_val.readlines()
else:
with open(os.path.join(cfg.data_dir, cfg.train_fname), 'r') as f_train:
f_list = f_train.readlines()
images = []
while True:
for i in xrange(batch_size):
# random gen an image name
random_img = np.random.choice(f_list)
img_filename = str(random_img).strip().split(',')[0]
img_path = os.path.join(cfg.data_dir,
cfg.train_image_dir_name,
img_filename)
img = cv2.imread(img_path)
if img == None:
print(img_path)
continue
img = img.astype(np.float32)
b, g, r = cv2.split(img)
b -= 103.94
g -= 116.78
r -= 123.68
img = cv2.merge((b, g, r))
images.append(img[:, :, ::-1])
gt_file = os.path.join(cfg.data_dir,
cfg.train_label_dir_name,
img_filename[:-4] + '_gt.npy')
y[i] = np.load(gt_file)
if len(images) == batch_size:
return images,y