-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsponge.rs
291 lines (268 loc) · 15.8 KB
/
sponge.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
use plonky2::hash::hash_types::{HashOut, NUM_HASH_OUT_ELTS, RichField};
use plonky2_field::extension::Extendable;
use plonky2_poseidon2::poseidon2_hash::poseidon2::Poseidon2;
use plonky2::plonk::config::Hasher;
use plonky2::hash::hashing::PlonkyPermutation;
/// sponge function similar to the in-circuit one
/// used here for testing / sanity check
pub fn hash_n_with_padding<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
H: Hasher<F>
>(
inputs: &[F],
) -> HashOut<F>{
HashOut::<F>::from_vec(hash_n_to_m_with_padding::<F,D,H::Permutation>(inputs, NUM_HASH_OUT_ELTS))
}
pub fn hash_n_to_m_with_padding<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
P: PlonkyPermutation<F>
>(
inputs: &[F],
num_outputs: usize,
) -> Vec<F> {
let rate = P::RATE;
let width = P::WIDTH; // rate + capacity
let zero = F::ZERO;
let one = F::ONE;
let mut perm = P::new(core::iter::repeat(zero).take(width));
// Set the domain separator at index 8
let domsep_value = F::from_canonical_u64(rate as u64 + 256 * 12 + 65536 * 63);
perm.set_elt(domsep_value, 8);
let input_n = inputs.len();
let num_chunks = (input_n + rate) / rate; // Calculate number of chunks with 10* padding
let mut input_iter = inputs.iter();
// Process all chunks except the last one
for _ in 0..(num_chunks - 1) {
let mut chunk = Vec::with_capacity(rate);
for _ in 0..rate {
if let Some(&input) = input_iter.next() {
chunk.push(input);
} else {
// should not happen here
panic!("Insufficient input elements for chunk; expected more elements.");
}
}
// Add the chunk to the state
for j in 0..rate {
perm.set_elt(perm.as_ref()[j] + chunk[j],j);
}
// Apply permutation
perm.permute();
}
// Process the last chunk with 10* padding
let rem = num_chunks * rate - input_n; // Number of padding elements (0 < rem <= rate)
let ofs = rate - rem; // Offset where padding starts
let mut last_chunk = Vec::with_capacity(rate);
// Absorb remaining inputs
for _ in 0..ofs {
if let Some(&input) = input_iter.next() {
last_chunk.push(input);
} else {
last_chunk.push(zero);
}
}
// Add the '1' padding bit
last_chunk.push(one);
// Pad with zeros to reach the full rate
while last_chunk.len() < rate {
last_chunk.push(zero);
}
// Add the last chunk to the state
for j in 0..rate {
perm.set_elt(perm.as_ref()[j] + last_chunk[j],j);
}
// Apply permutation
perm.permute();
// Squeeze outputs until we have the desired number
let mut outputs = Vec::with_capacity(num_outputs);
loop {
for &item in perm.squeeze() {
outputs.push(item);
if outputs.len() == num_outputs {
return outputs;
}
}
perm.permute();
}
}
/// sponge function for bytes with no padding
/// expects the input to be divisible by rate
/// note: rate is fixed at 8 for now
/// used here for testing / sanity check
pub fn hash_bytes_no_padding<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
H: Hasher<F>
>(
inputs: &[F],
) -> HashOut<F>{
HashOut::<F>::from_vec(hash_bytes_to_m_no_padding::<F, D, H::Permutation>(inputs, NUM_HASH_OUT_ELTS))
}
pub fn hash_bytes_to_m_no_padding<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
P: PlonkyPermutation<F>
>(
inputs: &[F],
num_outputs: usize,
) -> Vec<F> {
let rate = P::RATE;
let width = P::WIDTH; // rate + capacity
let zero = F::ZERO;
let mut perm = P::new(core::iter::repeat(zero).take(width));
// Set the domain separator at index 8
let domsep_value = F::from_canonical_u64(rate as u64 + 256 * 12 + 65536 * 8);
perm.set_elt(domsep_value, 8);
let n = inputs.len();
assert_eq!(n % rate, 0, "Input length ({}) must be divisible by rate ({})", n, rate);
let num_chunks = n / rate; // Calculate number of chunks
let mut input_iter = inputs.iter();
// Process all chunks
for _ in 0..num_chunks {
let mut chunk = Vec::with_capacity(rate);
for _ in 0..rate {
if let Some(&input) = input_iter.next() {
chunk.push(input);
} else {
// should not happen here
panic!("Insufficient input elements for chunk; expected more elements.");
}
}
// Add the chunk to the state
for j in 0..rate {
perm.set_elt(perm.as_ref()[j] + chunk[j],j);
}
// Apply permutation
perm.permute();
}
// Squeeze outputs until we have the desired number
let mut outputs = Vec::with_capacity(num_outputs);
loop {
for &item in perm.squeeze() {
outputs.push(item);
if outputs.len() == num_outputs {
return outputs;
}
}
perm.permute();
}
}
#[cfg(test)]
mod tests {
use plonky2::field::types::Field;
use crate::sponge::hash_n_with_padding;
use crate::params::{D, F, HF};
#[test]
fn test_sponge_hash_rate_8() {
struct TestCase {
n: usize,
digest: [u64; 4],
}
let test_cases: Vec<TestCase> = vec![
TestCase { n: 0, digest: [0x509f3a747e4a6fca, 0xd6f21d91afb92eb3, 0xf65ef4075dcfb169, 0xbceaf22e0cd21b3d] },
TestCase { n: 1, digest: [0xfa286adad207c7ea, 0x97d864ff2e89415e, 0xcf002b28585bd945, 0x95ec163fbdd0792e] },
TestCase { n: 2, digest: [0xe4b779622cbb574f, 0x1fe4b1bc9a0c9fc7, 0x40051ada5252de9b, 0xb351345b1894a59f] },
TestCase { n: 3, digest: [0x133a5a2fd0cae006, 0x072a7769ca9a550d, 0x92134dad95d394c6, 0x22234de7d7270aab] },
TestCase { n: 4, digest: [0x78269e830f2a824a, 0x76f8b00469a8fa81, 0x6793369b1d75ebf5, 0xfba1a89dc21d9b30] },
TestCase { n: 5, digest: [0x263994efd2cd5c57, 0x7c37a93fd48fc98b, 0xa081b26a68767d13, 0x16af92d6e1e4d7f8] },
TestCase { n: 6, digest: [0x0b0b0f1d64f8d58c, 0x2946089b2eb949fc, 0xf68bcf08b69a95e7, 0x814d6eb4b2df848c] },
TestCase { n: 7, digest: [0xae0c900a194ee051, 0x4555257fba7a500b, 0x1713fd448cc82c3a, 0xaf8f2e895e2136f3] },
TestCase { n: 8, digest: [0x100351f04fc470b7, 0x79d3c3c416087158, 0x113bb1c70a6e84ee, 0x3eab2507cdc254d3] },
TestCase { n: 9, digest: [0xbab284d7f11855d6, 0xe1b53d108f308a1c, 0x971fea7184337830, 0x6d674ae321cfb9ba] },
TestCase { n: 10, digest: [0x68c00dbe0ed03a8f, 0xab5ba3617eb6f76b, 0x5d735bb89418cc0b, 0xff4101076f3f3c70] },
TestCase { n: 11, digest: [0xaecce2fa7de4f97d, 0x07cee3dc720812e0, 0x4155bf667391a9e8, 0xbf8a49a12f40e746] },
TestCase { n: 12, digest: [0xd3f43f06fc7affd2, 0xee9a8ac5ef44071a, 0xe00ec9e7f468d0e2, 0x944e34913a974233] },
TestCase { n: 13, digest: [0xcd50fe6ab5e3de54, 0x9b2093adaeac949c, 0xa176a2a9e2c82787, 0xd35f0635a1ec333f] },
TestCase { n: 14, digest: [0x8f5188d26ca0368c, 0x0116bf587e5cc970, 0x30654ee52a3c66d8, 0xe8ded60382c44b04] },
TestCase { n: 15, digest: [0xc7f020f910327951, 0x13a468945463870d, 0xbcf8ca584edb30f3, 0x7e7234f0b8954e7e] },
TestCase { n: 16, digest: [0xf8a9aef7392048e7, 0x6124715a2c5343eb, 0x1b7f17ebec4a5b13, 0xdf61d868051dad75] },
TestCase { n: 17, digest: [0x44d1fb6822c7f3fa, 0x2623cc2240022e42, 0xc90ce9259c9e1160, 0x7a42bc611acacc12] },
TestCase { n: 18, digest: [0x85dab5b06ef2d176, 0x24a587b13a4e3b30, 0xf547a00373299873, 0xb298a6ef846d64a1] },
TestCase { n: 19, digest: [0x7cc060a3f2a74260, 0xa07dc76e73335eb0, 0xf8ed9acbcf8a242e, 0xd32eaf3150005e49] },
TestCase { n: 20, digest: [0x3e961c84e53106f9, 0x63d9a807f9cfd88c, 0x7031e8834a17821a, 0xf2e1c79698798fa9] },
TestCase { n: 21, digest: [0x8a0ab00081c9828f, 0xa5f7aadaf3af046e, 0xada8b4c6220b3420, 0x80ebc8c91a65518c] },
TestCase { n: 22, digest: [0x39505fc00f052122, 0xb13edc24a35665c7, 0xa7b164fffe37ec64, 0x8f7eeb42c068e19f] },
TestCase { n: 23, digest: [0x1f49d6f25f39522b, 0x879377d8df727784, 0x00f1461600d09cdd, 0xd2c7946a44e1aa66] },
TestCase { n: 24, digest: [0x1c6f7a68537f7dc7, 0x64e6e09714dc0854, 0x9abfed111e51bd96, 0x65061b2bc484ed8b] },
TestCase { n: 25, digest: [0x95fd5cc6bc02ab29, 0xe2e3c96d9b1b8b5d, 0xadcf491caa16549e, 0x97d91e370da3c0b4] },
TestCase { n: 26, digest: [0x7599c5052ba67767, 0x3fe4a05f44e96ed6, 0xbbfe6874aa53808c, 0xd6771e162cc9f0ff] },
TestCase { n: 27, digest: [0xdff28121d822093c, 0x7313ea03b57bb436, 0x10ed29b28a77d8c3, 0x6ee304be541fe36f] },
TestCase { n: 28, digest: [0xce2b7f232b504b48, 0x02c638c398c12cb0, 0x4f1d416215377a86, 0x2d43ff6c5dd88f8c] },
TestCase { n: 29, digest: [0xa60cb008de647e9a, 0x502e2e740f68e2d1, 0xe983eb54e4052013, 0xe76e59c5e5dbcca2] },
TestCase { n: 30, digest: [0x7735e3ac5e08fa00, 0x211a86449207c30d, 0x9d80ddd40e7760b2, 0xe60f32f28597a188] },
TestCase { n: 31, digest: [0x6fab3f12496f0691, 0x5116ad81bedd7d84, 0xaa8a7713a80b323b, 0xce6d94533fc40b88] },
TestCase { n: 32, digest: [0xce51cdbd641d57c0, 0xf638202a88ee7f9c, 0x26c291ecc5162b45, 0x04a0a62b949c236f] },
TestCase { n: 33, digest: [0x923391e4a4cde9e2, 0xdcb3acccba80597d, 0x247bb4b67044a0e1, 0x65bbac92e096d1ec] },
TestCase { n: 34, digest: [0x1550d0234ae35f05, 0x16f4d1708923d4f1, 0x232319cb4090ea4e, 0x8354e1aed093070c] },
TestCase { n: 35, digest: [0xc7dd24e6db4ea70f, 0x80bc3d2aac952cb1, 0xabbd1a878bc50565, 0xf1ebc3b8d513c591] },
TestCase { n: 36, digest: [0xba9c4b1ce906efb1, 0xa332d0daccc62979, 0xfb658fcad0b5fbbd, 0x62d21407f34a35ee] },
TestCase { n: 37, digest: [0xcb2973d44f2b589d, 0x01708b32c4556317, 0x3ad51597c12b8564, 0x28d3a5d7de72cfd5] },
TestCase { n: 38, digest: [0x1dcf1f4ab7338296, 0xb88c661141b5aabb, 0x7e546b6e9b31bc90, 0xf26f7e6ffabb4e69] },
TestCase { n: 39, digest: [0x2e139ff910c0f410, 0xba3d2c0a92ec3845, 0x2860e475933a7108, 0x8f2a6c6d13bedc7a] },
TestCase { n: 40, digest: [0xc18a53c17c360ef4, 0x5e56ea9228988c68, 0xee0bd138436e996d, 0x06afd46a753f8257] },
TestCase { n: 41, digest: [0x2c992403c5277dc5, 0xba8770bc3a54b043, 0x51b882882a7b7864, 0xf75e179a53e7948e] },
TestCase { n: 42, digest: [0xde855183965741c3, 0x93520eac77a8f98d, 0x6412ae8cf0522d78, 0x9db49c6b455a83b4] },
TestCase { n: 43, digest: [0x552e357ddb7e1ef6, 0x5fa779e9c7373b56, 0x18f7c445e27e5dcf, 0x2664ecee5e7bc6c2] },
TestCase { n: 44, digest: [0x37b8a716c87e5489, 0x1201fcd31e407152, 0x0979d7887c42e1ca, 0x902e8b2bf748b356] },
TestCase { n: 45, digest: [0xa48bdd1d464960ed, 0x8e92c1af0cf258bc, 0x7c5b447524b92ba9, 0xac63902e613e4ef0] },
TestCase { n: 46, digest: [0x542e62f9317fe11d, 0xc23ba113a3f3c810, 0x2bda30c42a89cc7e, 0x35616e9f1a00aa8f] },
TestCase { n: 47, digest: [0x1c9194a0acfa97d7, 0x60d536ac106dd774, 0x8855b4a40e110080, 0xc2c408114e8c20d6] },
TestCase { n: 48, digest: [0x0e90b1cc3ac49e0c, 0x1b73aa8e0decbf88, 0x0ca9ef7070e0513f, 0x25cfb975571b6139] },
TestCase { n: 49, digest: [0xba6d6f7aa664f2e7, 0x4b9af896093937b9, 0x115b9aeb6c5f563e, 0x41cb5f42c6d3b115] },
TestCase { n: 50, digest: [0xdc3bdc491154caf6, 0xb95159bae61b2035, 0x98bd384fb3d0100b, 0xd70226f2b71ea465] },
TestCase { n: 51, digest: [0x57f31da51bcd2eab, 0x4a3b3945a8662b5c, 0x44dffaa325530b19, 0x47f4e41c2c1474cf] },
TestCase { n: 52, digest: [0xc3f518f6cf3b43bf, 0x1214790ff48554e4, 0x99c1eabc61b218fd, 0xf90b03954d7937f8] },
TestCase { n: 53, digest: [0x6357b3cdcbc1283a, 0x6acc0c2d5aac9261, 0xdf11e7ad14d432d1, 0x2242b26bdcc8a380] },
TestCase { n: 54, digest: [0x1946dc4471f8c502, 0x6be7d72499e0b4a5, 0x6e11de349239ff90, 0xfca78044256b8b54] },
TestCase { n: 55, digest: [0x302b38fb3df623dd, 0x69b362f7932fd7af, 0x2b47156f9135508b, 0xfe6c574f0a102e92] },
TestCase { n: 56, digest: [0xfdc9bd08a0416122, 0x063ebf4767fc7914, 0x330f36279d94050e, 0x79c61f80746893ec] },
TestCase { n: 57, digest: [0x7b5d8384b67af5c0, 0xa705e0163fa4d839, 0x1e203432e872104e, 0xe0e7699f20a291f4] },
TestCase { n: 58, digest: [0xb0aa74a52fe04366, 0x194b0d4afcdc03d9, 0x5134dc604b5d9f2a, 0x53c6bf9d5a1d502b] },
TestCase { n: 59, digest: [0xd5c8258f6fc80e2b, 0x82bac373eb051b48, 0x5ef620241420462d, 0x58635db0134fb97a] },
TestCase { n: 60, digest: [0x42ebb974ac5dd0ef, 0x676d0c6b3dde78c3, 0x14ed5eda2c9cb9de, 0x0f78a26badaa447c] },
TestCase { n: 61, digest: [0x2b3ca7711db999d5, 0xb74bd29abcb6179a, 0x8ba196525e6adb25, 0x86cb9464ae269a43] },
TestCase { n: 62, digest: [0x3d0e61a2ca7a65a2, 0x31f77852d41a6c8d, 0x2e4ceaa39763a53d, 0x5232ff5a3d78755e] },
TestCase { n: 63, digest: [0xb2ed789e88c1f525, 0x1592c1a1eafd2a9b, 0x98700c512f8c9a5d, 0xf96837b5d99a4eb4] },
TestCase { n: 64, digest: [0xe4b7d14e11de2fa9, 0xe81afff2cee68e14, 0xc58abb080bf37dd3, 0x36ae8b2196b5ae88] },
TestCase { n: 65, digest: [0xa1df9ff199c41d63, 0xd02c067d3d12edc1, 0xc9b598130fa60794, 0x5afe82d34c3fc8fa] },
TestCase { n: 66, digest: [0x0bc0094a1f07256d, 0x33c5b4c2a171d5bd, 0x1f38f1b1dc92aa54, 0x4610d21f276faa11] },
TestCase { n: 67, digest: [0x8072f00df8f7e44f, 0x42f0c2b8fe81d8a0, 0x2b5caf9e7c0ff611, 0x92b0b3a4a4bebe1a] },
TestCase { n: 68, digest: [0x6539f06fab064b57, 0xdb298b91f6c4f44f, 0x5d8f8eec6b7e8c86, 0x848a447123f39006] },
TestCase { n: 69, digest: [0x87f32efc9eaa65f6, 0xc5699d4ab6443852, 0x61008286bc651f4a, 0xcbcf714354843da3] },
TestCase { n: 70, digest: [0xffb8ad2258107315, 0xf7d6a58eb54f2745, 0xaecf888211821114, 0x7e0ea33b4d56976e] },
TestCase { n: 71, digest: [0xa9e5b6d70f67db2b, 0x072fd05840040322, 0x40ffcc86e3909dec, 0x3d80f61616a9e6d7] },
TestCase { n: 72, digest: [0xa77dd95d9ff4d7b8, 0x3a0e0502f74c091a, 0x1fa83de1e7dc716d, 0xe01ae447cc3a0e40] },
TestCase { n: 73, digest: [0xc4a29dc875a308eb, 0xd2ed0da7aab24b0c, 0x4c2aaaed0bc4f059, 0xaea772c635ea901a] },
TestCase { n: 74, digest: [0xaad59bf06c151ecf, 0x5e0f45e55df36692, 0x4798afb8b944a01e, 0xd7152cd819bbd7f8] },
TestCase { n: 75, digest: [0x89ae5b2b35ba07c7, 0x129f4ff59afaa1a3, 0x4275f3f797112650, 0xea3b4baaf7190a19] },
TestCase { n: 76, digest: [0xab068e43be297604, 0x17bd1c3cf4afec96, 0xaa84a8098dba4516, 0xa6e487ceafb02c49] },
TestCase { n: 77, digest: [0x2c85080ef895bb4a, 0xbd280690a789c124, 0xca4f8423b50de8a5, 0xec809bb8c30de95b] },
TestCase { n: 78, digest: [0x51c3d13543e4922b, 0xff9c11d5b93268db, 0xd9cf911cc5326948, 0x4b7bb11eafe7fd44] },
TestCase { n: 79, digest: [0xb435274d75678586, 0x8600e7f2db687493, 0x282873a3600a38da, 0x727791507d1b600e] },
TestCase { n: 80, digest: [0x23ae45602324f628, 0x0dc16b33f43209c5, 0x2455376f83b1aeff, 0xd5470f22ec2113bc] },
];
for test_case in test_cases {
let n = test_case.n;
let expected_digest = test_case.digest;
// Generate inputs
let inputs: Vec<F> = (0..n)
.map(|i| F::from_canonical_u64(i as u64 + 1))
.collect();
// Call the sponge function
let output = hash_n_with_padding::<F,D,HF>(&inputs);
// Compare the outputs
for (i, &out_elem) in output.elements.iter().enumerate() {
let expected_elem = F::from_canonical_u64(expected_digest[i]);
assert_eq!(
out_elem,
expected_elem,
"Mismatch at test case n={}, output element {}",
n,
i
);
}
}
}
}