diff --git a/guides/computer_vision/Computer_Vision_with_Comet.ipynb b/guides/computer_vision/Computer_Vision_with_Comet.ipynb index 2322d59e..4986f9bc 100644 --- a/guides/computer_vision/Computer_Vision_with_Comet.ipynb +++ b/guides/computer_vision/Computer_Vision_with_Comet.ipynb @@ -61,7 +61,7 @@ }, "outputs": [], "source": [ - "%pip install comet_ml torch torchvision timm datasets h5py scipy scikit-learn \"pandas<2\"" + "%pip install comet_ml torch torchvision timm datasets h5py scipy scikit-learn \"pandas<2\" \"numpy<2\"" ] }, { @@ -131,12 +131,16 @@ "\n", "# Sample 1000 examples from the training split as our training set\n", "NUM_TRAIN_SAMPLES = 1000\n", - "train_dataset = load_dataset(\"svhn\", \"cropped_digits\", split=\"train\", streaming=True)\n", + "train_dataset = load_dataset(\n", + " \"svhn\", \"cropped_digits\", split=\"train\", streaming=True, trust_remote_code=True\n", + ")\n", "train_dataset = train_dataset.take(NUM_TRAIN_SAMPLES)\n", "\n", "# Sample 100 examples from the training split as our test set\n", "NUM_TEST_SAMPLES = 100\n", - "test_dataset = load_dataset(\"svhn\", \"cropped_digits\", split=\"test\", streaming=True)\n", + "test_dataset = load_dataset(\n", + " \"svhn\", \"cropped_digits\", split=\"test\", streaming=True, trust_remote_code=True\n", + ")\n", "test_dataset = test_dataset.take(NUM_TEST_SAMPLES)\n", "\n", "transforms = T.Compose([T.ToTensor(), T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])\n", @@ -640,9 +644,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.15" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/guides/get-started/Comet_Quickstart.ipynb b/guides/get-started/Comet_Quickstart.ipynb index 3b740a92..4daf4e3c 100644 --- a/guides/get-started/Comet_Quickstart.ipynb +++ b/guides/get-started/Comet_Quickstart.ipynb @@ -76,7 +76,7 @@ }, "outputs": [], "source": [ - "%pip install -U comet_ml" + "%pip install -U comet_ml \"numpy<2.0.0\"" ] }, { @@ -705,9 +705,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.3" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/integrations/model-training/prophet/notebooks/Comet_and_Prophet.ipynb b/integrations/model-training/prophet/notebooks/Comet_and_Prophet.ipynb index e1274309..ae82b133 100644 --- a/integrations/model-training/prophet/notebooks/Comet_and_Prophet.ipynb +++ b/integrations/model-training/prophet/notebooks/Comet_and_Prophet.ipynb @@ -45,7 +45,7 @@ }, "outputs": [], "source": [ - "%pip install comet_ml prophet plotly" + "%pip install comet_ml prophet plotly \"numpy<2.0.0\"" ] }, { @@ -212,9 +212,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/integrations/model-training/pytorch-lightning/notebooks/Comet_and_Pytorch_Lightning.ipynb b/integrations/model-training/pytorch-lightning/notebooks/Comet_and_Pytorch_Lightning.ipynb index b8a42c82..557c0197 100644 --- a/integrations/model-training/pytorch-lightning/notebooks/Comet_and_Pytorch_Lightning.ipynb +++ b/integrations/model-training/pytorch-lightning/notebooks/Comet_and_Pytorch_Lightning.ipynb @@ -61,7 +61,7 @@ }, "outputs": [], "source": [ - "%pip install torch torchvision \"pytorch-lightning<2.0.0\"" + "%pip install torch torchvision \"pytorch-lightning<2.0.0\" \"numpy<2.0.0\"" ] }, { @@ -249,9 +249,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.1" + "version": "3.10.12" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/integrations/reinforcement-learning/gymnasium/notebooks/comet_gymnasium_example.ipynb b/integrations/reinforcement-learning/gymnasium/notebooks/comet_gymnasium_example.ipynb index 1a61b1d7..130bf3eb 100644 --- a/integrations/reinforcement-learning/gymnasium/notebooks/comet_gymnasium_example.ipynb +++ b/integrations/reinforcement-learning/gymnasium/notebooks/comet_gymnasium_example.ipynb @@ -33,7 +33,7 @@ }, "outputs": [], "source": [ - "%pip install 'gymnasium[classic-control]' comet_ml stable-baselines3" + "%pip install 'gymnasium[classic-control]' comet_ml stable-baselines3 \"numpy<2.0.0\"" ] }, { diff --git a/integrations/workflow-orchestration/metaflow/metaflow-model-evaluation/metaflow-model-evaluation.py b/integrations/workflow-orchestration/metaflow/metaflow-model-evaluation/metaflow-model-evaluation.py index 4ef9e9c2..457665a3 100644 --- a/integrations/workflow-orchestration/metaflow/metaflow-model-evaluation/metaflow-model-evaluation.py +++ b/integrations/workflow-orchestration/metaflow/metaflow-model-evaluation/metaflow-model-evaluation.py @@ -178,7 +178,10 @@ def evaluate_classification_metrics(self): device = "cuda" if torch.cuda.is_available() else "cpu" dataset = load_dataset( - self.dataset_name, split=self.dataset_split, streaming=True + self.dataset_name, + split=self.dataset_split, + streaming=True, + trust_remote_code=True, ) dataset = dataset.shuffle(self.seed, buffer_size=10_000) dataset = dataset.take(self.n_samples)