-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathcomet_catalyst_example.py
67 lines (57 loc) · 1.56 KB
/
comet_catalyst_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding: utf-8
import os
import comet_ml
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST
from catalyst.data import ToTensor
from catalyst.loggers.comet import CometLogger
comet_ml.login()
logger = CometLogger(logging_frequency=10)
model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)
loaders = {
"train": DataLoader(
MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()),
batch_size=32,
),
"valid": DataLoader(
MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()),
batch_size=32,
),
}
runner = dl.SupervisedRunner(
input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
num_epochs=1,
hparams={
"lr": 0.02,
"betas": (0.9, 0.999),
"eps": 1e-08,
"weight_decay": 0,
"amsgrad": False,
},
callbacks=[
dl.AccuracyCallback(
input_key="logits", target_key="targets", topk_args=(1, 3, 5)
),
dl.PrecisionRecallF1SupportCallback(
input_key="logits", target_key="targets", num_classes=10
),
],
logdir="./logs",
valid_loader="valid",
valid_metric="loss",
minimize_valid_metric=True,
verbose=True,
load_best_on_end=True,
loggers={"comet": logger},
)