diff --git a/Alignment/OfflineValidation/bin/Zmumumerge.cc b/Alignment/OfflineValidation/bin/Zmumumerge.cc index deaf1e4ac95c7..f654819dc1c25 100644 --- a/Alignment/OfflineValidation/bin/Zmumumerge.cc +++ b/Alignment/OfflineValidation/bin/Zmumumerge.cc @@ -132,7 +132,7 @@ FitOut ZMassBinFit_OldTool(TH1D* th1d_input, TString s_name = "zmumu_fitting", T c1->Print(Form("%s/fitResultPlot/%s_oldtool.root", output_path.Data(), s_name.Data())); FitOut fitRes( - fitter->mean()->getValV(), fitter->mean()->getError(), fitter->sigma()->getValV(), fitter->sigma()->getError()); + fitter->mean()->getVal(), fitter->mean()->getError(), fitter->sigma()->getVal(), fitter->sigma()->getError()); return fitRes; } diff --git a/DQMOffline/Alignment/src/DiMuonMassBiasClient.cc b/DQMOffline/Alignment/src/DiMuonMassBiasClient.cc index 26c1dbb825ba7..3f64612a61f60 100644 --- a/DQMOffline/Alignment/src/DiMuonMassBiasClient.cc +++ b/DQMOffline/Alignment/src/DiMuonMassBiasClient.cc @@ -494,8 +494,8 @@ diMuonMassBias::fitOutputs DiMuonMassBiasClient::fitBWTimesCB(TH1* hist) const } delete c1; - Measurement1D resultM(fitter->mean()->getValV(), fitter->mean()->getError()); - Measurement1D resultW(fitter->sigma()->getValV(), fitter->sigma()->getError()); + Measurement1D resultM(fitter->mean()->getVal(), fitter->mean()->getError()); + Measurement1D resultW(fitter->sigma()->getVal(), fitter->sigma()->getError()); return diMuonMassBias::fitOutputs(resultM, resultW); } diff --git a/DQMOffline/EGamma/plugins/PhotonDataCertification.cc b/DQMOffline/EGamma/plugins/PhotonDataCertification.cc index 7de5c1de37a99..48bc0bb5f0e12 100644 --- a/DQMOffline/EGamma/plugins/PhotonDataCertification.cc +++ b/DQMOffline/EGamma/plugins/PhotonDataCertification.cc @@ -87,9 +87,9 @@ float PhotonDataCertification::invMassZtest(string path, TString name, DQMStore: BreitWigner.fitTo(test, RooFit::Range(80, 100), RooFit::PrintLevel(-1000)); - if (std::abs(mRes.getValV() - ZMass) < ZWidth) { + if (std::abs(mRes.getVal() - ZMass) < ZWidth) { return 1.0; - } else if (std::abs(mRes.getValV() - ZMass) < gamma.getValV()) { + } else if (std::abs(mRes.getVal() - ZMass) < gamma.getVal()) { return 0.9; } else { return 0.0; diff --git a/MuonAnalysis/MomentumScaleCalibration/test/Macros/RooFit/FitWithRooFit.cc b/MuonAnalysis/MomentumScaleCalibration/test/Macros/RooFit/FitWithRooFit.cc index ac57eb33df3d9..ec1657902d3b5 100644 --- a/MuonAnalysis/MomentumScaleCalibration/test/Macros/RooFit/FitWithRooFit.cc +++ b/MuonAnalysis/MomentumScaleCalibration/test/Macros/RooFit/FitWithRooFit.cc @@ -118,7 +118,7 @@ class FitWithRooFit { // Fit with likelihood if (!useChi2_) { if (sumW2Error) - model->fitTo(*dh, RooFit::Save(), RooFit::SumW2Error(kTRUE)); + model->fitTo(*dh, RooFit::SumW2Error(true)); else model->fitTo(*dh); } diff --git a/PhysicsTools/TagAndProbe/src/TagProbeFitter.cc b/PhysicsTools/TagAndProbe/src/TagProbeFitter.cc index 3e4faccf25a1d..88ca55595997b 100644 --- a/PhysicsTools/TagAndProbe/src/TagProbeFitter.cc +++ b/PhysicsTools/TagAndProbe/src/TagProbeFitter.cc @@ -553,22 +553,19 @@ void TagProbeFitter::doFitEfficiency(RooWorkspace* w, string pdfName, RooRealVar std::unique_ptr res; RooAbsData* data = w->data("data"); - std::unique_ptr bdata; if (binnedFit) { // get variables from data, which contain also other binning or expression variables const RooArgSet* dataObs = data->get(0); // remove everything which is not a dependency of the pdf - RooArgSet* obs = w->pdf("simPdf")->getObservables(dataObs); - bdata = std::make_unique("data_binned", "data_binned", *obs, *data); - w->import(*bdata); + std::unique_ptr obs{w->pdf("simPdf")->getObservables(dataObs)}; + w->import(RooDataHist{"data_binned", "data_binned", *obs, *data}); data = w->data("data_binned"); - delete obs; } double totPassing = data->sumEntries("_efficiencyCategory_==_efficiencyCategory_::Passed"); double totFailing = data->sumEntries("_efficiencyCategory_==_efficiencyCategory_::Failed"); - RooAbsReal* simNLL = w->pdf("simPdf")->createNLL(*data, Extended(true), NumCPU(numCPU)); + std::unique_ptr simNLL{w->pdf("simPdf")->createNLL(*data, Extended(true), NumCPU(numCPU))}; RooMinimizer minimizer(*simNLL); // we are going to use this for 'scan' minimizer.setStrategy(1); @@ -701,8 +698,6 @@ void TagProbeFitter::doFitEfficiency(RooWorkspace* w, string pdfName, RooRealVar efficiency.setAsymError(-cerr, 0); } } - - delete simNLL; } void TagProbeFitter::createPdf(RooWorkspace* w, vector& pdfCommands) { @@ -1044,7 +1039,7 @@ void TagProbeFitter::makeEfficiencyPlot2D(RooDataSet& eff, effName.Data())); h->SetOption("colztexte"); h->GetZaxis()->SetRangeUser(-0.001, 1.001); - h->SetStats(kFALSE); + h->SetStats(false); for (int i = 0; i < eff.numEntries(); i++) { const RooArgSet* entry = eff.get(i); if (catName != nullptr && entry->getCatIndex(catName) != catIndex) diff --git a/Validation/MtdValidation/macros/Pt_residuals_fit.C b/Validation/MtdValidation/macros/Pt_residuals_fit.C index e4963b8e8cdcd..520aba2ca3ff5 100644 --- a/Validation/MtdValidation/macros/Pt_residuals_fit.C +++ b/Validation/MtdValidation/macros/Pt_residuals_fit.C @@ -114,8 +114,8 @@ void fit_to_data(TH1D* h_TrackMatchedTP, TString str) { // The PDF fit to that data set using an un-binned maximum likelihood fit // Then the data are visualized with the PDF overlaid - // Perform extended ML fit of PDF to data and save results in a pointer - RooFitResult* r1 = model->fitTo(*h_, Save()); + // Perform extended ML fit of PDF to data + model->fitTo(*h_); // Retrieve values from the fit Double_t mean_fit = mean.getVal();