2323 'all_pair_shortest_paths' ,
2424 'topological_sort' ,
2525 'topological_sort_parallel' ,
26- 'max_flow'
26+ 'max_flow' ,
27+ 'find_bridges'
2728]
2829
2930Stack = Queue = deque
@@ -530,6 +531,52 @@ def _strongly_connected_components_kosaraju_adjacency_list(graph):
530531_strongly_connected_components_kosaraju_adjacency_matrix = \
531532 _strongly_connected_components_kosaraju_adjacency_list
532533
534+ def _tarjan_dfs (u , graph , index , stack , indices , low_links , on_stacks , components ):
535+ indices [u ] = index [0 ]
536+ low_links [u ] = index [0 ]
537+ index [0 ] += 1
538+ stack .append (u )
539+ on_stacks [u ] = True
540+
541+ for node in graph .neighbors (u ):
542+ v = node .name
543+ if indices [v ] == - 1 :
544+ _tarjan_dfs (v , graph , index , stack , indices , low_links , on_stacks , components )
545+ low_links [u ] = min (low_links [u ], low_links [v ])
546+ elif on_stacks [v ]:
547+ low_links [u ] = min (low_links [u ], low_links [v ])
548+
549+ if low_links [u ] == indices [u ]:
550+ component = set ()
551+ while stack :
552+ w = stack .pop ()
553+ on_stacks [w ] = False
554+ component .add (w )
555+ if w == u :
556+ break
557+ components .append (component )
558+
559+ def _strongly_connected_components_tarjan_adjacency_list (graph ):
560+ index = [0 ] # mutable object
561+ stack = Stack ([])
562+ indices , low_links , on_stacks = {}, {}, {}
563+
564+ for u in graph .vertices :
565+ indices [u ] = - 1
566+ low_links [u ] = - 1
567+ on_stacks [u ] = False
568+
569+ components = []
570+
571+ for u in graph .vertices :
572+ if indices [u ] == - 1 :
573+ _tarjan_dfs (u , graph , index , stack , indices , low_links , on_stacks , components )
574+
575+ return components
576+
577+ _strongly_connected_components_tarjan_adjacency_matrix = \
578+ _strongly_connected_components_tarjan_adjacency_list
579+
533580def strongly_connected_components (graph , algorithm , ** kwargs ):
534581 """
535582 Computes strongly connected components for the given
@@ -548,6 +595,7 @@ def strongly_connected_components(graph, algorithm, **kwargs):
548595 supported,
549596
550597 'kosaraju' -> Kosaraju's algorithm as given in [1].
598+ 'tarjan' -> Tarjan's algorithm as given in [2].
551599 backend: pydatastructs.Backend
552600 The backend to be used.
553601 Optional, by default, the best available
@@ -577,6 +625,7 @@ def strongly_connected_components(graph, algorithm, **kwargs):
577625 ==========
578626
579627 .. [1] https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
628+ .. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
580629
581630 """
582631 raise_if_backend_is_not_python (
@@ -1216,3 +1265,106 @@ def max_flow(graph, source, sink, algorithm='edmonds_karp', **kwargs):
12161265 f"Currently { algorithm } algorithm isn't implemented for "
12171266 "performing max flow on graphs." )
12181267 return getattr (algorithms , func )(graph , source , sink )
1268+
1269+
1270+ def find_bridges (graph ):
1271+ """
1272+ Finds all bridges in an undirected graph using Tarjan's Algorithm.
1273+
1274+ Parameters
1275+ ==========
1276+ graph : Graph
1277+ An undirected graph instance.
1278+
1279+ Returns
1280+ ==========
1281+ List[tuple]
1282+ A list of bridges, where each bridge is represented as a tuple (u, v)
1283+ with u <= v.
1284+
1285+ Example
1286+ ========
1287+ >>> from pydatastructs import Graph, AdjacencyListGraphNode, find_bridges
1288+ >>> v0 = AdjacencyListGraphNode(0)
1289+ >>> v1 = AdjacencyListGraphNode(1)
1290+ >>> v2 = AdjacencyListGraphNode(2)
1291+ >>> v3 = AdjacencyListGraphNode(3)
1292+ >>> v4 = AdjacencyListGraphNode(4)
1293+ >>> graph = Graph(v0, v1, v2, v3, v4, implementation='adjacency_list')
1294+ >>> graph.add_edge(v0.name, v1.name)
1295+ >>> graph.add_edge(v1.name, v2.name)
1296+ >>> graph.add_edge(v2.name, v3.name)
1297+ >>> graph.add_edge(v3.name, v4.name)
1298+ >>> find_bridges(graph)
1299+ [('0', '1'), ('1', '2'), ('2', '3'), ('3', '4')]
1300+
1301+ References
1302+ ==========
1303+
1304+ .. [1] https://en.wikipedia.org/wiki/Bridge_(graph_theory)
1305+ """
1306+
1307+ vertices = list (graph .vertices )
1308+ processed_vertices = []
1309+ for v in vertices :
1310+ if hasattr (v , "name" ):
1311+ processed_vertices .append (v .name )
1312+ else :
1313+ processed_vertices .append (v )
1314+
1315+ n = len (processed_vertices )
1316+ adj = {v : [] for v in processed_vertices }
1317+ for v in processed_vertices :
1318+ for neighbor in graph .neighbors (v ):
1319+ if hasattr (neighbor , "name" ):
1320+ nbr = neighbor .name
1321+ else :
1322+ nbr = neighbor
1323+ adj [v ].append (nbr )
1324+
1325+ mapping = {v : idx for idx , v in enumerate (processed_vertices )}
1326+ inv_mapping = {idx : v for v , idx in mapping .items ()}
1327+
1328+ n_adj = [[] for _ in range (n )]
1329+ for v in processed_vertices :
1330+ idx_v = mapping [v ]
1331+ for u in adj [v ]:
1332+ idx_u = mapping [u ]
1333+ n_adj [idx_v ].append (idx_u )
1334+
1335+ visited = [False ] * n
1336+ disc = [0 ] * n
1337+ low = [0 ] * n
1338+ parent = [- 1 ] * n
1339+ bridges_idx = []
1340+ time = 0
1341+
1342+ def dfs (u ):
1343+ nonlocal time
1344+ visited [u ] = True
1345+ disc [u ] = low [u ] = time
1346+ time += 1
1347+ for v in n_adj [u ]:
1348+ if not visited [v ]:
1349+ parent [v ] = u
1350+ dfs (v )
1351+ low [u ] = min (low [u ], low [v ])
1352+ if low [v ] > disc [u ]:
1353+ bridges_idx .append ((u , v ))
1354+ elif v != parent [u ]:
1355+ low [u ] = min (low [u ], disc [v ])
1356+
1357+ for i in range (n ):
1358+ if not visited [i ]:
1359+ dfs (i )
1360+
1361+ bridges = []
1362+ for u , v in bridges_idx :
1363+ a = inv_mapping [u ]
1364+ b = inv_mapping [v ]
1365+ if a <= b :
1366+ bridges .append ((a , b ))
1367+ else :
1368+ bridges .append ((b , a ))
1369+ bridges .sort ()
1370+ return bridges
0 commit comments