|
28 | 28 | },
|
29 | 29 | {
|
30 | 30 | "cell_type": "code",
|
31 |
| - "execution_count": 48, |
| 31 | + "execution_count": 63, |
32 | 32 | "metadata": {
|
33 | 33 | "collapsed": true
|
34 | 34 | },
|
|
50 | 50 | },
|
51 | 51 | {
|
52 | 52 | "cell_type": "code",
|
53 |
| - "execution_count": 49, |
| 53 | + "execution_count": 64, |
54 | 54 | "metadata": {
|
55 | 55 | "collapsed": true
|
56 | 56 | },
|
|
81 | 81 | },
|
82 | 82 | {
|
83 | 83 | "cell_type": "code",
|
84 |
| - "execution_count": 50, |
| 84 | + "execution_count": 65, |
85 | 85 | "metadata": {
|
86 | 86 | "collapsed": true
|
87 | 87 | },
|
|
93 | 93 | },
|
94 | 94 | {
|
95 | 95 | "cell_type": "code",
|
96 |
| - "execution_count": 51, |
| 96 | + "execution_count": 66, |
97 | 97 | "metadata": {
|
98 | 98 | "collapsed": true
|
99 | 99 | },
|
|
108 | 108 | },
|
109 | 109 | {
|
110 | 110 | "cell_type": "code",
|
111 |
| - "execution_count": 52, |
| 111 | + "execution_count": 67, |
112 | 112 | "metadata": {
|
113 | 113 | "collapsed": false
|
114 | 114 | },
|
|
120 | 120 | "_________________________________________________________________\n",
|
121 | 121 | "Layer (type) Output Shape Param # \n",
|
122 | 122 | "=================================================================\n",
|
123 |
| - "input_4 (InputLayer) (3, 400, 533, 3) 0 \n", |
| 123 | + "input_5 (InputLayer) (3, 400, 533, 3) 0 \n", |
124 | 124 | "_________________________________________________________________\n",
|
125 | 125 | "block1_conv1 (Conv2D) (3, 400, 533, 64) 1792 \n",
|
126 | 126 | "_________________________________________________________________\n",
|
|
173 | 173 | },
|
174 | 174 | {
|
175 | 175 | "cell_type": "code",
|
176 |
| - "execution_count": 53, |
| 176 | + "execution_count": 68, |
177 | 177 | "metadata": {
|
178 | 178 | "collapsed": false
|
179 | 179 | },
|
|
182 | 182 | "name": "stdout",
|
183 | 183 | "output_type": "stream",
|
184 | 184 | "text": [
|
185 |
| - "block4_pool Tensor(\"block4_pool_4/MaxPool:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
186 |
| - "block1_pool Tensor(\"block1_pool_4/MaxPool:0\", shape=(3, 200, 266, 64), dtype=float32)\n", |
187 |
| - "block4_conv1 Tensor(\"block4_conv1_4/Relu:0\", shape=(3, 50, 66, 512), dtype=float32)\n", |
188 |
| - "block2_conv1 Tensor(\"block2_conv1_4/Relu:0\", shape=(3, 200, 266, 128), dtype=float32)\n", |
189 |
| - "block2_conv2 Tensor(\"block2_conv2_4/Relu:0\", shape=(3, 200, 266, 128), dtype=float32)\n", |
190 |
| - "block4_conv2 Tensor(\"block4_conv2_4/Relu:0\", shape=(3, 50, 66, 512), dtype=float32)\n", |
191 |
| - "block4_conv3 Tensor(\"block4_conv3_4/Relu:0\", shape=(3, 50, 66, 512), dtype=float32)\n", |
192 |
| - "block5_conv2 Tensor(\"block5_conv2_4/Relu:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
193 |
| - "block2_pool Tensor(\"block2_pool_4/MaxPool:0\", shape=(3, 100, 133, 128), dtype=float32)\n", |
194 |
| - "block5_conv3 Tensor(\"block5_conv3_4/Relu:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
195 |
| - "block1_conv1 Tensor(\"block1_conv1_4/Relu:0\", shape=(3, 400, 533, 64), dtype=float32)\n", |
196 |
| - "block5_conv1 Tensor(\"block5_conv1_4/Relu:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
197 |
| - "block3_pool Tensor(\"block3_pool_4/MaxPool:0\", shape=(3, 50, 66, 256), dtype=float32)\n", |
198 |
| - "block1_conv2 Tensor(\"block1_conv2_4/Relu:0\", shape=(3, 400, 533, 64), dtype=float32)\n", |
199 |
| - "input_4 Tensor(\"concat_3:0\", shape=(3, 400, 533, 3), dtype=float32)\n", |
200 |
| - "block3_conv1 Tensor(\"block3_conv1_4/Relu:0\", shape=(3, 100, 133, 256), dtype=float32)\n", |
201 |
| - "block3_conv3 Tensor(\"block3_conv3_4/Relu:0\", shape=(3, 100, 133, 256), dtype=float32)\n", |
202 |
| - "block3_conv2 Tensor(\"block3_conv2_4/Relu:0\", shape=(3, 100, 133, 256), dtype=float32)\n", |
203 |
| - "block5_pool Tensor(\"block5_pool_4/MaxPool:0\", shape=(3, 12, 16, 512), dtype=float32)\n" |
| 185 | + "block4_pool Tensor(\"block4_pool_5/MaxPool:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
| 186 | + "block1_pool Tensor(\"block1_pool_5/MaxPool:0\", shape=(3, 200, 266, 64), dtype=float32)\n", |
| 187 | + "block4_conv1 Tensor(\"block4_conv1_5/Relu:0\", shape=(3, 50, 66, 512), dtype=float32)\n", |
| 188 | + "block2_conv1 Tensor(\"block2_conv1_5/Relu:0\", shape=(3, 200, 266, 128), dtype=float32)\n", |
| 189 | + "block2_conv2 Tensor(\"block2_conv2_5/Relu:0\", shape=(3, 200, 266, 128), dtype=float32)\n", |
| 190 | + "block4_conv2 Tensor(\"block4_conv2_5/Relu:0\", shape=(3, 50, 66, 512), dtype=float32)\n", |
| 191 | + "block4_conv3 Tensor(\"block4_conv3_5/Relu:0\", shape=(3, 50, 66, 512), dtype=float32)\n", |
| 192 | + "block2_pool Tensor(\"block2_pool_5/MaxPool:0\", shape=(3, 100, 133, 128), dtype=float32)\n", |
| 193 | + "block5_conv3 Tensor(\"block5_conv3_5/Relu:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
| 194 | + "block5_conv2 Tensor(\"block5_conv2_5/Relu:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
| 195 | + "block5_conv1 Tensor(\"block5_conv1_5/Relu:0\", shape=(3, 25, 33, 512), dtype=float32)\n", |
| 196 | + "block3_pool Tensor(\"block3_pool_5/MaxPool:0\", shape=(3, 50, 66, 256), dtype=float32)\n", |
| 197 | + "block1_conv2 Tensor(\"block1_conv2_5/Relu:0\", shape=(3, 400, 533, 64), dtype=float32)\n", |
| 198 | + "block1_conv1 Tensor(\"block1_conv1_5/Relu:0\", shape=(3, 400, 533, 64), dtype=float32)\n", |
| 199 | + "input_5 Tensor(\"concat_4:0\", shape=(3, 400, 533, 3), dtype=float32)\n", |
| 200 | + "block3_conv1 Tensor(\"block3_conv1_5/Relu:0\", shape=(3, 100, 133, 256), dtype=float32)\n", |
| 201 | + "block3_conv3 Tensor(\"block3_conv3_5/Relu:0\", shape=(3, 100, 133, 256), dtype=float32)\n", |
| 202 | + "block3_conv2 Tensor(\"block3_conv2_5/Relu:0\", shape=(3, 100, 133, 256), dtype=float32)\n", |
| 203 | + "block5_pool Tensor(\"block5_pool_5/MaxPool:0\", shape=(3, 12, 16, 512), dtype=float32)\n" |
204 | 204 | ]
|
205 | 205 | }
|
206 | 206 | ],
|
|
212 | 212 | },
|
213 | 213 | {
|
214 | 214 | "cell_type": "code",
|
215 |
| - "execution_count": 54, |
| 215 | + "execution_count": 69, |
216 | 216 | "metadata": {
|
217 | 217 | "collapsed": true
|
218 | 218 | },
|
|
247 | 247 | },
|
248 | 248 | {
|
249 | 249 | "cell_type": "code",
|
250 |
| - "execution_count": 55, |
| 250 | + "execution_count": 70, |
251 | 251 | "metadata": {
|
252 | 252 | "collapsed": true
|
253 | 253 | },
|
|
263 | 263 | },
|
264 | 264 | {
|
265 | 265 | "cell_type": "code",
|
266 |
| - "execution_count": 56, |
| 266 | + "execution_count": 71, |
267 | 267 | "metadata": {
|
268 | 268 | "collapsed": true
|
269 | 269 | },
|
|
276 | 276 | },
|
277 | 277 | {
|
278 | 278 | "cell_type": "code",
|
279 |
| - "execution_count": 57, |
| 279 | + "execution_count": 72, |
280 | 280 | "metadata": {
|
281 | 281 | "collapsed": true
|
282 | 282 | },
|
|
294 | 294 | },
|
295 | 295 | {
|
296 | 296 | "cell_type": "code",
|
297 |
| - "execution_count": 58, |
| 297 | + "execution_count": 73, |
298 | 298 | "metadata": {
|
299 | 299 | "collapsed": true
|
300 | 300 | },
|
|
313 | 313 | },
|
314 | 314 | {
|
315 | 315 | "cell_type": "code",
|
316 |
| - "execution_count": 59, |
| 316 | + "execution_count": 74, |
317 | 317 | "metadata": {
|
318 | 318 | "collapsed": true
|
319 | 319 | },
|
|
335 | 335 | },
|
336 | 336 | {
|
337 | 337 | "cell_type": "code",
|
338 |
| - "execution_count": 60, |
| 338 | + "execution_count": 75, |
339 | 339 | "metadata": {
|
340 | 340 | "collapsed": true
|
341 | 341 | },
|
|
366 | 366 | },
|
367 | 367 | {
|
368 | 368 | "cell_type": "code",
|
369 |
| - "execution_count": 61, |
| 369 | + "execution_count": 76, |
370 | 370 | "metadata": {
|
371 | 371 | "collapsed": false
|
372 | 372 | },
|
|
376 | 376 | "output_type": "stream",
|
377 | 377 | "text": [
|
378 | 378 | "('Start of iteration', 0)\n",
|
379 |
| - "('Current loss value:', 6.0200903e+10)\n", |
| 379 | + "('Current loss value:', 7.2344904e+10)\n", |
380 | 380 | "('Image saved as', 'results/im_at_iteration_0.png')\n",
|
381 | 381 | "Iteration 0 completed in 23s\n",
|
382 | 382 | "('Start of iteration', 1)\n",
|
383 |
| - "('Current loss value:', 2.8211651e+10)\n", |
| 383 | + "('Current loss value:', 3.2852105e+10)\n", |
384 | 384 | "('Image saved as', 'results/im_at_iteration_1.png')\n",
|
385 | 385 | "Iteration 1 completed in 23s\n",
|
386 | 386 | "('Start of iteration', 2)\n",
|
387 |
| - "('Current loss value:', 2.2322983e+10)\n", |
| 387 | + "('Current loss value:', 2.5034301e+10)\n", |
388 | 388 | "('Image saved as', 'results/im_at_iteration_2.png')\n",
|
389 | 389 | "Iteration 2 completed in 23s\n",
|
390 | 390 | "('Start of iteration', 3)\n",
|
391 |
| - "('Current loss value:', 2.0141793e+10)\n", |
| 391 | + "('Current loss value:', 2.2248387e+10)\n", |
392 | 392 | "('Image saved as', 'results/im_at_iteration_3.png')\n",
|
393 | 393 | "Iteration 3 completed in 23s\n",
|
394 | 394 | "('Start of iteration', 4)\n",
|
395 |
| - "('Current loss value:', 1.9059913e+10)\n", |
| 395 | + "('Current loss value:', 2.0828391e+10)\n", |
396 | 396 | "('Image saved as', 'results/im_at_iteration_4.png')\n",
|
397 | 397 | "Iteration 4 completed in 23s\n",
|
398 | 398 | "('Start of iteration', 5)\n",
|
399 |
| - "('Current loss value:', 1.8409126e+10)\n", |
| 399 | + "('Current loss value:', 1.9998147e+10)\n", |
400 | 400 | "('Image saved as', 'results/im_at_iteration_5.png')\n",
|
401 | 401 | "Iteration 5 completed in 23s\n",
|
402 | 402 | "('Start of iteration', 6)\n",
|
403 |
| - "('Current loss value:', 1.7965795e+10)\n", |
| 403 | + "('Current loss value:', 1.9452068e+10)\n", |
404 | 404 | "('Image saved as', 'results/im_at_iteration_6.png')\n",
|
405 | 405 | "Iteration 6 completed in 23s\n",
|
406 | 406 | "('Start of iteration', 7)\n",
|
407 |
| - "('Current loss value:', 1.7639055e+10)\n", |
| 407 | + "('Current loss value:', 1.9060795e+10)\n", |
408 | 408 | "('Image saved as', 'results/im_at_iteration_7.png')\n",
|
409 | 409 | "Iteration 7 completed in 23s\n",
|
410 | 410 | "('Start of iteration', 8)\n",
|
411 |
| - "('Current loss value:', 1.738588e+10)\n", |
| 411 | + "('Current loss value:', 1.8770221e+10)\n", |
412 | 412 | "('Image saved as', 'results/im_at_iteration_8.png')\n",
|
413 |
| - "Iteration 8 completed in 26s\n", |
| 413 | + "Iteration 8 completed in 23s\n", |
414 | 414 | "('Start of iteration', 9)\n",
|
415 |
| - "('Current loss value:', 1.7179054e+10)\n", |
| 415 | + "('Current loss value:', 1.8537345e+10)\n", |
416 | 416 | "('Image saved as', 'results/im_at_iteration_9.png')\n",
|
417 |
| - "Iteration 9 completed in 24s\n" |
| 417 | + "Iteration 9 completed in 23s\n" |
418 | 418 | ]
|
419 | 419 | }
|
420 | 420 | ],
|
|
0 commit comments