forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDay-08-3Sum.cpp
62 lines (47 loc) · 1.83 KB
/
Day-08-3Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
The solution set must not contain duplicate triplets.
Example:
Given array nums = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
Hide Hint #1
So, we essentially need to find three numbers x, y, and z such that they add up to the given value. If we fix one of the numbers say x, we are left with the two-sum problem at hand!
Hide Hint #2
For the two-sum problem, if we fix one of the numbers, say
x
, we have to scan the entire array to find the next number
y
which is
value - x
where value is the input parameter. Can we change our array somehow so that this search becomes faster?
Hide Hint #3
The second train of thought for two-sum is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search?
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int> > res;
int n=nums.size();
if(n<3) return res;
sort(nums.begin(), nums.end());
for(int i=0;i<n-2;i++){
if(i==0 || (i>0 && nums[i]!=nums[i-1])){ // not taking duplicates
int sum=0-nums[i];
int low=i+1, high=n-1;
while(low<high){
if(nums[low]+nums[high]==sum){
res.push_back({nums[i], nums[low], nums[high]});
while(low<high && nums[low]==nums[low+1]) low++;
while(low<high && nums[high]==nums[high-1]) high--;
low++; high--;
} else if(nums[low]+nums[high]>sum) high--;
else low++;
}
}
}
return res;
}
};