-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtuning.R
187 lines (137 loc) · 5.54 KB
/
tuning.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# enable commandline arguments from script launched using Rscript
args<-commandArgs(TRUE)
print(args[1])
print(args[2])
print(args[3])
#print(args[6]) #label
run <- args[1]
#run <- ifelse(is.na(run), 1, run)
# set the random seed, held constant for the current run
print(getwd())
#setwd("/Users/Daniela/OneDrive - Università degli Studi di Bari/biometrics-main/biometrics-main/Field Study/RQ/RQ3-biometrics/Analysis")
seeds <- readLines("seeds.txt", warn= FALSE)
seed <- ifelse(length(seeds[run]) == 0, sample(1:1000, 1), seeds[as.integer(run)])
set.seed(seed)
print(seed)
output_folder <- args[4]
#output_folder<- "results_10seconds_prova"
# creates current output directory for current execution
output_dir <- paste(getwd(),output_folder , sep="/")
if(!dir.exists(output_dir))
dir.create(output_dir, showWarnings = FALSE, recursive = TRUE, mode = "0777")
csv_file <- args[2]
models_file <- args[3]
#csv_file <- "Empatica_10sec_valence_ALL.csv"
#models_file <- "models/models.txt"
#signal <- "valence"
# library setup, depedencies are handled by R
#library(pROC) # for AUC
library(rlang)
library(caret) # for param tuning
library(e1071) # for normality adjustment
# enables multicore parallel processing
if(!exists("enable_parallel", mode="function"))
source(paste(getwd(), "lib/enable_parallel.R", sep="/"))
# comma delimiter
# comma delimiter
dataset <- read.csv(csv_file, header = TRUE, sep=",")
#print(dataset)
# name of outcome var to be predicted
outcomeName <- "valence"
#print(outcomeName)
# list of predictor vars by name
excluded_predictors <- c("id")
dataset <- dataset[ , !(names(dataset) %in% excluded_predictors)]
l<-ncol(dataset)
#print(dataset)
predictorsNames <- names(dataset[,!(names(dataset) %in% c(outcomeName))]) # removes the var to be predicted from the test set
#print(predictorsNames)
x=dataset[,predictorsNames]
y=factor(dataset[,outcomeName])
# create stratified training and test sets from SO dataset
splitIndex <- createDataPartition(dataset[,outcomeName], p = .90, list = FALSE)
training <- dataset[splitIndex, ]
testing <- dataset[-splitIndex, ]
# LOOCV CV repetitions
fitControl <- trainControl(
method = "LOOCV",
#number = 10,
## repeated ten times, works only with method="repeatedcv", otherwise 1
#repeats = 10,
#verboseIter = TRUE,
savePredictions = "final",
# binary problem
#summaryFunction=defaultSummary,
classProbs = TRUE,
# enable parallel computing if avail
allowParallel = TRUE,
#returnData = FALSE
#sampling = "smote"
)
# load all the classifiers to tune
classifiers <- readLines(models_file, warn = FALSE)
#create the formula using as.formula and paste
outcome <- as.formula(paste(outcomeName, ' ~ .' ))
bestAccuracy <- 0
bestModel <- ""
bestTune <- ""
for(i in 1:length(classifiers)){
nline <- strsplit(classifiers[i], ":")[[1]]
classifier <- nline[1]
cpackage <- nline[2]
# RWeka packages do need parallel computing to be off
fitControl$allowParallel <- ifelse(!is.na(cpackage) && cpackage == "RWeka", FALSE, TRUE)
print(paste("Building model for classifier", classifier))
time.start <- Sys.time()
model <- caret::train(outcome,
data = training,
method = classifier,
trControl = fitControl,
metric = "ROC",
preProcess = c("center", "scale"),
tuneLength = 5 # five values per param
)
time.end <- Sys.time()
# output file for the classifier at nad
output_file <- paste(output_dir, paste(classifier, "txt", sep="."), sep = "/")
cat("", "===============================\n", file=output_file, sep="\n", append=TRUE)
#cat("Seed:", seed, file=output_file, sep="\n", append=TRUE)
out <- capture.output(model)
title = paste(classifier, run, sep = "_run# ")
cat(title, out, file=output_file, sep="\n", append=TRUE)
# elapsed time
time.elapsed <- time.end - time.start
out <- capture.output(time.elapsed)
cat("\nElapsed time", out, file=output_file, sep="\n", append=TRUE)
# the highest roc val from train to save
out <- capture.output(getTrainPerf(model))
cat("\nHighest ROC value:", out, file=output_file, sep="\n", append=TRUE)
# computes the scalar metrics
predictions <- predict(object=model, testing[,predictorsNames], type='raw')
#preds <- c()
#for (i in 0:length(testing[,"valence"])){
# preds <- c(preds, paste(ids[i],predictions[i], sep=","))
#}
# save errors to text file
#cat("Row,Predicted\n",file= output_file)
#write.table(preds, file= paste(output_dir, paste(classifier, "_predictions.txt", sep=""), sep = "/"), quote = FALSE, row.names = FALSE, col.names = FALSE, append=TRUE)
if(!exists("scalar_metrics", mode="function"))
source(paste(getwd(), "lib/scalar_metrics.R", sep="/"))
scalar_metrics(predictions=predictions, truth=testing[,outcomeName], outdir=".", output_file)
# save the model to disk
output_model_dir <- paste(output_dir, paste("models_rds", classifier, sep ="/"), sep = "/")
if(!dir.exists(output_model_dir))
dir.create(output_model_dir, showWarnings = FALSE, recursive = TRUE, mode = "0777")
model_name <- paste(paste("best_model", run, sep = "_"), "rds", sep=".")
#print(paste(output_model_dir, model_name, sep = "/"))
saveRDS(model, paste(output_model_dir, model_name, sep = "/"))
## === cleanup ===
# deallocate large objects
#rm(model)
#rm(predictions)
# unload the package:
# if(!is.na(cpackage))
# detach(name=paste("package", cpackage, sep=":"), unload = TRUE, character.only = TRUE)
# garbage collection
#gc()
}