-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtest_pyspark.py
334 lines (298 loc) · 8.84 KB
/
test_pyspark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import re
import pytest
pytest.importorskip("coiled.spark")
def register_table(spark, path, name):
path = path.replace("s3://", "s3a://")
df = spark.read.parquet(path + name)
df.createOrReplaceTempView(name)
def test_query_1(spark, dataset_path):
register_table(spark, dataset_path, "lineitem")
query = """select
l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order
from
lineitem
where
l_shipdate <= date('1998-09-02')
group by
l_returnflag,
l_linestatus
order by
l_returnflag,
l_linestatus
"""
spark.sql(query).show() # TODO: find better blocking method
def test_query_2(spark, dataset_path):
for name in ("part", "supplier", "partsupp", "nation", "region"):
register_table(spark, dataset_path, name)
query = """
select
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment
from
part,
supplier,
partsupp,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size = 15
and p_type like '%BRASS'
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'EUROPE'
and ps_supplycost = (
select
min(ps_supplycost)
from
partsupp,
supplier,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'EUROPE'
)
order by
s_acctbal desc,
n_name,
s_name,
p_partkey
limit 100
"""
spark.sql(query).show()
def test_query_3(spark, dataset_path):
for name in ("customer", "orders", "lineitem"):
register_table(spark, dataset_path, name)
query = """
select
l_orderkey,
sum(l_extendedprice * (1 - l_discount)) as revenue,
o_orderdate,
o_shippriority
from
customer,
orders,
lineitem
where
c_mktsegment = 'BUILDING'
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date '1995-03-15'
and l_shipdate > date '1995-03-15'
group by
l_orderkey,
o_orderdate,
o_shippriority
order by
revenue desc,
o_orderdate
limit 10
"""
spark.sql(query).show()
def test_query_4(spark, dataset_path):
for name in ("orders", "lineitem"):
register_table(spark, dataset_path, name)
query = """
select
o_orderpriority,
count(*) as order_count
from
orders
where
o_orderdate >= date '1993-07-01'
and o_orderdate < date '1993-07-01' + interval '3' month
and exists (
select
*
from
lineitem
where
l_orderkey = o_orderkey
and l_commitdate < l_receiptdate
)
group by
o_orderpriority
order by
o_orderpriority
"""
spark.sql(query).show()
def test_query_5(spark, dataset_path):
for name in (
"customer",
"orders",
"lineitem",
"supplier",
"nation",
"region",
):
register_table(spark, dataset_path, name)
query = """
select
n_name,
sum(l_extendedprice * (1 - l_discount)) as revenue
from
customer,
orders,
lineitem,
supplier,
nation,
region
where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'ASIA'
and o_orderdate >= date '1994-01-01'
and o_orderdate < date '1994-01-01' + interval '1' year
group by
n_name
order by
revenue desc
"""
spark.sql(query).show()
def test_query_6(spark, dataset_path):
for name in ("lineitem",):
register_table(spark, dataset_path, name)
query = """
select
sum(l_extendedprice * l_discount) as revenue
from
lineitem
where
l_shipdate >= date '1994-01-01'
and l_shipdate < date '1994-01-01' + interval '1' year
and l_discount between .06 - 0.01 and .06 + 0.01
and l_quantity < 24
"""
spark.sql(query).show()
def test_query_7(spark, dataset_path):
for name in ("supplier", "lineitem", "orders", "customer", "nation"):
register_table(spark, dataset_path, name)
query = """
select
supp_nation,
cust_nation,
l_year,
sum(volume) as revenue
from
(
select
n1.n_name as supp_nation,
n2.n_name as cust_nation,
year(l_shipdate) as l_year,
l_extendedprice * (1 - l_discount) as volume
from
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2
where
s_suppkey = l_suppkey
and o_orderkey = l_orderkey
and c_custkey = o_custkey
and s_nationkey = n1.n_nationkey
and c_nationkey = n2.n_nationkey
and (
(n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY')
or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE')
)
and l_shipdate between date '1995-01-01' and date '1996-12-31'
) as shipping
group by
supp_nation,
cust_nation,
l_year
order by
supp_nation,
cust_nation,
l_year
"""
spark.sql(query).show()
def test_query_8(spark, dataset_path):
for name in (
"part",
"supplier",
"lineitem",
"orders",
"customer",
"nation",
"region",
):
register_table(spark, dataset_path, name)
query = """
select
supp_nation,
cust_nation,
l_year,
sum(volume) as revenue
from
(
select
n1.n_name as supp_nation,
n2.n_name as cust_nation,
year(l_shipdate) as l_year,
l_extendedprice * (1 - l_discount) as volume
from
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2
where
s_suppkey = l_suppkey
and o_orderkey = l_orderkey
and c_custkey = o_custkey
and s_nationkey = n1.n_nationkey
and c_nationkey = n2.n_nationkey
and (
(n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY')
or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE')
)
and l_shipdate between date '1995-01-01' and date '1996-12-31'
) as shipping
group by
supp_nation,
cust_nation,
l_year
order by
supp_nation,
cust_nation,
l_year
"""
spark.sql(query).show()
def fix_timestamp_ns_columns(query):
"""
scale100 stores l_shipdate/o_orderdate as timestamp[us]
scale1000 stores l_shipdate/o_orderdate as timestamp[ns] which gives:
Illegal Parquet type: INT64 (TIMESTAMP(NANOS,true))
so we set spark.sql.legacy.parquet.nanosAsLong and then convert to timestamp.
"""
for name in ("l_shipdate", "o_orderdate"):
query = re.sub(rf"\b{name}\b", f"to_timestamp(cast({name} as string))", query)
return query