Skip to content

Latest commit

 

History

History
218 lines (141 loc) · 7.04 KB

README.md

File metadata and controls

218 lines (141 loc) · 7.04 KB

Fire mage

PyPi mage-ai License Join Slack

🧙 Mage

Mage is an open-source data pipeline tool for transforming and integrating data.


Here is a sample data pipeline defined across 3 files:

# data_loaders/load_data_from_file.py
@data_loader
def load_csv_from_file():
    return pd.read_csv('default_repo/titanic.csv')
# transformers/select_columns.py
@transformer
def select_columns_from_df(df, *args):
    return df[['Age', 'Fare', 'Survived']]
# data_exporters/export_to_file.py
@data_exporter
def export_titanic_data_to_disk(df) -> None:
    df.to_csv('default_repo/titanic_transformed.csv')

What the data pipeline looks like in the UI:

data pipeline overview

New? We recommend reading about blocks and learning from a hands-on tutorial.


Join us on Slack

Table of contents

  1. Quick start
  2. Demo
  3. Tutorials
  4. Features
  5. Documentation
  6. Core design principles
  7. Core abstractions

🏃‍♀️ Quick start

Install Mage:

Using Docker

Create a new project and launch tool (change demo_project to any other name if you want):

docker run -it -p 6789:6789 -v $(pwd):/home/src \
  mageai/mageai mage start demo_project

Want to use Spark or other integrations? Read more about integrations.

Using pip or conda

1. Install Mage
pip install mage-ai

or

conda install -c conda-forge mage-ai

For additional packages (e.g. spark, postgres, etc), please see Installing extra packages.

If you run into errors, please see Install errors.

2. Create new project and launch tool (change demo_project to any other name if you want):
mage start demo_project

Open tool in browser

Open http://localhost:6789 in your browser and build a pipeline.


🎮 Demo

Live demo

Try a hosted version of the tool here: http://demo.mage.ai.

WARNING

The live demo is public, please don’t save anything sensitive.

Demo video (2 min)

Mage quick start demo

Click the image to play video


👩‍🏫 Tutorials


🔮 Features

Read more here.


📚 Documentation

Read more here.


🏔️ Core design principles

Every user experience and technical design decision adheres to these principles.

  1. Easy developer experience
  2. Engineering best practices built-in
  3. Data is a first-class citizen
  4. Scaling made simple

Read more here.


🛸 Core abstractions

These are the fundamental concepts that Mage uses to operate.

Read more here.


🙋‍♀️ Contributing

Check out the 🎁 contributing guide to get started by setting up your development environment and exploring the code base.


🤔 Frequently Asked Questions (FAQs)

Check out our FAQ page to find answers to some of our most asked questions.


🧙 Community

We love the community of Magers (/ˈmājər/); a group of mages who help each other realize their full potential!

To live chat with the Mage team and community:

Join us on Slack


For real-time news, fun memes, data engineering topics, and more, join us on:


🪪 License

See the LICENSE file for licensing information.

Water mage casting spell