-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathautoencoder.py
147 lines (124 loc) · 5.96 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import division, print_function, absolute_import
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
#Training parameters
learning_rate = 2.5e-4
num_steps = 30000
batch_size = 256
display_step = 1000
examples_to_show = 10
#Network Parameters
num_hidden_1 = 256
num_hidden_2 = 128
num_hidden_3 = 64
num_hidden_4 = 16
num_input = 1200
#X = tf.placeholder(dtype = tf.float32, shape = [None, num_input], name = "auto")
#is_training = tf.placeholder(tf.bool)
#drop_out_prob = tf.placeholder(tf.float32)
weights = {
'encoder_h1': tf.get_variable("encoder_h1",
shape = [num_input, num_hidden_1],
initializer = tf.random_normal_initializer(stddev = 0.1)),
'encoder_h2': tf.get_variable("encoder_h2",
shape = [num_hidden_1, num_hidden_2],
initializer = tf.random_normal_initializer(stddev = 0.1)),
'encoder_h3': tf.get_variable("encoder_h3",
shape = [num_hidden_2, num_hidden_3],
initializer = tf.random_normal_initializer(stddev = 0.1)),
'decoder_h3': tf.get_variable("decoder_h1",
shape = [num_hidden_3, num_hidden_2],
initializer = tf.random_normal_initializer(stddev = 0.1)),
'decoder_h2': tf.get_variable("decoder_h2",
shape = [num_hidden_2, num_hidden_1],
initializer = tf.random_normal_initializer(stddev = 0.1)),
'decoder_h1': tf.get_variable("decoder_h3",
shape = [num_hidden_1, num_input],
initializer = tf.random_normal_initializer(stddev = 0.1))
}
biases = {
'encoder_b1': tf.get_variable("encoder_b1",
shape = [num_hidden_1],
initializer = tf.random_normal_initializer),
'encoder_b2': tf.get_variable("encoder_b2",
shape = [num_hidden_2],
initializer = tf.random_normal_initializer),
'encoder_b3': tf.get_variable("encoder_b3",
shape = [num_hidden_3],
initializer = tf.random_normal_initializer),
'decoder_b3': tf.get_variable("decoder_b1",
shape = [num_hidden_2],
initializer = tf.random_normal_initializer),
'decoder_b2': tf.get_variable("decoder_b2",
shape = [num_hidden_1],
initializer = tf.random_normal_initializer),
'decoder_b1': tf.get_variable("decoder_b3",
shape = [num_input],
initializer = tf.random_normal_initializer)
}
#Building the encoder
def encoder(x, train = False, drop_prob = 0.4):
x_norm = tf.layers.batch_normalization(x, center = True, scale = True, training = train)
x_drop = tf.nn.dropout(x_norm, keep_prob = drop_prob)
layer_1 = tf.tanh(tf.add(tf.matmul(x_drop, weights['encoder_h1']),
biases['encoder_b1']))
layer_1_norm = tf.layers.batch_normalization(layer_1, center = True, scale = True, training = train)
layer_1_drop = tf.nn.dropout(layer_1_norm, keep_prob = drop_prob)
return layer_1_norm
def decoder(x, train = False, drop_prob = 0.4):
x_norm = tf.layers.batch_normalization(x, center = True, scale = True, training = train)
x_drop = tf.nn.dropout(x_norm, keep_prob = drop_prob)
layer_1 = tf.tanh(tf.add(tf.matmul(x_drop, weights['decoder_h1']),
biases['decoder_b1']))
layer_1_norm = tf.layers.batch_normalization(layer_1, center = True, scale = True, training = train)
layer_1_drop = tf.nn.dropout(layer_1_norm, keep_prob = drop_prob)
return layer_1_norm
#encoder_op = encoder(X)
#decoder_op = decoder(encoder_op)
#y_pred = decoder_op
#y_true = X
def autoencoder(x, train = False, drop_prob = 0.4):
encoder_op = encoder(x,train, drop_prob)
decoder_op = decoder(encoder_op,train, drop_prob)
return decoder_op, encoder_op
#y_true = X
#y_pred, features = autoencoder(X, is_training, drop_out_prob)
#loss = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
#optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)
def run_autoencoder(session, loss_val, Xd, predict,drop_prob = 0.4,
num_steps = 40, batch_size=256, print_every = 100,
training = None, plot_losses = False):
correct_prediction = 1.111
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
train_indices = np.arange(Xd.shape[0])
np.random.shuffle(train_indices)
variables = [loss_val, correct_prediction, training, extra_update_ops]
iter_cnt = 0
correct = 0
losses = []
for i in range(num_steps):
start_idx = (i * batch_size)%Xd.shape[0]
idx = train_indices[start_idx: start_idx + batch_size]
feed_dict = {X: Xd[idx, :], is_training: training is not None}
actual_batch_size = Xd[idx].shape[0]
loss, corr, _, _ = session.run(variables, feed_dict = feed_dict)
losses.append(loss * actual_batch_size)
correct += np.sum(corr)
if (iter_cnt%print_every) == 0:
print("Iteration{0}: with minibatch training loss = {1:.3g}".format(iter_cnt, loss))
iter_cnt += 1
total_loss = np.sum(losses)/Xd.shape[0]
print("Overall loss = {0:.3g} ".format(total_loss))
if plot_losses:
plt.plot(losses)
plt.grid(True)
plt.title('Loss')
plt.xlabel("minibatch number")
plt.ylabel('minibatch loss')
plt.show()
return total_loss